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RATIONAL WHITEHEAD PRODUCTS AND
A SPECTRAL SEQUENCE OF QUILLEN

CHRISTOPHER ALLDAY

A third order rational Whitehead product is defined in
terms of the appropriate differential graded Lie algebra. The
product is used to calculate the second differential in Quillen's
rational reverse Adams spectral sequence. Some facts about
a fourth order product are stated, and conjectures are made
concerning higher order products. The products of this paper
are compared to those defined by Zeeman, Hardie, and Porter.

In the paper "Rational homotopy theory" [7], Quillen introduces
a very interesting rational unstable reverse Adams spectral sequence.
He also introduces a functor, which assigns to each one-connected
topological space a differential graded Lie algebra, whose homology
is the rational homotopy Lie algebra of the space. In this paper we
show, first, how higher order rational Whitehead products may be
defined using the DG Lie algebra, secondly, how these Whitehead
products may be used to calculate the differentials in Quillen's spectral
sequence, and, thirdly, how these Whitehead products compare to
those defined by Zeeman, Hardie, Porter, et al.

In the first section we review some of the notation and material
of [7]. In the second section we define the third order rational White-
head product, and show how it and the ordinary (second order) rational
Whitehead product fit into Quillen's spectral sequence. Further, we
indicate how the higher order products may be defined, but an explicit
definition is included only for the fourth order product. In the final
section a theorem is established, which provides a mechanism for
comparing our rational products with those defined classically, and
this comparison is carried out for the third order product.

1* Review of material and notation from [7]* We are con-
cerned with the following three categories: ^ 7 , the category of 1-con-
nected pointed topological spaces, and basepoint preserving continuous
maps, whose weak equivalences are those maps which induce isomor-
phisms on rational homotopy.

(DGL)^ the category of reduced differential graded Lie algebras over
Q and DG Lie algebra morphisms, whose weak equivalences are those
morphisms which induce isomorphisms on homology.

{DGC)2, the category of 2-reduced differential graded coalgebras over
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Q and DG coalgebra morphisms, whose weak equivalences are, again,
those morphisms which induce isomorphisms on homology.

Quillen defines, implicitly, a functor

μ:^l >{DGL\.

For a space X in J7~2, the homology of μ{X) is the rational homotopy
Lie algebra of X, L*(X). The latter may be obtained by setting
Ln(X) = πn+1(X) (x) Qy and defining the Lie bracket of a e Ln(X) and
βeLm(X) by the formula

[α, β] = ( - l ) * + 1 [ α , 6] <g) rs e π%+m+1(X) (x) Q = Ln+m(X) ,

where r and s are rational numbers such that a — a (x) r and β ~
6 0 s , and where the bracket on the right is the conventional White-
head product in π*(X). With this definition L*(X) is isomorphic to
π*(ΩX) (x) Q, endowed with the Samelson product.

Quillen also defines a functor

^\{ΏGL\ >(DGC)2,

which has the property that, for a space X in ^ 7 , the homology of
^μ(X) is precisely the rational singular homology coalgebra of X.

For an object of ^ 7 , X, say, by considering the primitive filtra-
tion on ^μ(X), Quillen obtains a coalgebra spectral sequence,

where Σ is the functor which raises the grading degree by one (e.g.
{ΣL*{X))n = L%_1(X)), and S is the symmetric algebra functor. The
construction is functorial, and so the edge map

πn(X) ®Q = ^ V i — ί̂Γn-i -^->Hn(X; Q)

is the rational Hurewicz homomorphism.
In order to establish the notation needed for the calculations of

§2, below, it is necessary to review in detail Quillen's construction
of the functor ^ . To this end let L be a reduced DG Lie algebra,
and define a DG Lie algebra ΣL %L. As a graded vector space
ΣL # L is the direct sum of ΣL and L. The inclusion maps L —>
ΣL —+ ΣL % L and L —> ΣL # L are denoted by Σ and θ respectively.
(In addition, if x is an element of degree n in L, we shall denote
by Σx the corresponding element of degree n + 1 in ΣL.) The Lie
bracket on ΣL # L is defined by requiring that, for all x and y in L,

( i ) [Σx,Σy] = 0
(ii) [Jα;, %] - Σ[x, y]

and
(iii) [0a, θy] = φ , 3/].
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The differential on ΣL # L is defined by requiring that, for all x in L,
(i) dΣx = θx - ^d'α,

and
(ii) dto = θd'x,

where <Z' is the differential on L. Letting U denote the universal
enveloping algebra functor, θ induces a right t/(L)-module structure
on U(ΣL$L). rtf(L) is then the coalgebra U(ΣL # L) (x) mL)Q, and
the differential on ^ is obtained by requiring that the natural
surjection, π: U(ΣL # L) —> C^{L)> be a DG coalgebra morphism. If
i: S(ΣL) —• U(ΣL # L) is the Hopf algebra map induced by the inclu-
sion ΣL —> 2X # L, then πί: S(ΣL) —> ^ ( L ) is a coalgebra isomorphism.

2* Higher order Whitehead products and the spectral sequence*
First we show how the ordinary (second order) Whitehead product
determines the differential, d1, of the spectral sequence.

THEOREM 2.1. Let X be a one-connected pointed topological space,
and let a{ be an element of Ln.(x), for i = 1, 2. Then in Quillen's
spectral sequence for X,

d'iΣa.Σa,) = (-l)^Σ[al9 a2] .

Proof. Let ai e μ%i{x) be a cycle which represents α, (i — 1, 2).
Then in U(Σμ(x) # μ(α?)) we have

^ α ^ ^ ) = ̂ ^ ^ + {-lY^Σa.θa, .

Now [^, Σa2] = θa,Σa2 - {-ly^^Σaβa,. Hence πd{Σa,Σa2) =
π[θal9 Σa2] = ( - l ) ^ ^ ! 7 ^ , α2]. I.e., where d' denotes the differential
on &μ(X),

d'πiiΣa.Σa,) = {-l)nιπiΣ[au a2] .

The result now follows, because of the identifications made in con-
structing the spectral sequence.

Now suppose that α* e L^CX), for i = 1, 2, 3, and that [α2, α3],
[α3, αj, and [alf a2] are all zero. Let «< be a cycle in μn.(X)9 for i =
1, 2, 3, such that at represents a^ For 1 ̂  ί, i ^ 3, and i ^ i, let
ξi5 be an element of μn.+7lj+1(X), such that in μ(X), d£iS = [«<, α,].
Then by the Jacobi identity,

is a cycle in /^(X). Call this cycle <au α2, α3; fίy>.

DEFINITION. With the notation and conditions of the above
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paragraph, we define the third order rational Whitehead product of
al9 α2, α3, denoted by [alt α2, α3], to be the set of all elements of
Lni+n2+n3+1(X) represented by cycles of the form (μl9 a29 α3; ξiSym

Let nt + n2 + n3 — n, and let Jn+ι(aί9 α2, α3) be the vector subspace
of Ln+1(X) spanned by all elements of the form [αL, x], [α2, y], and
[α3, z], for all xe Ln+1_ni(X), yeLn+1_n2(X), and zeLn+1^(X). The
following proposition shows that Jn+1(al9 a2, α3) is the indeterminancy
of [aί9 a2, α 3].

PROPOSITION 2.2. With the above notation, [au a2, a3] is a coset

of Jn+1(al9 α2, α3) in Ln+1(X).

Proof. Let a be an element of [al9 α2, α3] S Ln + 1(X), and let see
)- Suppose α is represented by <au a2i az; f4i>, and let f e

be a cycle representing x. Then [f, α j represents [%, α j ,
and <αt, α2, α3; f .,> + [ί, <̂ i] represents a + [α?, α j . But (al9 α2, α3; f^> +
[f, α:J = <αly a2, a3; $'„}, where fj2 = ί12, & = ί23 + ( - l ) ^ f , and $31 = fsi
/. α + [a?, αj e [αlf α2, α3].
Λ a + Jn+ifai, a2, α3) S [α1? α2, α3].

Now let be[aL,a2, a3] be represented by a cycle <αί, α2, α3; ί^ >.
Since α̂  represents ai9 there must exist β{ eμn.+1(X), such that α =
&% + d/3i Suppose that β2 and /33 are zero. Then

dξ[2 = [a[, a[\ = [al9 a2] + [dβl9 α j

, a2] ,

and ξ2d — ?23 are cycles. Call these cycles ζ12, ζ31, and ζ23, respectively.
So

« , aϊ, a'3; £'„} = (al9 a2, α3; fiy> + (-l)Wl%3[[A, ^2], α8l

- (-l) w ^3 [ ζ i 2 > α3] + (-l)^[f 2 3 , dβ,] - ( - l ) ^ [ ζ 2 3 , <]

+ ( - l ) 3 2+ .[[α8, ^ J , α j _ (-l)»β 2[ζ81, α2]

- <αlf ai9 a5; ξ{j) - (~l)"^[ζ 1 2, α8]

Let the homology classes of ζ23, ζ31, and ζ12 be x9 y, and «, respectively.
Then

b = a - ( - 1 ) ^ [ 2 , α3] - (-1)^2[?/, α2] - ( - l ) ^ f e α j .
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Hence, for all a, be [al9 α2, α3], a — be Jn+1(au a2, α3).

In the following, if {EQ is the Quillen spectral sequence of some
space, and if x is an element of El5 such that dr(x) = 0, then we
shall let [#] ( r + 1 ) denote the class in E f1 which is represented by x.

COROLLARY 2.3. Let X be a space of ^ 7 , let a^L^X), i =
1, 2, 3, be such that [α2, α3], [α3, α j , and [au a2] are all zero. Let a, be
[au a2, α3] S Ln+1(X), where n = nγ + n2 + n3. Then in the Quillen
spectral sequence of X, [Σa]{2) — [Σb]{2) in E2

un+1.

THEOREM 2.4. With X, al9 α2, α3 and a as in the above corollary,
then in the Quillen spectral sequence of X, d1{ΣaιΣa2Σaz) = 0, and

Proof. We calculate as in the proof of Theorem 2.1. Let α< 6 μ%i{X)
be a cycle which represents a, (i = 1, 2, 3). Then in U(Σμ(X) # μ(X))
we have

+ (-
π ( ( -

+ (-

Now

= ί f ^ α * - d{ΣξiάΣak) + ( - l )^» i + 1 ί

- ί f ^ α , - d{ΣξiάΣak) + (-l j i+ i + ^ ^

and

Σa{Σ[ah ak] = ^α^fy, - £α4d(2fiJfc)

where ξiS is such that cZς̂  = [aif a^. Again let dr be the differential
in ί fμ(X) . Then

12, a3]

f13] + (-ir^Σ[alf f23])
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+ (-ly^Σa^ξa)

πi((-iy*+1Σ[ξ12, a,

= (-l)»i»s+»£+i7Γi2'<α1, a2, α3; £.,.

where

ζ = (-I)»i+12'f122'α3 + (_i)v3+V3^i+

Again the result follows because of the identifications made in
constructing the spectral sequence. In particular, the term d'πίζ is
explained away by formula (3.8) of MacLane [3], Chapter XI, §3,
applied to Έ\,n

REMARK 1. It is clear from the definition that the third order
product has the usual functoriality, and the usual trilinearity but
different change of sign under permutation.

Specifically, if X and Y are spaces of J7~2, if /: X—> Y is a base-
point preserving map, and if [αx, α2, α3] is a well defined third order
product in L*(X), then [/*(αi),/*(α2),/*(θ3)] is well defined in L*(Y),
and

Λ([α1α2α3]) S [Λ(α1),/; | ;(α2),/iίί(α3)] .

Also if [α1? α2? α3] and [αx, α2, αj] are both well defined, then so is
[αly α2, α3 + αj], and

[αi? α2, α3 + α3] g [aίy α2, α3] + [αx, α2, αί] .

Similarly for the other variables.
However, [aL, a2, α3] = (-l)Λiw2+»i*3+*2»3+i[α2> ttl> α3] = [α2, α3, α j , and

so on. (Cf. Hardie [2].)

REMARK 2. The general definition for kth order products seems
hard to calculate. For example, let X be a space in ^ 7 , let a{ e
Ln.(X), i = 1,2, 3, 4, be elements such that

(i) %Φ j=>[a,i, aά] = 0,
and

(ii) i, j , k all distinct ==> 0 € [α^ αy, ak].
Let ίw, i ^ i, and ίίifc, i, j , k all distinct, be such that

( i ) dξ{j = K , ad]
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and
(ii) dξiSk = (0Li, ajΊ ak; ζ^), where at is a cycle in μn.(X), repre-

senting ai9 i = 1, 2, 3, 4. Then a calculation similar to the above
yields the following result:

= [Σa]{3) ,

where a e Lni+n2+n3+%4+2(X) is represented by the cycle

Before stating a conjecture for the general form of the fcth order
product, we recall from May [4], for example, that if p + q — ft, then
(μ, v) is a (p, ^)-shuffle if μ(i) = π(ϊ) for 1 ̂  i ^ p and v(i) = 7r(^ + j)
for 1 ̂  i ^ ^, where π is a permutation of {1, , k) such that π(i) <
π(i) for 1 ̂  i < i ^ p or for p + 1 ̂  i < j ^ ft. (^, i;) is a (p, g)-
shuffle of type II relative to 1, if μ(l) = 1. Now suppose that xi e
Lni{X)9 i = 1, , ft, are elements such that 1 ̂  ^ < < ir ^ k and
2 ^ r ^ ft — 1 imply that [xh, , ccίr] is defined and includes zero.
Let ίi be a cycle in μ%i{X) which represents xif 1 ̂  i ^ ft, and for
1 <Ξ ix < < ir ^ k and 2 ̂  r ^ ft — 1, let ξh...ir be an element
of μ{X), such that dξiv..ir represents the element of [xh, •• ,a?ίJ,
represented by the cycle <fίχ, £<1<2, , f<1....ir_1> constructed recursively
as follows.

For ft-2, <f<χ> = (- l)M£i, fJ .
For ft - 3, <f4l, f<Λ> - ( - l ) ^ «+ *+1<ίi, f., ί3; ί*Λ>, as above.

k-1

(ξ. 9 ξ. . 9 . . . 9 ξ. βmβ. _ > = Σ Σ ± [ξμ, ί i ] 9

where the second sum is taken over all (p, g)-shuffies, (μ, v), of type
II relative to 1, with p + q = ft, and where ξμ — ζμ{i)...μw and ζu =
S»{i)."»w The conjecture is that the signs of the terms, [ξμ, £J, can
be chosen to make <£<L, ξiιh, •••, ίίl...ίfc_1> into a cycle, representing an
element x, say, of Ln+]C_2(X)9 where n = Σ f = i ^ ; and that such ele-
ments define the ftth order product [xu ••, xk\. Furthermore, we
make the conjecture that if x is such an element of [xu •• ,α;A;],
then in the Quillen spectral sequence for X, [Σxt Σxkγ

k~ι) exists, and

3* Comparison with the classical definition* We recall from
Hardie [2], Porter [6], or more specifically, Arkowitz [1], the following
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definition of a kth order Whitehead product in ordinary homotopy.
Let X be a space in ^~29 and let a{ e π%i+1<) i = 1, , k, be homotopy
classes- Let P be the product, Sn^+1 x •*• x Sn^+1

9 let S be the (lean)
wedge, Sni+1 V V Sn*+1, and let T be the fat wedge, T(Sn^+1, , S**+1),
consisting of fc-tuples from P, which have at least one coordinate at
the base point. Let g: S —* X be the map induced by the a{. That
is, we choose a particular representative ft: S^+1 —>X, i = 1, , &,
for each α̂ ; and # is the unique map such that g°iUi = fi9 i = 1, , k,
where i ^ : S%i+1 —> S is the natural inclusion. Let n — Σ?=i ni> a n ( i
choose a generator zeHn+k(P, T). Suppose there exists an extension
of g, g: T —+ X. Then we have a diagram

Hn+k(P, T) J - πn+k(P, T) -i-> TΓ.+^ίΓ) - ^ 7Γ.+^(X) ,

where the Hurewicz map h is an isomorphism. The kth order White-
head product, [al9 , ak], is defined to be {g$hrι{z)\ g is an extension
of g) S π^k^X). If no extensions exist, then [alf •• ,αfc] is empty.

In order to obtain kth order Whitehead products in rational homo-
topy, we repeat the above construction after localizing the spaces
concerned at the empty set of primes. (Here we follow a suggestion
of the referee.) This localization will be denoted, as usual, by the
subscript zero. Thus for a{ e Ln.(X) ~ πn.+1(X0), i = 1, , k, we obtain
a map g0: So—>X0, and define the Mh order rational Whitehead product,
[al9 •••,%]', to be {gQ^h"~ι(z^: g0 is an extension of g0 to Γo} The
element z0 is just the image of z, above, under the localization map,
and dhr1 comes from the diagram

•Hn+k(Jr0, l0) < 7ϋn+k{Jr0, l0) • 7C%+k_1\l0)

We have, then, [al9 , ak\ S πn+k^(X0) = Ln+k__2(X).
Throughout the following, we shall assume that min{^: l^i^k}^

1, so that S, T, and P are all one-connected. We shall assume also
that k ^ 2.

The following lemma shows that the classical rational Whitehead
products are not trivial.

LEMMA 3.1. With the above notation,

dh~ι{z,) Φ 0 6 πn+k^

Proof. The inclusion, S—+P, induces an epimorphism, πn(S) —*
πn(P), for all n. Hence the inclusion, T~>P, induces an epimorphism,
πn(T)-+ πn(P), for all n. The map, 3: πn+k(P, T) — π^^T), is,
therefore a monomorphism. πn+k(P, T) s Hn+k(P, T) = Z, and the
result follows.
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The next proposition will be useful for analyzing the Quillen
spectral sequence of P, and hence of Tf too.

PROPOSITION 3.2. Let Xu , X% he spaces of ^ 7 . Then the
Quillen spectral sequence of Xx x x Xn, Er(Xί x x Xn), say, is
the tensor product of the spectral sequences of Xu , Xnf Er(X1)i ,
Er(Xn), say. That is, for all r ^ l , there is a DG-coalgebra isomorphism

Er(X, x . . . x Xn) =

Proof. Using induction it is clearly enough to show the result
for the product of two spaces, X and Γ, say.

For DG Lie algebras, L and I/, let L x U denote their product.
We recall that as a vector space L x JJ is just L φ I/, and the
differential and Lie bracket are given by the obvious formulae:

d{x, x') = {dx, d'x') ,

[(*, O, (v, y')\ = ([*, v], W, y'\).

This is clearly a product in the category (DGL)^
First we show that there exists a weak equivalence

θ: μ(X x Y) > μ{X) x μ(Y) .

Let pί9 p2 be the projections of X x Y onto X, Y respectively.
Then we have a diagram in (DGL)^

\ /

M^) x μ(Y)

where πx and π2 are the projections. Then there exists a unique

Y) >μ(X) x μ(Y)

making the diagram commute. To see that θ is a weak equivalence,
take homology. We then have the commutative diagram:

L(X) x

H{θ) must be an isomorphism, since it is unique in making the diagram
commute, and it is known from elementary homotopy theory that
there is an isomorphism, which makes this diagram commute.
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For DG coalgebras A and B, denote their product by A]JB.
The functor <£*: (DGL)1 —• (DGC)2 is a right adjoint, and so preserves
products, (Pareigis [5].) Also ^ carries weak equivalences into weak
equivalences. Hence there is a weak equivalence in (DGC)2,

x Y)

As a DG coalgebra, &μ(X) Π &μ(Y) = ̂ μ(X) ® <*fμ(Y); and, where
Fm, m ^ 0, denotes the primitive filtration, it is clear that

Σ F9(<ϊfμ(X)) ®

Then ^ ( ^ ) induces a weak equivalence

9f (0)°: ί/o(X x Γ) • -E°(X) (x) £?°

and, hence, ^(θ) induces isomorphisms

^{ΘY\ Er(X x Y) • Er(X) (8) £7r

for r ^ 1.

COROLLARY 3.3. Iw tAe Quillen spectral sequence of P, £/&e cίi/-
ferential dr is trivial for r ^ 2.

Proof. The Quillen spectral sequence is trivial for odd dimensional
spheres, and has d1 as the only nontrivial differential for even dimen-
sional spheres.

In the following theorem we shall continue to use the above
notation. Let aieLn.(T) be the homotopy classes induced by the
inclusions, Sni+1 —> Γ, i = 1, , k, and let

a = dhr'izo) G T Γ ^ ^ Γ O ) s Ln+k_2(T) .

PROPOSITION 3.4. /^ ίfce Quillen spectral sequence for T,
[Σat Σak]

lk'~1) exists, [Σa]{k~ι) is nonzero, and there is a nonzero
rational number a, such that

Proof. We compare the spectral sequence of T with that of P
via the inclusion map i: T-+ P. For r ^ 1, i induces an isomorphism
on all terms generated by Σitϊ""8 ̂ mί ϊ 7 ) . It is clear then, that

(i) dr[Σax Σakγ
r) = 0 for 1 ̂  r < k - 1,

and
(ii) [Jα](fc-1J Φ 0.
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Furthermore, if [ΣaYk~1} and [Σaλ Σakγ
h~ι) survive to Ek(T),

they must survive to E°°(T)9 since there are no terms to kill them.
But killed they must be, since dim T ^ n + k — 2. The result follows.

Now let X be a space in ^~2, and let ^ e ^ . + 1 ( I ) , i — 1, 2, 3, be
homotopy classes such that [x2, xz], [x3, #J and [xlf x2] are all of finite
order. Let ĉ  = ^(x)l e Ln.(X)9 i=l,2, 3, be the corresponding rational
classes, and so [al9 a2, α3]' is the classical third order rational product.
The indeterminacy of [αx, α2, α3]' is Jn+1(al9 a2, α3), the same as for
[al9 α2, α3]. (Hardie [2].) We have the following corollary of Proposi-
tion 3.4.

COROLLARY 3.5. For a e [al9 a2, α3] and b e [al9 α2, α3]', there is a
nonzero rational number a, such that a — ab is a sum of rational
(second order) Whitehead products in Ln+1(X).

Proof. Let g0 be an extension of g0: So~»Xo to To, where g: S—> X
is determined by xi9 i = 1, 2, 3. Then, if dh^(z0) = c, g^{c) is a repre-
sentative of [al9 α2, α3]'. Thus b — g^{c) is a sum of rational White-
head products.

Now, from Proposition 3.4,

d'lΣa.Σa.Σa.Γ =

where β is a nonzero rational number.
But, from Theorem 2.4,

Thus (—l)n^+n2+1a — βg^{c) is a sum of rational Whitehead products
by Theorem 2.1, and the result follows.
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