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HILBERT TRANSFORMS, AND A PROBLEM
IN SCATTERING THEORY

M J. WESTWATER

Let ξ> be a separable infinite dimensional complex
Hubert space, B(fQ) the set of bounded linear operators on
£>• Consider a holomorphic map z -» K(z) from a complex
neighborhood of some interval of the real axis to B(jQ)9

such that for z real K(z) is hermitian. These conditions are
satisfied by K(z) = H — z\9 with H hermitian. In this special
case K(z) has a bounded inverse S(z) (the resolvent of H),
for z not on the real axis, and S(z) can be represented as
the Hubert transform of a measure whose values are bound-
ed positive operators (the spectral measure of H); for z on
the real axis K(z) has a (generally unbounded) inverse for z
not in the point spectrum of H; closely related to the
spectral representation of S(z) is an approximation theorem
which asserts roughly that for most real values of z, [K^z)]-1

can be approximated by operators of finite rank obtained by
taking the orthogonal projector P onto a finite dimensional
subspace D and inverting PK(z)P on D. The object of this
paper is to give conditions on K(z) sufficient to imply the
conlusions just noted in the special case K(z) — H — zl.

The main theorems are Theorem 1 in § 1, and Theorem 4
in § 4; each has two parts — a representation for [K^z)]"1 for
z complex, and an approximation theorem for [Kiz)]-1 for z
real. Theorem 4 is used in § 5 to prove a convergence
theorem (Theorem 5) for the Kohn variational method in
quantum mechanical potential scattering (the relevant terms
are defined in that section). This application motivated the
writing of the paper.

1* The representation theorem* Throughout this paper we will

be working in a separable complex Hubert space φ. μ will denote

Lebesgue measure on the real line R. We will need to consider

positive operator valued measures on R. Such a measure is a map

v from Borel subsets B of R to positive bounded operators on $*>

such that for any f, ge$ the map vff0: B—>{f,v{B)g) is a complex

measure on R. If {vn} is a sequence of Borel measures on R, with

the total variation of vn bounded in n, the convergence vn —> v of vn

to a measure v will always mean weak* convergence (also called

vague convergence).

We begin by stating our main result in its simplest form. This

will be further generalized in § 4.
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THEOREM 1. Let {K(z)} be a family of bounded operators on φ,
defined and holomorphic in z, for z in a complex neighborhood of
some finite open interval I of the real axis. Suppose that

(a) K{z) is hermitian for ze I
(b) K ' ( z ) = 1 + C ( z ) , w i t h C(z) c o m p a c t , f o r z e U
( c ) for some ze U — I, K(z) has a bounded inverse.

Then there exists a discrete set Ed I such that, for each open
interval J whose closure is contained in I — E, K(z) has a bounded
inverse S(z) for zeNj — J (where Nj is a certain complex neigh-
borhood of J). In Nj — J, S(z) admits a representation

(1.1) S(z) = \ ^Ά + RΛz)
h z — t

where v is a positive operator valued measure on J, and Rj{z) is
holomorphic in Nj.

Let {DN} be an increasing sequence of finite dimensional sub-
spaces of ξ>, whose union D is dense in φ. Denote by PN the or-
thogonal projection onto DN. For sufficiently large N the restriction
of PNK(z)PN to DN is invertible (as an operator on DN) for all but a
discrete set of z e I (dependent on N); when this inverse is defined
we extend it to an operator TN(z) on $ by setting TN(z) = 0 on the
orthogonal complement of DN. Then as N—> oo

TN{z)K{z) > 1

weakly in measure (ft) on J, i.e., for all f, ge$>

(f, TN(z)K(z)g) >{f,g)

in measure on I.

REMARK. For C(z) = 0, K(z) in Theorem 1 is of the form
— £Γ+ z\ with H hermitian, and S(z) is the resolvent of H. There
is no exceptional set E, and (1.1) is the representation of S(z) given
by the spectral theorem.

Proof of Theorem 1. The proof of Theorem 1 follows from:
( i ) The special case where [| C(z) \\ < σ < 1
(ii) A perturbation result involving preservation of the validity

of the conclusions of Theorem 1 under an additive perturbation of
C(z) by a constant rank 1 operator. The results we obtain in these
special cases are somewhat stronger than are necessary for the proof
of Theorem 1. We state them as Theorems 2 and 3.

THEOREM 2. Let {V(z)} be a family of bounded operators on Q,
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defined and holomorphic in z, for z in a complex neighborhood U of
some finite open interval I of the real axis. Suppose that the inter-
section of U with any line Re z — a is either empty or connected.
Let H be a self-adjoint operator and D a core for H. Suppose that

(a) K(z) = -jff- V(z) + z\
(b) \\V'{z)\\ < σ< 1 forzeU.

Then K(z) has a bounded inverse S(z) for zeU — L For each open
interval J whose closure is contained in I, S(z) admits for ze U — I
a representation

(1.2) S(z) = \ ^ + RΛz)
JJ z — t

where v is a positive operator valued measure on J, and Rj(z) is
holomorphic in U — (I — J ) . If D is the union of an increasing
sequence of finite dimensional subspaces DN of φ, and TN(z) is defined
as in Theorem 1

(1.3) (/, TN{z)K{z)g) > (/, g)

as N—> oo in measure (μ) on I, for /e£>, ge domain of H.

THEOREM 3. Let {S(z)} be family of bounded operators on !Q defined
and holomorphic in z, for all z with Im z Φ 0 in a connected open
set U containing an open subset of I — E of the real axis. Here I
is a finite open interval, and E a discrete subset of I. Suppose that,
for any open interval J whose closure is contained in I — E, there
exists a complex neighborhood Nj of J such that, for zeNj—J, S(z)
admits a representation (1.1). Let K be a symmetric rank 1 operator.

Then either 1 — z trace (KS{z)) = 0, ze U, Im z Φ 0 or with a
suitably defined discrete set EZD E replacing E, and a connected open
set UZDI — E replacing U, the family of operators S(z), defined by

S(z) - S(z)(l -

i zKS(z)+

satisfies the conditions imposed on [S(z)} in the preceding paragraph.
U is so defined that zeU, Imz Φ 0 and 1 — z trace (KS(z)) Φ 0
together imply zeU.

Suppose further that there exists an increasing sequence {DN} of
finite dimensional subspaces of φ, together with a sequence {TN(z)} of
operators, defined for Im z Φ 0 and ze U, such that

(a) PNTN(z)PN — TN(z), PN the orthogonal projection onto DN

(b) for each set J as in the first paragraph, TN(z) has a represen-
tation
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TN{z) = ί ^ A + RN{z)
JJ z — t

with vN a finite sum of positive masses, each of rank 1 as an oper-
ator, and RN(z) holomorphic in Nj.

(c) lim^oo RN{z) = R(z), zeNj (weak limit)
(d) the total variation of vN on J is bounded in N, and lim^.^

vN = v
(e) for almost all ze I a sesquilinear form K(z) is defined with

form domain containing D, D — (J DN, and independent of z, such
that

(/, TN(z)K(z)g) >(f,g)

as N~+ oo in measure (μ) on I, for feξ>, ge domain K(z).
Then the sequence of operators {TN(z)} defined by

1 - ztτ(KTN(z)))

stands in a similar relation to the operators {S(z)}, and the sesquilinear
forms K(z) = K(z) - zK.

Conclusion of proof of Theorem 1 (assuming Theorems 2, 3). To
see that Theorems 2 and 3 imply Theorem 1 note first that the con-
clusions of Theorem 1 are local in z, i.e., it suffices to show that each
z0 6 I is contained in an open interval Jo such that the statements of
Theorem 1 are valid with / replaced by Jo. Choose a real number σ
with 0 < σ < 1. Then C(z) = C(z0) + (C(z) - C(z0)) with

\\C(z)-C(zo)\\<l/2σ

for z — z0 sufficiently small, and, since C(z0) is compact and sym-
metric, C(z0) = F + (C(z0) - F) with || C(z0) - F\\ < l/2σ, for some
symmetric F of finite rank p (say). This gives a splitting of K(z)
in a neighborhood Io of /

K(z) = ^(s) + zF

With K[(z) = 1 + dίs), and || d(«) || < σ for σ e IQ. Theorem 2 is ap-
plicable to the family {K^z)}. Condition (c) of Theorem 1 implies

1 + zSt(z)F = S1(z)K(z)

is invertible for some zeN — I, so det (1 + zS^F) ^ 0 for z — ω
(say).

We claim that we can choose a splitting F = Σ5=i ^y of ί 7 as a
sum of a finite number of symmetric rank 1 operators Fίy in such a
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way that
det (1 + ωS^ω)!^ Φ 0, with Σk = ΣjU F>> f o r a 1 1 k> 1 < k < s

Theorem 1 is obtained by a finite induction on fc; at each step one
has ωeU and 1 — ω trace (KS(ω)) Φ 0, so that the first possibility
admitted in Theorem 3 does not occur.

To justify the claim made in the preceding paragraph consider
the vector space V of symmetric operators Σ of finite rank whose
range is contained in the range of F. The set

D = {Σ\ det (1 + ωSt(ω)Σ) = 0}

is an algebraic subset of V, and 0 g D, F <£ D. V is a vector space of
dimension (p(p + l))/2 and, since every Σ eV can be written as a
sum of p rank 1 operators, it is possible to choose a basis {Ei} for V
in which each Et has rank 1. A suitable splitting of F is obtained
by choosing a piece wise linear path joining 0 to F, each of whose
vertices 0 = Σo, Σl9 , Σs = F does not lie in D, and each of whose
edges is parallel to one of the basis vectors.

2* Proof of Theorem 2* The proof of Theorems 2 and 3 follows
very closely the proof given by Stone [18] of the first part of the
spectral theorem for a self-ad joint operator H, i.e., the part in which
the spectral measure is constructed. The second part of the spectral
theorem in which the spectral measure is shown to be projection
valued, the projections giving a resolution of the identity, depends
upon the Hubert identity satisfied by the resolvent; here we do not
have an analogous identity satisfied by S(z), and therefore we can
only assert that the measure constructed is a positive operator valued
measure. Stone's method is to approximate H by a sequence HN of
symmetric operators of finite rank, and to obtain the matrix elements
of the spectral measure of H as limits of the corresponding matrix
elements of the spectral measures of the HN. That HN has a spectral
measure is a reformulation of the spectral theorem for a symmetric
operator in a finite dimensional space.

We divide the proofs of Theorems 2 and 3 into a series of lemmas.
T2 appearing at the beginning of the statement of a lemma indicates
that the notation and hypotheses of Theorem 2 are in force.

Lemma 1, due to Stone, asserts strong convergence of the ap-
proximate resolvents constructed from the operators HN to the
resolvent of H. From it we obtain Lemma 2 which asserts strong
convergence of the operators SN(z) to the operator S(z), which plays
the role of the resolvent in our Theorem 2. The explicit estimate
enables us to verify a condition on the uniformity of the convergence
which is essential in the argument which follows. Lemma 3, essen-
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tially due to Rellich, plays the same role in our argument as the
spectral theorem for a hermitian operator of finite rank in that of
Stone. Lemmas 4, 6, and 8 are elementary lemmas concerning sequences
of meromorphic functions φN(z) having simple poles on the real axis;
in each case a convergence condition is given for Im z Φ 0 and the
conclusion concerns the behavior of the sequence of z real. Lemma 5
gives a basic estimate for the Lebesgue measure of the set on which
a meromorphic function of the type described is large. Lemma 7
is an elementary measure theoretic lemma needed in the proof of
Theorem 3. Theorem 2 follows from these lemmas and the Stieltjes
inversion formula for Hubert transforms exactly as the first part of
the spectral theorem follows from the corresponding assertions ir
Stone ([18]); this argument is isolated as Lemma 9.

Notice that in Theorem 2 no condition similar to condition (c) in
theorem is given or needed. The necessity for this condition appears
in Theorem 3, where the possibility arises that S(z) may not exist
for any z, Theorem 3 asserts that it suffices to demand that S(z)
exist for one complex value of z. This result follows from the key
Lemma 10. The connection between Theorem 1 and the theory of
J self-adjoint operators pointed out at the end of § 3 makes it clear
that Lemma 10 is best possible. Lemma 11 gives the implication of
Lemma 10 for the approximating measures. Theorem 3 then follows
from these lemmas and the Stieltjes inversion formula.

LEMMA 1. (Stone [18]) Let H be a self-adjoint operator, z a
complex number, Im z Φ 0. Let D = \JN^ DN, {DN} an increasing
sequence of finite dimensional subspaces of φ Suppose that D is a
core for H, so that D is contained in the domain of H, and (z — H)
D is dense in φ. Denote by TN(z) the bounded operator on $ defined
by extending the inverse of PN(z — H)PN on DN to an operator on ξ>
by setting it equal to zero on the orthogonal complement of DN.
Then as N—> co

TN(z) > (z — H)"1 strongly .

We give the proof because we need not only the result stated
but also the estimate given by the proof.

Proof. Given ε > 0, and / e £>, choose he(z — H) D so

Suppose h = (z - H)k, JceD. Then k e DN for all N > Noy so

(z - H)-1/ = (z - H)~ι{f -h) + k
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TN{z)f = TN(z)(f -h)+ TN(z)(z - H)k

but keDN so

TN(z)(z - H)k = TN{z)PN{z - H)PNk ^ PNk ^ k .

Also

I K s - f f Π K \Im zΓ, \\TN(z)\\< \lmzΓ.

This gives

||(2 - HΓf- TN(z)f\\ < 2 | I m z r | ] / - A|| < 2ε\lmz\~*

REMARK 1. If L is a closed subspace of ξ> and p § we denote
by d(y, L) the distance from y to L. The above proof gives the
estimate

|| (z - HΓf - TAz)f\\ <2\Imzr d(f, (z - H)DN) .

LEMMA 2. (T2) JΓ(2) λαs α bounded inverse S(z) in U — I. For
ze U- I

(2.1) lim TN(z) = S(2) (Strong limit) .

Proof. Let ^ e [7. By supposition ι ? 0 = R e 2 1 e ί 7 and the segment
zozι is contained in Z7. Write Ho = fl" + F(20), iί(«, Ho) = (̂  — Bo)"1.
Note that in some neighborhood of z1

σ \z — z o \ < \ I m z \ .

Then

iΓ(^)-1 - (zl -Ho+ V(z)

(2.2) = (zl -Ho+\* V'{u)

+ R(z, Ho)

Since R(z, Ho) \ V'(u) du < σ \ z — zQ \ \ Im z I"1 < 1 in a neigh-
Jz

borhood of zu the inverse of the first factor in (2.2) exists and may
be computed as a geometric series. Since (V(z) — V(zo))(z — Zo)"1 is
holomorphic in z, the resulting representation of S(z) = K(z)~ι as a
norm convergent series whose terms are holomorphic establishes that
S(z) exists and is holomorphic in a neighborhood of z — zλ.

Finally the approximation theorem (2.1) follows from Lemma 1
and the following observations:
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1. If AN-*A, BN-+B strongly as N-+°o, and {AN} is norm
bounded, then ANBN—>AB strongly.

2. If AN,h-+Ak strongly as N—> oo (for all k), and || ANtk\\ < ck

with Σck < oo then SN = Σ * Ά*,* —• S = Σ * -A* strongly.
3. Since ΰ is a core for i ϊ and V(Re z) is bounded hermitian, D

is a core for K(Rez) = -JET- F(Rez) + Rezl.

REMARK 2. From the explicit estimate given in Remark 1, we
obtain

2lImz^d(f,[K(Uez) + i Imz] DN) .
(1-<T)2

LEMMA 3. (T2) TN(z) is meromorphic in U. Its poles are on the
real axis) they are simple and the residues are positive (operators).

Proof. For z real, write H(z) = H + V(z). TN(z) may be con-
sidered as the extension to $ of the resolvent R(o), PNH(z)PN) of
PNH(z)PN (considered as a hermitian operator on DN), evaluated at
ω — z. By the spectral theorem

(2.3) R (ω, PNH(z)I
i ω-KN(z)

By the argument used in the proof of Lemma 2, R (ft), PNH(z)PN) may
be shown to be holomorphic as a function of two variables for z and
ω in U with | Imω | > σ | I m s | ; in particular, TN(z) is holomorphic
for z 6 U, I Im z \ Φ 0. By a theorem of Rellich ([9], p. 120) the eigen-
values λJr(s) are holomorphic in a neighborhood of /, as also are the
projectors PN(Z). It follows then, from (2.3) with ω = z, that TN(z)
is meromorphic in a neighborhood of I (and so in all of U) with its
only poles at points of / such that z — \%(z) = 0 for some i. \%{z)
has derivative trace(V(z)P^(z)), which is bounded in absolute value
by σ. Thus d/dz(z — X*N(z)) > 1 — σ > 0 for z real, showing that
z — λJr(s) = 0 for at most one value of z e I, say for z = vι

N. The
corresponding pole is simple with a positive residue (a positive multiple
of Pι

N(v%)).

The following lemmas will allow us to pass from the approxima-
tion theorem off the real axis given by Lemma 2 to the type of ap-
proximation on the real axis which appears in Theorems 2 and 3.

LEMMA 4. Let I be a finite open interval of the real axis, U a
complex neighborhood of I. Suppose that {<PN(z)} is a sequence of
functions meromorphic in U. For each N suppose that φN(z) has
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only simple poles and that these lie on the real axis. For J any
open interval with closure contained in I denote by CN(J) the sum
of the absolute values of the residues of the poles of φN(z) in J.

Suppose that (ϊmz)k φN(z)~+Q as N~^ «3 uniformly on compacts
contained in U, for some positive integer k; and that the residues of
φN(z) are all positive. Then for any J as above, Iimv CN(J) — 0.

Similarly, if | (Im z)k φN(z) \ is bounded, uniformly on compacts
in U, and the residues of φN{z) are all positive then, for any J, CN{J)
is bounded uniformly in N.

Proof. We omit the simple proof.

The next lemma is the starting point for the classical theory of
the Hubert transform.

LEMMA 5. Suppose c{ > 0, and zi9 are real numbers defined for
1 < i < m. Let δ > 0. Set f(z) = ΣΓ=i cj(z - z%). Then

COROLLARY. Let the Cι be complex, and f(z) defined (for z real)
as before. The μ {z \ \ f(z) \ > δ} < lQ/δ (ΣΓ=i *).

Proof. For the proof of Lemma 5 and its corollary see [20].
(Lemma 5 can be stated in terms of g(z) = [f{z)\~~ι: g(z) regarded

as a transformation of the line onto itself is (Lebesgue) measure pre-
serving if Σci = 1. But the point of view suggested by this formula-
tion does not seem to have been developed.)

LEMMA 6. We retain the notation and hypotheses of the first
paragraph of Lemma 4. Suppose

(a) (Im z)k φN{z) —> 0 as N—* oo uniformly on compacts contained
in U, for some positive integer k

(b) for any J, l i n v ^ CN{J) = 0.
Then as N—> °o, <PN{z) —> 0 in measure (μ) on I.

Proof. It suffices to show that for each open interval V whose
closure is contained in 2, as N~^ co φN(z)-+0 in measure on V.

Suppose V — (c,d). (a) implies \{z — c)(d — z)γ φN(z) —> 0 as N-+oo
uniformly on the boundary of a rectangle R with vertices c ± is,
d ± is, ε > 0 sufficiently small that it is contained in U. Let

+ τN{z)
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be the splitting of φN{z) into the sum ψN{z) of the principal parts at
its poles in V, and τN(z) holomorphic in V. From (b) it follows that
[(z — c)(d — z)]k ψN(z) —> 0 as i\Γ—> oo uniformly on the boundary of R.
Hence also [(z — c)(d — z)]kτN(z) —*0 as N—> °o uniformly on the
boundary of R. By the maximum modulus principle

[(z-c)(d-z)]kτN(z) >0

as N—>oo uniformly in the interior of R and in particular on V.
Thus τN(z) —»0 in measure (μ) on V. But (b) and the corollary to
Lemma 5 imply ψN{z) —> 0 in measure (μ) on V. Hence φN{z) —»0 in
measure (μ) on V.

DEFINITION. A sequence {φN} of measurable functions on a
measure space M — (X, R, m) is bounded in measure if

Vε > 0 3ϋΓ = K(ε)

and

No = N0(ε) sm{x\ \ φN{x) \ > K) < ε VN> No.

The definition is motivated by

LEMMA 7. A sequence {φN} of measurable functions on M is
bounded in measure if and only if for every sequence {fN} of measurable
functions converging to zero in measure on M, the sequence {fNφN}
also converges to zero in measure on M.

Proof. We omit the proof.

Note that if, for some subsequence {Nά}, the functions {(ΨN^))"1}

converge to zero in measure on a set of strictly positive measure,
then the sequence {φN} is not bounded in measure. However, the
converse is false. Counterexample: Take M= [0,1], with Lebesgue
measure μ. Consider the sets

EN = {x I the ΛΓth binary digit of x = 1} .

Set φN{x) = N for x e Em φN{x) = 1 for x € EN.

LEMMA 8. We retain the notation and hypotheses of the first
paragraph of Lemma 4. Suppose

(a) I (Im z)fc 9V(z) I is bounded as N—> oo uniformly on compacts
contained in U, for some positive integer k

(b) for any J, CN(J) is bounded as N —> co.
Then as N—> oo, φN(z) is bounded in measure (μ) on /.
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Proof. The proof is essentially the same as that of Lemma 6.

Note that, by Lemma 4, condition (b) can be replaced in Lemma
6 and in Lemma 8 by the condition that the residues of φN(z) in /
be positive.

Proof of the second part of Theorem 2. We can now prove the
on-axis approximation (1.3) in Theorem 2. Write

φN(z) = (/, TN{z)K{z)g) - (/, g)

for fe £>, g 6 domain of H. Lemma 3 shows that φN{z) is meromorphic
in U with simple poles on the real axis and positive residues. Lemma 2
shows that condition (a) of Lemma 6 is satisfied. In fact the remark
following Lemma 2 gives

φN{z) I (Im zf < 2

i

| I m * J || / || d(K(z)g, [if (Re z) + i Im z] DN) .
(1 σf(1 - σf

The right side of this inequality is continuous in z for z e U and
decreases monotonically to zero as N—> co for each fixed z, so by
Dini's theorem the convergence is uniform on compacts contained in
U. (if (Re z)D may not be dense, so we do not know whether for z real
d(K(z)g, K(z)DN) ~» 0 as N—>^o; for this reason an additional factor
I Im z I has been multiplied into the inequality.) It remains to verify
condition (b) of Lemma 6.

(2.4) CN(J) = JL ! 4 1

where cι

N is the residue of φN{z) at the pole vN. We saw in the proof
of Lemma 3 that cN has the form

v\) - PNK(viY)PN] g)

where τι

N is positive and < (1 — σ)~ι. Schwarz's inequality gives

CN(J) < [AN(J)BN(J)Y12

with

AX(J)= Σ ιιp^:v)/ii2^v

We claim Ay{J) is bounded, and BN{J) —> 0 as N—> °o. Consider the
functions (/, Tλ(z)f). These functions are meromorphic in Z7 with
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simple poles at the points vι

N. The residues at these poles are positive,
and AN(J) is the sum of the residues at poles in J. (ϊmz)(f, TN{z)f)
is bounded on compacts in U, uniformly in N, so by Lemma 4, AN(J)
is bounded in N.

Next consider the functions

XN(z) = (g, (K(z) - PNK{z)PN)TN{z){K{z) - PNK(z)PN)g) .

These are meromorphic in U with simple poles at the points vι

N.
The residues at these poles are positive, and BN(J) is the sum of the
residues at poles in /. Since (g, (K(z) — PNK(z)PN)g) is holomorphic
in U, BN{J) is also the sum of the residues at poles in J of

Xjz) - XN(z) + {g, (K(z) - PNK{z)PN)g)

- (g, K{z)TN{z)(K{z) - PNK(z)PN)g) .

Now

\XN(z) I < |i K(z)g || || TN(z)(K(z) - PκK{z)PN)g \\ .

The first factor is bounded on compacts in U, and the second factor
is (by Lemma 2) < 2/((l - σ)2) \ Im z I"1 d(K(z)g, [K(Re z) + i Im z] DN),
and so, like \<PN(z)\, satisfies condition (a) of Lemma 6. Lemma 4
is thus applicable to the functions XN(z), and implies lim BN(J) = 0,

We have now shown CN{J) —+ 0 as N—>^>o. The convergence to
zero in measure (μ) on / of the functions φN(z) now follows from
Lemma 6.

Proof of the first part of Theorem 2. To complete the proof of
Theorem 2, it remains to obtain the representation (1.2) for S(z).
The argument used by Stone [18] (Chapter 5, § 2) carries over with-
out essential change.

The argument rests on the weak* compactness of a bounded set
of Borel measures, and on the Stieltjes inversion formula. We recall
this formula for the reader's convenience: Let v be a Borel measure
on R,

viz) =
)z - t

(Imzφϋ) its Hubert transform, F(t) = v((~ oo9 t]) the distribution
function of v. Then F (and hence v) may be recovered from v by
means of the formula

F(b) - F(a) = lim - i - ( v[z)άz .
o+ 2τn Jc



HILBERT TRANSFORMS AND A PROBLEM IN SCATTERING THEORY 579

Here a and b are points of continuity of F, and Cε is a contour ob-
tained from a positively oriented rectangle with vertices a — i, b — i9

b + i, and a + i by deleting the segments of its boundary in the
strip I Im z | < ε.

It suffices for all x,yeφ and every interval / whose closure is
contained in I, to obtain a decomposition

(x,S(z)y)= \ ^ M + Riy{z)

of (x, S(z)y) as the sum of the Hubert transform of a Borel measure
vx,y on J, positive for x = y, and a function R^y{z) holomorphic in
U — (I — J). For the total variation of vx>y on J we must have a
bound

\\vX}y\\j<M(J)\\x\\\\y\\

and vx,y must be shown to be sesquilinear in x, y. We do not put a
subscript J on vXyy because the Stieltjes inversion formula shows that
if J1aJ2, and we have such a representation of {x, S(z)y) for both J±
and J2 then vΊ

x)y is the restriction to Ji of vl%.
The decomposition for (x, S(z)y) is obtained from the correspond-

ing decompositions for the approximations (x, TN{z)y) by an application
of Lemma 9 (below). We have seen (Lemma 3) that TN(z) is mero-
morphic in U with simple poles on the real axis having positive
residues. By splitting (x, TN(z)y) into the sum of the principal parts
at the poles in J and a function Rξy'y

J{z) holomorphic in U — (I — J ) ,
we obtain the desired decomposition of (x, TN{z)y). The measure vξ,y

is just the discrete measure supported by the poles of (x, TN(z)y),
which assigns to each pole its residue. Hv^yllj ^s "the sum of the
absolute values of the residues at poles in J, and for this we obtain
a uniform bound of the form M(J) \\x\\ \\y\\ as in the proof of (1.3).
We note that for x = y the residues are positive. The conditions of
Lemma 9 are thus satisfied by the functions φN{z) = (x, TN(z)y) for
any x,ye$ and the resulting measures vx,y depend on xy y in the
way described in the preceding paragraph.

This completes the proof of Theorem 2.

LEMMA 9. Let I be a finite open interval of the real axis, V a
complex neighborhood of J. Let φN(z) be a sequence of functions
defined and holomorphic in V — I. Suppose that

(a) I <PN{z) I ̂  KI I m £ \~k for utt N, some integer k and some
K > 0, uniformly in z on compacts contained in V

(b) ΦN(z) —>cP{z) as N—+ oo, pointwise in V — I
(c) for every interval J, whose closure is contained in J, there
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are positive measures vN,j on J, and functions ψN,j{z), holomorphic
in V — (I — J), such that φN{z) = vN,j(z) + ψNtJ(z).
Then, for each such J, the measures vN>J converge as N—> oo to a
measure vJy and ψ(z) — φ{z) — Vj{z) admits a holomorphic extension
to V - (I- J).

Proof. From (a) we obtain a bound | | ^ v , j | | < B for all N. By
weak* compactness of bounded sets of measures, we obtain a sub-
sequence of vNiJ converging as N—> co to Vj (say). Define

ψ(z) = ψ{z) — ϊ>j{z) .

Then vN.(z) —> Vj{z) for z e V — I, and so ψN (z) —* ψ(z) as j —+ co. If

J = (α, 6), we can choose a rectangle R with vertices a ± is, b ± is
contained in V, and show that the functions (b — z)k(z — a)kψNj(z)
converge uniformly on the boundary of R and hence also in its interior.
Thus ψ(z) admits a holomorphic extension lim,-^ ψN.{z) to V — (I— J).
Finally, we note that, since Vj can be recovered uniquely from φ(z)
by the Stieltjes inversion formula, the passage to a subsequence of
vN,j was not necessary, and, in fact, vNiJ—*VJ ^s N—> oo.

3* Proof of Theorem 3* If v is a Borel measure on the real
line with compact support, we denote by

v(z) = P.v.
z - t

its Hubert transform. v{z) is holomorphic in z for z not in the sup-
port of v, and (see [20]) exists almost everywhere (μ) (as a principal
value integral) for z in the support of v. We wite | |z;| | for the total
mass of v.

LEMMA 10. Let v be a positive Borel measure on the real line

with compact support, and g(z) a function holomorphic in the con-

nected open set U of the complex plane. Suppose U is symmetric

with respect to the real axis, and g(z) = g(z), ze U. Exclude the

trivial case: v a measure whose support does not intersect U,

v(z) + g(z) = 0

identically. Define

E = E(v, g) = Iz e U \ either Im z Φ 0 and v(z) + g(z) = 0 or

lmz = 0, g\z) > ( dv{t\2, and v{z) + g(z) - θ | .
J (z — tf J
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Then E is discrete. If g is a polynomial of degree < 2m, E contains
at most m points in Im 2 > 0.

Proof. Let zlf , zm be m (distinct) points of E Π {z | Im z >̂ 0},
C a simple closed contour in U containing these points and their
complex conjugates in its interior. Write D{t) = Πί*=i I s» — * |2

Cauchy's residue theorem and the definition of E give the inequality

<
Z)(ί) <

(for z complex D{z) is defined as ΠΓ=i («• — z) fa — z)).
If g(z) is a polynomial of degree ^ 2m — 2, the right side of (3.1)

is zero (since D(z) has degree 2m). (3.1) then forces v to be the zero
measure. zl9 **9zm are then zeros of g, which implies g is identical-
ly zero, and we have the trivial case. This proves the final assertion
of Lemma 10.

Now return to the general case: g(z) holomorphic. Clearly any
limit point z0 of E must lie on the real axis in the support of v.
For otherwise, v(z) would be holomorphic in a neighborhood of z0

and so v(z) + g(z) would vanish identically, and we would have the
trivial case. In (3.1) split g into the sum of the first 2m terms of
its Taylor series about z0, and a remainder Rm(z). This gives

Since z0 is a limit point of E, we may for any ε > 0 choose the m
points to lie within the circle \z0 — z\ — e. We then take for C the
circle | z — z0 \ = 2ε. For Rm(z) we have an estimate

~ I2mZ0 I

in some fixed circle with center z0. The second term on the right of
(3.2) is thus 0(ε). Taking the limit ε—>0 we obtain by Fatou's
lemma

(3.3) \ d ^
V J (zQ - t(zQ - t)2m (2m - 1) !

We claim (3.3) implies that z0 is not in the support of v. This
contradiction will complete the proof of Lemma 10.

Consider for x real the series Σm=0 %2m/((Zo — t)2m). For \χ\ suf-
ficiently small, (3.3) implies that its partial sums are v integrable as
functions of t, and gives a uniform bound for the ^-integral of the
mth partial sum. By Fatou's lemma the sum of the series is v inte-
grable. But for I x I > I z0 — 11 the series diverges. The interval
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z0 — 11 < \x |/2 therefore does not intersect the support of v.

Note that Lemma 5 implies that if {vN} is a bounded sequence
of positive measures on the real line, each a finite sum of point
masses, the sequence {vN(z)} of their Hubert transforms is bounded
in measure. The following Lemma 11 may therefore be considered
as a generalization of Lemma 5.

LEMMA 11. Let {vN} be a bounded sequence of positive measures
on the real line, each a finite sum of point masses. Suppose that
for each N the support of vN is contained in some finite interval I
(independent of N). Let g(z) be a function holomorphic in the open
set U of the complex plane. Suppose U symmetric with respect to
the real axis, and g(z) — g(z), zeU. Then either some subsequence
of {vN} converges to a positive measure v such that v(z) + g(z) = 0
identically, or the sequence φN{z) = {vN{z) + g{z))~ι is bounded in
measure (μ) on U Π R.

Proof. A sequence of functions is bounded in measure (μ) if and
only if every subsequence contains a subsequence with this property.
By compactness of a bounded set of measures supported by I, every
subsequence of {vN} contains a subsequence which converges weakly.
To prove that {φN} is bounded in measure (μ) on U, it therefore suf-
fices to prove that for every subsequence of {vN} which converges,
the corresponding subsequence of {φN} is bounded in measure on
UΓϊR. SO we may as well assume at the outset that, as N—* ©o,
iλv converges to some positive measure v.

For ε > 0, and J a finite closed interval contained in £7, set

G? = {xeJ\ IφN{x) I > ε-1} .

We have to show that for every J

(3.4) lim (Tim μ(G?)) = 0 .
0 Nε_,0 N-+o

Denote by E the set defined in Lemma 10. Since E is discrete
it suffices to prove (3.4) for J a closed interval not intersecting E.
With this condition on /, we claim that, for some ε0 > 0 and B > 0,
the functions

<pN,a(z) = (vN{z) + g(z) - a)-1 ,

for sufficiently large N, satisfy

I φN,a{z) | < B I Im z I"1

for all real a such that | a \ < ε0 and z in some neighborhood V of J.
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If not, for some xeJ we will have sequences zn of nonreal num-
bers converging to zero, aκ, βn of real numbers converging to zero,
and Nn of positive integers —* ™ such that

(3.5)

(3.6)

Im g(zn)
lmzn

+

R e ^"" , f dvNβ) + Re g(zn) - α. = 0

From (3.5) we have, for any 5 > 0, and all n

dvNβ) Im g(zn)
(3.7)

As n—* co

+ β*.
\ χ - t \ > δ \zn — t\2 I m ί._

the left side of (3.7) converges to

r dv{t)

)\x-t\>δ (X — t)2

For, if n is sufficiently large, | x — Re zn | < 5/2, and then

1 1
ίl - ί;

dvNn{t)

—> 0 as %—> co, since the measures vN are uniformly bounded,
while

\x-t\>o x - 11

dv(t)
\x-t\>δ I X — t j

a s ^ —+ cχ3, s ince yiV —> v a s iY —* °°.

The right side of (3.7) converges to g'(x) as %->co, so taking first
the limit w —> oo, and then the limit 5 —> 0 we obtain

(3.8)

From (3.8) it follows that ΐ>(x) exists. For 5 > 0 denote by vδ(vN,δ)
the restriction of v(vN) to | x — t \ > 5. Then

v{x) - Re vNn{zn) I < I v{x) - ϊ>δ{x) | + | Re vNn(zn) - Re vNn,δ(zn) \

+ I vδ{x) - Re vNn,δ(zn)

(3.9)
o \ —— + δ \

J (x - ty J

x - ί)
+ I va(α?) - R e vNn,δ{zn)
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for sufficiently large n. As n —> oo the second term in (3.9) —>0 by
the convergence of vN to v. Since d > 0 was arbitrary we obtain

(3.10) v{x) = lim Re ΰNn(zn) as n —> ©o

= -(/(a) (from (3.6))

(3.8) and (3.10) show xeE; but this contradicts the choice of /.
Next we assert that for sufficiently small ε, and large N,

%(α) + 9'(x) < 0 for all x e Gf .

For, if not, we have, for some sequences Nn of positive integers
—• oo, and xn of points of J converging to xeJ

lim I vNJxn) + g(xn) \ = 0
W->oo

But then, by essentially the same argument as in the preceding
paragraph, we can show xeE, and this contradicts the choice of J.

We have established that, for some neighborhood V of J, the
functions φN{z) are meromorphic in V, having simple poles on the
real axis with negative residues (the residue of φN{z) at z — x is
{VN{x) + g'ix))"1), and satisfy \φN{z) \ < B \ Im z I"1 in V, i.e., that in
V they satisfy the conditions of the first and final paragraphs of
Lemma 4. By Lemma 8 and the remark which immediately follows
Lemma 8, the sequence φN{z) is bounded in measure (μ) on /.

Lemma 9 gives the following corollary to Lemma 11.

LEMMA 12. Let g(z), U, v be as in Lemma 10, and E the discrete
subset of U defined in Lemma 10. Then on each interval J contained
in U Π R whose closure does not intersect E, there exists a positive
measure Tj such that in some complex neighborhood Vj of J

τj(z) + (ΰ(z) + giz))-1

is holomorphic in Vj.

REMARK. If J1 c J2 are two intervals for which τJι9 τj2 are defined,
Tjί is the restriction to J1 of τ>2. Thus we may say that we have
defined a positive measure τ — τ(v, g) on UΓ\ (R — E). It is not
hard to see that τ may be extended to a measure defined also in
the neighborhood of a point ce E provided that

for the extended measure c is a negative point mass
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(Mi)

In the special case in which g(z) = — a a real constant, the set
E is empty for any v. We denote by T(σ)v — τ(v, g) the measure
given by Lemma 12. For σ — 0 and v the zero measure T(σ)v is
not defined; we exclude this case by supposing that v is not the zero
measure. In Appendix A we will use the measures T{σ)v to remove
the restriction in Lemma 11 to holomorphic functions g{z).

Proof of Theorem 3. We are now ready to prove Theorem 3.
It is convenient to have 0 ί U. If 0 e U, we begin by replacing U
by U- {0}.

Let J be an interval whose closure is contained in / — E. Given
an increasing sequence {DN} of finite dimensional subspaces of φ, we
can construct finite rank approximations TN(z) to S(z) acting in DN,
which satisfy conditions (a) — (d) of the final paragraph of Theorem 3.
To do this we first form PNS{z)PN, and use (1.1) to write it as the
sum of the Hubert transform of a measure on J whose values are
positive operators on DN, and a function holomorphic on J whose
values are operators on DN. Then to obtain TN(z) we replace the
measure by a weak* approximation which is a finite sum of point
masses, each a positive rank 1 operator.

Define

*•<•>=™ ί1+1 - TΆJ
for z e U such that TN{z) is defined, and 1 - z tr (KTN(z)) Φ 0.

The sets U, E will be defined by specifying, for each /, the sets
U Γ\ (U — (I — J)), E Γ\ J It wil] be evident that this is done con-
sistently. Write K — \K\ sgn K, where | K\ is positive and

sgnK = ±1 .

Apply Lemma 10 to the positive measure ω{t) — tr (| K \ v{t)) on
J, and the function g(z) = tr (| K \ Rj{z)) — z~γ (sgn K), holomorphic
in U- (I-J). Since ώ(z) + g(z) - z~ι ( -1 + z tr [KS{z)\) (sgn K) m 0
we are not in the trivial case. Lemma 9 gives a certain discrete
subset E(ω,g) of U — (I — J), and we set

UΠ(U- ( / - / ) = U- (l-J)- E{ω,g) ,

and E Γ)J = E(ω,g) f)J.
Next in Lemma 11 note that we could consider, instead of the

single function g(z), SL sequence gN(z) of functions holomorphic in U
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and converging to g(z), φN{z) then being defined as (ΰN(z) + gN(z))~ι.
The conclusion of the Lemma, and also the results established in the
course of the proof are otherwise unchanged. We will refer to this
trivial generalization of Lemma 11 as Lemma 11'.

Lemma 11' is to be applied to the measures ωN(t) — tr (| K\ vN{t)),
which converge to ω(t), and the functions

gN{z) = t r (I KI PNRj{z)PN) - sr1 (sgn K) ,

which converge to g(z). The proof of the lemma shows that if / is
an open interval whose closure is contained in J, and does not
intersect E, then J has a complex neighborhood Vy such that, for
sufficiently large N,

I &N(z) + gN(z) \> B\lmz\ zeVy

for some B > 0. Thus TN(z) is defined for ze Vy with Im z Φ 0, as
also is §(z). The proof of the lemma shows also that, for sufficiently
large N, the poles of (ώN(x) + gN{x))~~ι on the real axis are simple
with negative residues.

Let / be any vector in φ. We wish to represent (f,S(z)f) =
ψ(z), zeVj, as the sum of the Hubert transform of a positive measure
on / (with the proper dependence on /) and a function holomorphic
in Vj. To do this we consider the functions

ψN(z) - (/, TN(z)f) ,

which are meromorphic in Vy. A pole of ψN(z) is either

(a) a pole of TN(z)

or

(β) a zero of 1 - z tr (KTN(z)) .

Call the pole z = z0. We compute the corresponding residue:
(a) let RQ be the residue of TN(z) at z = z0. Then, since RQ and

K both have rank 1, we find that we must have R0K = 0 (otherwise,
the pole does not persist in TN{z)) and then the residue is (/, RQf) > 0

(β) The residue is

(/, TN{Zp) K TN(Zo)f) > Q

Thus the residues are positive. Note also that the formulae show
that the residues of TN(z) are of rank 1.

For Imz Φ 0, ze Vy we have

I Im z |3 ψN(z) > I I m z |3 ψ(z) a s N—-• oo
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uniformly on compacts contained in V. To obtain the representation
(1.1) for S(z), J, we have thus only to apply Lemma 9 to the func-
tions ψN(z).

It remains to show we can obtain an approximation theorem on
the real axis for S(z) if the approximations TN(z) satisfy (e) in ad-
dition to (a) — (d). For definiteness suppose K is positive, so we can
write K — k®k (if K is negative we can write K = — k®k, and
make appropriate changes of sign). We compute

(/, TN{z)K(z)g) - (/, g) = {(/, TN(z)K(z)g) - (/, g)}

(3.21) l {1 ~ s(fc, TN(z)k)) >

+ z(f, TN{z)k) (k - PNk, g)

,(/, TMk) (K TN{z)k) (k - PNk, g)
{1 - z(k, TN(z)k)}

,

By hypothesis the sequences {(/, TN(z)K(z)g) — (/, g)}9 and

{(k, TN{z)K(z)g) - (k, g)} > 0

in measure (μ) as iSΓ—> ©o. The sequence {(fc — P^fc, flf)} —> 0 as JV—> oo.

The remaining sequences {(/, TN(z)k)}, {(k, TN{z)k)}, {[1 - z(k, TN(z)k)}-1}
which appear in (3.21) are bounded in measure (μ) as N—+oo. Hence,
by Lemma 7, (3.21) —> 0 in measure (μ) as JSΓ—> co.

REMARK. In Theorem 1 we suppose C(z) = C independent of 2
so that JST(2) has the form

JBΓ(«) = i£" - z (1 + C) .

If (1 + C) is invertible we may write

Γ = (1 + C)~ιK

and define a new scalar product

[x, v] = (a + c)χ, y).

This product will generally not be positive definite since 1 + C may
have a finite number, χ (say), of negative eigenvalues. £> together
with the product [•> •] is then a Pontryagin space $gγ of index χ, as
defined in [11]. The operator T is hermitian with respect to [•>•],
i.e., [Tx, y] — [x, Ty] for all x, y. The representation (1.1) essentially
gives a spectral representation for the resolvent of T; the existence of
such a spectral representation for a self-adjoint operator in a
Pontryagin space was established by Krein and Langer [10]: a
slightly more general theorem is given by Langer [12]. To make the
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connection with [10] it is necessary to extend the measure v across
the points of E when this is possible, as indicated in the remark
following Lemma 12. In the terminology of [11] points of E are
critical points, regular if (3.11) is well-defined and singular other-
wise,

4% A stronger form of Theorem 1* Theorem 1 is not applicable
in the context to be described in § 5. In this section we prove a
strengthened version of Theorem 1 (Theorem 4) Theorem 4 is ob-
tained from Theorem 1 by weakening certain of the conditions; for
the reader's convenience we give a full statement, although this
entails some repetition.

THEOREM 4. Let {K(z)} be a family of bounded operators on φ,
defined and holomorphic in z, for z in a complex neighborhood U
of some finite open interval I of the real axis. Suppose that

(a) K(z) is hermitian for ze I
(b) K{z) = Kx(z) + D{z) for zeU

where (bl) D{z) is compact valued and holomorphic for ze U.
(b2) For each ze I the pair of hermitian operators K — Kx(z) and

L = — K[(z) satisfy the following conditions (i), (ii) for some positive
constants A, B (possibly dependent on z)

( i ) \\x\\ < A\\Kx\\ + J? || La? || for all xeQ
(ii) if — d is the lower bound of the numerical range of L

2B*\\L\\d<l

(c) for some ze I, K(z) has nullity zero.
Then there exists a discrete set Ea I such that, for each open
interval J whose closure is contained in I — E, K(z) has a bounded
inverse S(z) for zeNj — J (where Nj is a certain complex neigh-
borhood of J). In Nj — J, S(z) admits a representation

(4.1) S(z) = ί ^L +
JJ Z — t

where v is a positive operator valued measure on J, and Rj(z) is
holomorphic in Nj.

Suppose that the condition (i) of (b2) is replaced by

(i)' || x ||2 < A I (α;, Kx) I + B \ (x, Lx) \ for all x e Q .

Let {DN} be an increasing sequence of finite dimensional subspaces
of φ, whose union D is dense in $. Denote by PN the orthogonal
projection onto DN. For sufficiently large N the restriction of
PNK(z)PN to DN is invertible (as an operator on DN) for all but a
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discrete set of zel (dependent on N); when this inverse is defined
denote by TN(z) its extension to an operator on § which vanishes on
the orthogonal complement of DN. Let f(z), g(z) be vector valued
functions holomorphic in z in a neighborhood of 7. Then as

(/(«), TN{z)K{z)g{z)) > (/(«), g(z))

in measure (μ) on I.

Complement to Theorem 4. We retain the notations and hy-
potheses of Theorem 4. Suppose that h(z) is a vector valued function
holomorphic in z in a neighborhood of I, and that for each xe I — E
the equation

K{x)u = h(x)

has a unique solution u = g(x). Suppose that the function x —> g(x)
is weakly measurable on I — E, and that the function x —> \\ g(x) || is
Lebesgue integrable on any interval / whose closure is contained in
I — E. Then g(x) can be extended to a function g(z), defined and
holomorphic on a neighborhood of I — E. In particular,

(4.2) (f(z), TN(z)h(z)) > (f(z), g{z))

in measure (μ) on I as N-+ oo by the second part of Theorem 4.

REMARKS. If K(z) satisfies condition (b) of Theorem 1 we may
choose some zoe I and set

D(z) - [ C(z)dz

Kx(z) = K(z0) + ( z - zo)l .

Then D(z) satisfies condition (bl) of Theorem 4, and Kx{z) satisfies
(b2) with A = 0, B=l.

The rather clumsy conditions (i), (ii) are to be understood es-
sentially as a positivity condition on L. If L is strongly positive,
L > (-d)l with d < 0, and (i), (ii) hold with A = 0 and B = (-d)~\
If L is positive, and d < 0 and (ii) holds for any B. (i) then requires
\\Kx\\ not to be small for those xeίg for which ||La?|| is small. In
the approximation theorem we replace (i) by the stronger condition
(i)' because it does not follow that if K, L satisfy (i), (ii) then the
approximations KN = PNKPN, LN = PNLPN satisfy (i), (ii) (with the
same constants A, B) as operators on DN; for (i)', (ii) this is true.
Note that (i), (ii) (or (i)', (ii)) are stable conditions in the sense that
if K, L satisfy them, and K\ L' are sufficiently close to K, L in
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norm, then Kr, Lr satisfy them (with constants A', Bf arbitrarily close
to A, B). We may (and will) therefore suppose that the constants
A(z), B(z), which appear in (b2) (or (b2)') are continuous in z.

The problem of determining conditions on self-adjoint operators
K, L which will ensure that K — zL has a bounded inverse for z in
some neighborhood of z = 0, Im z Φ 0, is closely related to the
problem of determining conditions which will ensure that the com-
mutator equation

[K, M) = iL

has no solution MeB($). For in the first problem K may be sup-
posed not to have a bounded inverse (otherwise it is trivial). But
then for no z can K(z) = exp [ — ίzM] K exp [ + izM] be invertible;
for this K(z), K'(0) = ί[KyM]. The commutator equation is discus-
sed in Putnam [16] (§ 2.10).

Condition (c) of Theorem 4 differs from the corresponding condition
in Theorem 1 in that the point z referred to in the condition is on
the real axis. This change is essential for the application in § 5.
For the proof it is also essential since, the hypotheses of Theorem 4
do not imply that Kγ(z) is boundedly invertible for all ze U — /, but
only for z e V — I, where V is a smaller neighborhood of /.

The regularity conditions imposed on g(x) in the complement to
Theorem 4 are dictated by our proof and may possibly be unnecessary.
In the proof of Theorem 4 it will be shown that if x e E, K{x) has
a positive nullity, so the exclusion of E, from the set on which
K{x)u — h(x) is to have a unique solution, is essential; however,
in general, even if x £ E, K(x) may have positive nullity. If K{x)
has positive nullity, then from (4.1) it follows that # is a point of
discontinuity for v(t); this set of points is at most countable (if
K(x) = K — xl, it is the point spectrum of K).

Proof of Theorem 4. The proof of Theorem 4 is parallel to that
of Theorem 1. First we prove Theorem 4 in the special case D(z) = 0.
In this case condition (c) is redundant. Then we use the perturba-
tion result, Theorem 3, to pass to the general case. (For the approxi-
mation theorem it is necessary to generalize Theorem 3 by replacing
the vectors /, g which appear in the second part of Theorem 3 by the
vector valued functions f(z), g{z) which appear in the statement of
Theorem 4; this is a trivial generalization and entails no change in
the proof of § 3).

LEMMA 13. Theorem 4 is true if D{z) = 0.

Proof. Without loss of generality suppose 0 e J. Write K — K(0),
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L = -K'(Q), A = A(0), B = B(0). If L = 0, (i) requires K to be
strongly positive. Then for J a sufficiently small neighborhood of
0 the conclusions of Theorem 4 hold trivially, since K(z) is boundedly
invertible for 2 in a neighborhood of 0. We therefore suppose
[ | L | [ * 0 .

Choose dλ > d so that || L \\ > d, > 0 and 2B2 \\ L \\ d1 < 1 (if d > 0
take dι — d; if d < 0 take dL sufficiently small and positive). Define
a continuous real valued function f(y) by

f(y) = y if y > d,

f(y) = d, if y < d,

and set Lx — f(L). L1 is strongly positive so its positive square root
L\12 is defined and boundedly invertible. From the factorization

K- zL, = Ll'2(Lτ1I2KLΐ112 - zl) LT

follows the existence of S^z) — (K — zLλ)~ι as a bounded operator for
Im z Φ 0, and the representation

(4.3) Sι(z) =
z — t

where vι is the spectral measure of the self-adjoint operator
Lγιl2KLτ112.

Let 7] > 0, and set

E{η) =

Condition (i) gives for any a eξi

II + £ II LLγιl2E(η)x ||

For any ε > 0 we may thus choose rj sufficiently small that

\\Lτίl2E(V)Lτ112\\ < \\Lτ^E{η)\\2 (since E{ηf =

< B 8 | | I Ί I + e .

Then (4.3) gives an estimate

(4.4) | | S f 1 ( ^ ) | | < ( 5 2 | | L l | + 2ε) | Im * | -

for I Re z \ < η/2, \lmz\< εdjjβ.
For ] z I sufficiently small,

(4.5) II K{z) -{K- zLλ) II < | z \ (2dt + ε) .

If ε is chosen sufficiently small that
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(2d1 + ε)(Bi\\L\\ + 2 ε ) < l

(and this is possible by condition (ii)), (4.4) and (4.5) imply

\\[K(z)-K-zLι)]S1(z)\\<l

for z in some sector R(0), with vertex 0, of the form

R(0) = {z\ I Im z I < τ, | Re z \ < λ | Im z |}

with λ > 0, τ > 0. Then

- (K - zLd] S&))-1

exists and is holomorphic in R(0), and is the inverse of K(z).
As noted in the remarks following the statement of Theorem 4

the constants A(z), B(z) appearing in b2 can be supposed continuous
in z. The preceding argument then shows that for any zoel, S(z)
exists and is holomorphic in a sector R(z0) with vertex z0 whose
parameters λ(20), τ(z0) vary continuously with zQ. For J an open
interval with closure contained in /, we define Nj to be the union of
the sectors R(z0) for zoeJ.

To obtain the representation (4.1) of S(z), zeNj — J, we proceed
as in the proof of Theorem 2. Let D = UDN be a domain dense in
φ, the finite dimensional subspaces DN forming an increasing sequence
(the superscript is introduced to distinguish these subspaces, which
we are free to choose, from the subspaces DN given in the second
half of the statement of Theorem 4). We seek to construct approxi-
mations KN{z) to K(z) such that

{a) KN(z) is reduced by DN and is zero on the orthogonal com-
plement of DN

(β) KN{z)-^K{z) strongly as iV-» oo for z e Nj
(Ύ) KN{Z) is invertible as an operator on DN for all zeNj but a

finite set of points on the real axis. TN(z) the extension to ξ> of the
inverse of KN(z) is meromorphic in NJ9 with simple poles on J having
positive residues.

(δ) for some integer k, \lmz\k TN(z) —> \ Im z \k S(z) strongly as
N—»co, uniformly on compacts contained in Nj. Indeed, for f(z),
g(z) holomorphic vector valued functions in Nj

\lmz\k (f(z), TN{z)g{z)) > \ Im z \k (f(z), S(z)g(z)) as N-+ - ,

uniformly on compacts contained in Nj.
The representation of S(z) is then obtained from the representa-

tion of the approximations TN(z) with the help of Lemma 9.
If K{z) satisfies (b2)' we can simply take KN(z) = PNK{z)PN, for

then KN(z) satisfies (b2)' with the same constants A(z), B(z), as K{z).
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If K(z) only satisfies the weaker condition (b2) this choice is not
possible; in the next paragraphs we show how by replacing Nj by a
smaller neighborhood of / and making a different choice of KN(z)
this difficulty can be circumvented.

Let {DN} be an increasing sequence of finite dimensional sub-
spaces of tξ>, whose union is dense in ^ . Denote by PN the orthogonal
projection onto DN and write KN(z) = PNK(z)PN. For fixed N and
x e DN with 11 x \ \ = 1 we have

A(z) 11 KM(z)x 11 + B(z) 11 K'M{z)x \ | > A(z) \ \ K(z)x \ \ + B(z) \ \ K'(z)x \ \

as M-~* co, uniformly in x and in z, for z in J . Choose

B,(z) = B(z) + V ,

with TJ > 0 sufficiently small that for z in J

2Bι{zY\\K\z)\\d{z)<l

(where d(z) is the upper bound of the numerical range of K'{z)).
Then for M = M(N) sufficiently large

(4.6) !| x || < (A(z) + 1) || KM{z)x \\ + £,(«) || K'M{z)x \\

for all a; e DN, zeJ. Now define DN =

^ v(«) - iW)(*) + (1 + JT)

where H = sup || K(z) \\, zeJ. We claim that for suitable A'(z), B'{z)
(independent of N) KN{z) satisfies (b2) (as a family of operators on DN).

Let ε > 0. If x e DN is such that ]| x - PNx \\< ε\\x ||, (4.6) gives

\\x\\<(l-eΓ\\PNx\\

( 4 # 7 ) < (1 - ε)-1 (A(z) + 1) || KM{z)PNx\\ + (1 - s )- 1 ^*) || K'M{z)PNx\\

(1 - ε ) - (A(^) + 1) || KN{z)x\\ + (1 - ε ) - B,(z) \\

+ || x\\ {(A(z) + 1) (2 + H) + 5,(2) || #'(*) ||} ε(l - ε)"1 .

Choose B'{z) = ^(ίs) + δ, with δ > 0 sufficiently small that for

Then for ε > 0 sufficiently small (4.7) gives

(4.8) || x || < (A(z) + 2) || KN(z)x || ^

If x e DN is such that || x — P i Y^ || > ε || x

(4.9) ||® || < ε - || x - P ^ | | < ε^\\KN(z)x\\

since J^(«) > 1 on the orthogonal complement of DN in DN. Thus
if we set A\z) = max [ε"1, A(z) + 2], (4.8), (4.9) imply that b2 (i)
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holds for KN(z) on DN with constants A'(z), B'(z), and z eJ. Condition
b2 (ii) holds by virtue of the choice of B'(z) and the fact that the
numerical range of K'N(z) is contained in that of K'(z).

It remains to check that the KN(z) satisfy the desired conditions
a, β, 7, and δ. a, β are clear from the definition of KN{z). 7 is proved
by the argument used to show that S(z) = [K(z)]~ι exists and is
holomorphic in Ny, it is only necessary to replace K(z), Q by KN(z),
DN. The statements regarding the behavior of TN(z) — \KN(z)\~γ on
J follow from the spectral theorem in a finite dimensional space.
Finally δ is proved following the pattern of the proofs of Lemmas 1, 2.

For the approximation theorem (the second part of Theorem 4)
we insist on the stronger condition (b2)'. Then in the above argu-
ment we can simply take KN(z) — KN(z), and the approximation con-
ditions a, β, 7, and δ hold as before. The proof of the approximation
theorem is then completed by an application of Lemma 6 (compare
the corresponding argument in the proof of Theorem 2, which follows
Lemma 8).

Proof of Theorem 4 (continued). Let z0 be the point of / such
that K(zQ) has nullity zero, whose existence is guaranteed by con-
dition (c). In view of the stability of conditions (i), (ii) noted in the
Remark following the statement of Theorem 4, we may choose F, G
symmetric operators of finite rank so that

Kx(z) + (D(z) ~[G- zF]) = K2(z)

satisfies b2 for z in a sufficiently small neighborhood of z0, U(z0)
(say). Denote by V a finite dimensional subspace of φ containing
the ranges of F, G and by W the image under K(z^)~ι (the possibly
unbounded inverse of K(zQ)) of the intersection of V and the range
of K(z0). Denote by X the vector space of pairs of symmetric oper-
ators σ = (σ1} σ2) with ranges contained in V. For σ e X write

Kσ(z) = K2{z) + (σt - zσ2) ,

and define P c X by

P = {σ [ Theorem 4 holds for Ka(z) in U(z0) with an exceptional
set Eσ not containing z0}.

By Lemma 13 (0, 0)eP; we will prove (G, F) e P.
For σeX denote by r(σ) the sum of the ranks of σl9 σ2.

LEMMA 14. If σ e P and τ e X with r(τ) — 1 then
( I ) σ + λτ g P for at most one real λ
(II) if σ + λτ = σ' g P then Ka,(z0) has a nonzero null vector.
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Conclusion of proof of Theorem 4 (granting Lemma 14). Let
(G, F) = Σf=i Ti be a decomposition of (G, J7) with r(r<) = 1 for all i.
By induction from Lemma 14 (I) there exist real numbers λ* which
may be chosen arbitrarily small such that ΣΓ=i (1 + \)τ{ e P. If
(G, F) £ P, Lemma 14 (II) then implies that for some integer k,
1 < k < m, ΣίU τi + Σ£*+i(l + λ^Γί = σ' is such that iΓσ>(20) has a non-
zero null vector. By choice of the λ*, σf may be made arbitrarily close
to (G, F). Let v' be a null vector for Ka,(z0) of unit length. Then

K(zo)v' = [(G - z0F) - (σ[ - zoσ%] v'e V,

so vf e W. Moreover, \\K(zQ)v'\\ may be made arbitrarily small by
choice of σ'. Since the unit ball of W (which is finite dimensional)
is compact, we may construct a sequence of unit vectors v'n e W con-
vergent to some vector v, and such that lim^^ || K(zo)v'n || = 0. But
then vf is a nonzero null vector of K(z0). This contradiction shows
(G,F)eP, i.e., that Theorem 4 holds for K(z) in U(zQ).

It remains only to make the extension to the whole of /.
Let I(z0) be a maximal open interval containing zQ and contained

in / such that the conclusions of Theorem 4 are valid for I(z0). If
I(zQ) Φ I then I(zQ) has an end point zι (say) in I. Choose G19 F1

symmetric operators of finite rank so that

K,(z) + (D(z) - [G, - zFJ) = K3(z)

satisfies b2 for ^ in a sufficiently small neighborhood of zί9 I{z^)
(say). Lemma 13 shows that K3(z) is boundedly invertible for
Imz Φ 0 in a complex neighborhood of /(z:). This neighborhood will
contain a point z2 for which K(z) is boundedly invertible (since K(z)
is boundedly invertible in a complex neighborhood of I (z0) minus a
discrete set). It is therefore possible to use Theorem 3 as in the
proof of Theorem 1 (cf. the argument following the statement of
Theorem 3) to obtain the conclusions of Theorem 4 for Ifo). But
this contradicts the maximality of I(z0). Hence I (zQ) — /.

Proof of Lemma 14. Since r(τ) = 1 one of τu τ2 is of rank 1
and the other of rank 0. Suppose for definiteness that τ1 — 0 (the
proof in case τ2 = 0 is essentially the same). Without loss of generality
we may suppose τx positive so that τx — k®k for some k e φ. Since
σ e P we have for some open interval J of zQ a representation of
Sσ(z) = [Kσ{z)Γ

Sσ(z) = ί ML + R(z)
JJ z — t

valid for Im z Φ 0 in a complex neighborhood of J. Then Theorem 3
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shows that σf — σ + λr e P unless

(4.10) 1 - λs0 j [ (A:> d v { m + (fc, R(zo)k)\ = 0
I J z0 — t J

and

(4.11) z\ I λ I { ( <fe» dv®® - (fc, Λ'(so)fc)} < sgn λ .
U (s0 - ί ) 2 J

(Recall that in the proof of Theorem 3 given at the end of § 3, the
exceptional set E appears as the set E (ω, g) of Lemma 10 for ω the
positive measure trace (| k \ v(t)) and g the holomorphic function g(z) =
trace (| K\ R(z)) - z~ι (sgn K). Here K = λft (g) &.)

(I) follows from the linearity of (4.9) in λ.
To prove (II) we must construct a nonzero null vector v for Kσ.(zQ)

assuming (4.10), (4.11) hold.
Consider the antilinear functional on § defined by

ZQ t

(4.10) implies V(k) Φ 0 so V is not identically zero. Since

[ (y> ̂ (Qfc) 2 < / f (̂ > ^(^)&)i i f/ J m \ |

<M\\y\\>

(using the positivity of the operator valued measure v, and (4.11)) V
is everywhere defined and bounded, and so, by the Riesz represen-
tation theorem, can be written in the form V(y) — (y,v), for a
uniquely determined v e § . v Φ 0 since V is not identically zero.

To prove Kσ,(zQ)v — 0, we must show that, for any weξ),

V(Ka,(z0)w) = 0

(Kσ,(z0) is hermitian). Now

K \xi-σ/ \&oj vυ) — i i i -f- {l\.σ,yZ0)W, TC\Z0)tt)

J Zo t

= l i m ί r (KAz)w,dv(t)k) + R{z)k)

e-̂ O-f I J Z — t

(with 2 = z0 + is)
= lim ([ϋΓσ(«) - λ^ A; 0 k] w, Sσ(z)k)

- lim (w, k) (1 - λ2(Λ, Sσ(z)k))
ε->0-K

= 0 by (4.10) .
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Proof of the complement to Theorem 4. By Theorem 4 K(z) has

a bounded inverse S(z) for points z with Im^ Φ 0 in some complex

neighborhood Nj of J, and S(z) has a representation (4.1). For

zeNj — J define g(z) = S(z)h(z). g(z) is now defined for z e NJy

and holomorphic for ze Nd — J. To prove 0(2) is holomorphic in JVj,

we will use the edge of the wedge theorem ([19], Theorem 2.16).

According to that theorem it suffices to show that, for any C°° func-

tion φ(x) with support contained in J, and any vector w e ξ>

φ(x)(w, g(x -f ίe))dx = 1 φ(x)(w, g(x)) dx .

J

Now

I φ(x) {(w, g{x + ΐε)) - (w, g(x))} dx

(4.13) = I φ(x) {(w, S(x + ie)h(x + is)) - (w, S(x + ie)K(x + ίs)g(x))dx

= f (̂a?) (w, S(x + iε) l(a;, ε)) dx

where

(4.14) l(a?f ε) - (h(x + ie) - h(x)) - (jfiΓ(α? + iε) - K{x))g{x) .

In (4.13) we substitute the representation (4.1) of S(x + ΐε). The
term containing R (x + iε) converges to zero as ε —> 0 since the inte-
gral over J of II l(x9 s) || converges to zero. It ramains to consider

(4.15) ί φ{x) I \ (™,dv(t)l(x,s))\ dχ .
J I J x + is — t J

Suppose, for the moment, that g{x) satisfies a Lipschitz condition

II g(χd - g(%2) II < M\ x, - χ2 \
a, a > - ί .

We expand 1 (a;, ε) in a Fourier series on the interval J

(4.16) 1 (x, e) = £

with lΛ(ε) 6 § and {en(x)} the appropriate complex exponentials. By a
theorem of Bernstein ([2], p. 154) the Lipschitz condition on g(x) im-
plies that its Fourier series converges absolutely; more precisely, for
some 7 > 0, the Fourier coefficients gn of g(x) satisfy

Since h(x) and K(x) are holomorphic in x, (4.14) then shows that (4.16)



598 M. J. WESTWATER

converges absolutely and, for some B > 0,

(4.17) Λ Σ J | l ( ε ) | | ( |wp '+ 1 ) < JSε.

Substituting (4.16) into (4.15) we obtain a series whose nth term is

(4.18) \ φ(χ) { \ <"» *>® ^fleMdx.
J IJ x + ε̂ — t )

Now if ψ(x) is a sufficiently smooth function of compact support we
have the estimate

(4.19) sup I \ -M*!**- K(Ύ)
x + ie — t

where

\\ψ\\7 = sup I ψ(x) I + sup I h
x x,h

([6] p. 2419). We interchange the order of integrations in (4.18) and
make use of (4.19) with ψn(x) = φ(x)en{x) to obtain for (4.18) the
bound

, | | r i| w || || lw(ε) || || v(J) \\<A\\ lΛ(ε) || (| n \r + 1)

(4.17) then gives a bound Ai?ε for (4.15), and this completes the
proof that (4.13) converges to zero as ε —* 0.

If g(x) is merely measurable with ||<7(#)|| integrable on /, we
choose η > 0 and make a decomposition

with g^elΛpaia > 1/2), and the L1 norm of ||^2(^)ll less than η.
(To obtain such a decomposition take gλ = g * δ, with <5 a smooth and
sufficiently good approximation to the δ function.) The contribution
of g2 in (4.15) is bounded by

f φ(χ)λ || w || || K(x + is) - K{x) || || g2(x) \\ \\ v{J) \\ dx < Cη
J ε

(for some C independent of ε and rj). The contribution of gι has limit
0 as ε —> 0 by the preceding argument so we conclude that the lim sup
as ε —> 0 of the absolute value of (4.15) is < CΎ], ΎJ was arbitrary so
the convergence to zero of (4.15), and hence of (4.13), as ε—»0 is
proved.

REMARK. The argument used to handle the gt(x) term in the
above proof is unnecessarily refined, for we can arrange to have
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g^x) as smooth as we wish. However, the appearance of the Lip a
a > 1/2 condition is interesting. The limiting values as ε —• 0 of
integrals of the type (4.15) have been studied by Brownell [3], [4];
the same Lipschitz condition appears in Lemma 3b of [4]. It seems
likely then that the Fourier approximation used here could be used
to give an alternative proof of Brownell's results.

5* The Kohn variational method. Let v(r) be a real valued
function defined on [0, ©o), E a real number > 0. The differential
equation with boundary condition

(5.1) ( — + v(r) - E) W = 0 , w(0) = 0
V dr2 J

has, for v(r) satisfying suitable regularity conditions (in particular
decreasing sufficiently rapidly as r —* ©o), a unique complex valued
solution of the form

(5.2) ws(r) = exp (ikr) — λ exp ( — ikr) + φ(r) .

In (5.2) k = V~E, λ is a complex number and φeL2[0, °o). Since
the complex conjugate of ws(r) also satisfies (5.1) and has the form
(5.2), it follows from the uniqueness that λ has modulus 1.

(5.1) appears in quantum mechanics as a reduced form of the
Schroedinger equation for a particle moving with energy E and zero
angular momentum in a central field of force characterized by a
reduced potential v(r) ([8], p. 246). The solution (5.2) describes the
scattering of the particle by the potential; λ determines the s-wave
phase shift δ, X = exp(—2iδ).

Note that φ(r) will not satisfy the boundary condition at r — 0. It
is convenient to rewrite (5.2) in a form in which all the functions which
appear satisfy the boundary condition at r — 0. Choose a > 0 and set

w+(r) = exp (ikr) (1 — exp ( — ar))

w_(r) — exp { — ikr) (1 — exp { — ar)) .

Then

(5.3) ws(r) = w+(r) — Xw^(r) + f(r)

and again λ e C and f eL 2 [0, oo) are uniquely determined by the re-
quirement that ws(r) satisfy (5.1).

Nuttall [14] has shown how to formulate the problem of deter-
mining λ and ψ in the language of Hubert space. Substitution of
(5.3) into (5.1) gives the equation

(5.4) - £j + v(r) - E)) f(r) = ψ+(r) - Xf_{r)
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where

ψ+(r) = v(r)w+(r) + [2iak — a2] exp [ί(k — ia)τ}

ψ_{r) - v(r)w_(r) + [ — 2iak — a2] exp [ — i(k + ia)r] .

If v(r) eL2[0, oo), ψ+(r) and ψ_{τ) are in the Hubert space $Q —
L2[0, oo). The differential operator with the boundary condition may
be reexpressed as a self-adjoint operator on $. In this way (5.4) gives

(5.5) (JEΓo + V - E) f = ψ+ - λ f _

where Ho is the self-adjoint operator defined by D(H0) = {w | w(0) = 0,
w is continuously differentiate, (dw/dr) is absolutely continuous and
(d2w/dr2) G U [0, oo)}, ϋ o w = - (d2w/dr-2) if w e D(flo) and F the operator
of multiplication by v(r). Under suitable conditions on v(r)y Ho + V
is self-adjoint with D(HQ + V) = D(HQ) ([9]). A second Hubert space
equation may be obtained from (5.4) by multiplying (5.4) by w_(r)
and integrating over [0, oo). The term on the left of the resulting
equation is finite and equal to (α/r_, ψ) provided that

(5.6) lim [w_{r)f'(r) - w'_{r)ψ{r)} = 0
r-+oo

and the terms on the right are finite if v(r) e L1 [0, oo); the equation is

(5.7) (ψ_, ψ) = p - Xq

where

S °° _
w_{r)ψ+(r)dr

0

Jo

Note that (5.7) is not a consequence of (5.5), but is to be regarded
as a Hubert space formulation of the boundary condition (5.6) at
infinity.

By choosing a sufficiently large, we can arrange to have q Φ 0.
Then (5.7) can be solved for λ, and substitution for λ in (5.5) gives

(5.8) [Ho + V-E- grty_ (x) ψ _] ψ = f+ - p<ΓV-

The Kohn variational method ([8], p. 313 et. seq.) is an approxi-
mation procedure for the determination of λ, ψ. A sequence of linearly
independent functions {ψn} is chosen from D(H0) (the trial functions).
This determines an increasing sequence of finite dimensional subspaces
Dn — span {ψlf •• ,φn) of £ . Denote by Pn the orthogonal projector
onto Dn. Then (5.8) is approximated by

(5.9) Pn [Ho + V - E - q~'ψ_ (x) f _] Pnfn = Pn [ψ+ - vq~ιψΛ .
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If the operator on the left of (5.9) is invertible on Dn, so that (5.9)
has a unique solution ψn, the corresponding approximation λΛ to λ is
given by

(5.10) (ψ_, fn) = j> - λng .

For a given energy E there is little hope of proving that Xn —> λ
as n —> oo, since one cannot even be sure that the Xn are defined.
However, Nuttall [14] was able to show (under suitable conditions
on v(r)y and on the trial functions) that, on any finite interval
I c ( 0 , oo), Xn(E)-+X(E) in measure as n-*^. Nuttall pointed out
that this result was not entirely satisfactory since it does not provide
a justification for the use of the Kohn method to calculate the phase
shift at a particular value of the energy. In that case the standard
procedure is to vary the trial functions, thereby introducing a para-
meter z which enters only into the approximations, not the physical
quantity to be calculated. The resulting Kohn approximations may
be expected to converge in measure in z The problem of justify-
ing this expectation was attacked by McCartor [13], who obtained
some partial results. He obtained essentially Theorem 2, under an
additional condition on the trial functions. The present work is a
development of [13], [14], and gives a convergence theorem of the
desired kind (Theorem 5 below).

It is convenient to rewrite (5.8) in a form in which unbounded
operators do not appear. Let e > 0. Then R0(c)ιί2 — (Ho + c)~1/2 is a
positive bounded operator. (5.8) gives

(5.11) {1-(E+ c)R0(c) + R0(cy

where ξ = (Ho + c)ιliψ. λ is given in terms of £ by

(5.12) (f_, RQ(cY/2 ί) - V - M

The trial functions ψn are transformed at the same time into

ζn - (Ho + cY'*1rn .

From now on Ό% will denote the span of [ξu •••, ζn}9 Pn the projector
onto Dn.

Following McCartor [13] we suppose that the parameter z is in-
troduced into the trial functions in such a way that

(5.13) Pn(z)=

where U(z) is, for z real, a unitary operator. Then the problem can
be transformed into one in which the trial functions are kept fixed
and z appears in the operator — namely
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(5.14) U(z) {• •} U{zΓ £(*) = U{z) {R0(cy*φ+ - pq^R0(c)^ψ_}

(5.15) (U(z)RQ(cyι*f_, ξ(z)) = p - λg .

In order that Theorem 4 should give a convergence theorem for the
Kohn approximations Xn for λ corresponding to (5.14), (5.15) and the
sequence of trial functions ξn, it is necessary that the operators and
vectors which appear in (5.14), (5.15) should admit holomorphic ex-
tensions for z in some complex neighborhood of an interval of the
real axis.

A simple choice for the U(z) are the unitary operators induced
by dilatations of [0, oo). Define

(5.15) (U(z)w)(r) = zll2w(zr)

for z real and positive, and w e ίg. Then U(z) is unitary. Using
these transformations to vary the trial functions we obtain

THEOREM 5. Consider the s-wave scattering of a particle in a
central potential. With the notations introduced above suppose

( i ) that the span D of the trial functions ξ% is dense in $
(ii) that the trial functions are varied in accordance with (5.13),

the transformations U(z) being given by (5.16)
(iii) that the reduced potential v{r) is in Lι[Q, oo), and of short

range, i.e., for some C > 0, v(r) exp(Or) e L2[0, oo)
(iv) that v(r) is dilatation analytic in the sense that the operator

U(z)R0(c)1/2VR0(cyί2U(z)~1 admits a holomorphic extension to some
complex neighborhood of z = 1

(v) that at the energy E > 0 under consideration the equation
(5.11), which determines the s-wave phase shift, has a unique solu-
tion.
Then the Kohn approximations Xn(z) to X converge in measure to X
on any bounded subinterval of (0, oo).

REMARK. Condition (i) can also be expressed by saying that the
ψn = (Ho + c)~1/2 ξn should have a span which is a core for Ho as a
quadratic form (cf. [17]) Note that the Kohn approximations which
we study in Theorem 5 after replacing (5.8) by (5.11) are not the
same as those which are obtained from (5.10). The conclusion of
Theorem 5 holds also for the approximations given by (5.10). To
prove this one must consider in Theorem 4 nonorthogonal projectors
PN, TN(z) now being defined as the inverse of P£K(z)PN on DN.
Approximations constructed using nonorthogonal projectors are con-
sidered also in [7]. For the use of condition (iv) cf. also [1].

Proof of Theorem 5. We claim that Theorem 5 follows from
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Theorem 4, and the complement to Theorem 4. First we list the
identifications to be made, and then show that the conditions of
Theorem 4 are satisfied

= U(z) {1 - (E + c)R0(c)}

D(z) = U(z) {Ro(cYl2VRo(c)ί!2 -

h(z) = U(z)

g(z) = f (s)

The existence of an extension of Kx(z) to complex z follows from

U{z)H,U(z)~ι = z-*R,
so

K,(z) = 1-(E+ c)z2R0(z2c) .

Conditions (iii) and (iv) of Theorem 5 give holomorphic extensions
of D(z)y h(z), and f(z) to a complex neighborhood of the real axis.
R0(c)ll2VR0(cyί2 is compact under the conditions imposed on v(r); this
is well-known (cf. [17], Theorem 1.22). That D(z) is compact valued
follows.

Condition (c) of Theorem 4 is guaranteed by condition (v) of
Theorem 5, as also is the uniqueness of g(x) required for the com-
plement to Theorem 4. The regularity conditions imposed on g(x)
there are trivially satisfied, since g(x) = U(x)ξU(x)~1, with U(x)
unitary and strongly continuous in x.

This completes the verification of the conditions of Theorem 4
and its complement. (4.2) now gives the convergence of Xn(z) to λ
as n—> oo in measure on any bounded interval of (0, ©o).

REMARK. The conditions on the potential in Theorem 5 are quite
strong, and it would be desirable to relax them. Possibly one could
obtain a better result simply by a different choice of U(z). However,
it seems more likely that it would be necessary to prove a version
of the approximation theorem (the second part of Theorem 4) requir-
ing only smoothness but not analyticity of the family of operators
{K(x)}. In our proofs the approximation theorem is linked closely to
the representation theorem (4.1), which requires analyticity for its
formulation. The lemma proved in Appendix A represents a step in
this direction.

Perhaps more serious is the absence in Theorem 5 of any discus-
sion of the rate of convergence of the approximations, and of the
dependence of the convergence rate on the choice of trial functions.

A similar discussion could be given using Theorem 4 of the con-
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vergence of the Kohn approximations for the phase shifts for higher
order partial waves. If the potential is no longer assumed central,
the analogs of NuttalΓs equations (5.5), (5.7) can still be set up, but
it is not clear whether they would fall within the scope of Theorem 4.

APPENDIX A. In this appendix we present a lemma (A3) which
may be used in place of Lemma 11 in the proof of the approximation
part of Theorem 3; the argument is a refinement of that used by
Nuttall [14] in his proof of his convergence theorem for Kohn ap-
proximations (see § 5). It is of interest because it may be of use in
proving a version of approximation theorem not requiring analyticity
for K{x) (cf. final remark of § 5).

As a consequence of the continuity properties of the Hubert

transform T(σ)v we obtain

LEMMA Al. The restriction of T{σ)v to a compact set J is con-
tinuous in σ and in v.

LEMMA A2. Let v be a finite sum of positive masses, Δ and F
μ-measurable subsets of R, with compact closures. Then

(A.I) μ {x e Δ I v{x) e F} = \ dμ(σ) [T(σ)v] (Δ) .
JF

Proof. It suffices to prove (A. 1) for the case in which F and
A are intervals. Let v(x) = Σ (cJχ — ai) On each interval (ai9 αi+1),
v(x) is strictly decreasing, and so has an inverse Pi{σ)

j

(the prime indicating that the summation is over i such that ft(σ) e Δ).
But

dσ \dxJ
= residue of (σ — ΐ(z))~ι at z = Pi(σ)

so
_ Y,, dpi

i dσ

Note that the estimate given in [20] (Theorem 8) for the dis-
tribution function of the Hubert transform of the restriction of
Lebesgue measure μ to a set of finite μ measure, shows that (A. 1)
is not true for all positive measures v.

LEMMA A3. Let {vN} be a bounded sequence of positive masses on
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R, each a finite sum of point masses. Suppose that, for each N, the
support of vN is contained in a finite interval I (independent of N).
Let g(x) be a real-ralued μ measurable function on R, J a μ meas-
urable subset of R with compact closure. Then, either some sub-
sequence of {vN} converges to a positive measure v, such that, on some
subset of J of positive μ measure, both (a) and (b) hold

(a) v(x) + g(x) = 0

(b) (dv/dμ)(x) = 0

or the sequence φN(x) — (£N(%) + g(x))~ι is bounded in measure (μ) on
J.

Proof. As in Lemma 11, a compactness argument shows that it
suffices to consider the case in which the sequence vN is convergent
to v (say). If v is the zero measure, (b) holds for all x and, since
||i^||—*0 as JV—»co, Lemma 5 implies vN(x)-+0 in measure (μ).
But then it is clear that {ψN{x)} is bounded in measure on J unless
g(x) — 0 on a subset of J of positive measure, which is the assertion
of the lemma. Suppose then that v is not the zero measure.

Suppose (a), (b) do not hold on a subset of / of positive measure.
To prove that {φN(x}} is bounded in measure on J, we must show
that for every rj > 0 we have, for sufficiently small ε and large N,

μ{xeJ\ I vN{x) + g(x) \ < ε} < η .

By Lusin's theorem we may find a continuous function grj(x) and a
compact subset Jη of J such that

μ(J — Jτ) < rjβ and g(x) = gη(x) xeJv

and it then suffices to show (for sufficiently large N, and small ε)

μ {x G Jrt I I vN(%) + gv(x) \ < ε} < ηf2 .

Thus we may suppose g(x) continuous, and J compact. By supposition

I φ{x) + g{x)) + iπ(dv/dμ)(x) \ Φ 0 a.e. (μ) on J

so (again by deleting a set of arbitrarily small μ measure) we can
suppose

(A.2) I (v(x) + g(x)) + iπ(dv/dμ)(x) \ > c > 0 on J .

Consider the measures T(σ)v defined following Lemma 12. Denote
by S the union of the singular supports of T(σ)v (σ rational). Then
S is of μ measure zero, and if B is any relatively compact Borel
subset of R of μ measure zero, such that B Π S = 0 , and σ a real
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number, we may choose a sequence σό of rationale converging to σ,
and obtain

[T(σ)v](B) = Umj^lTiσ^v] (B) by Lemma Al

= Ό by the definition of S .

Thus S contains the singular support of T(σ)v for any real σ. By
a theorem proved in [15] (p. 139), v(z) has a.e. (μ) the nontangential
boundary value

v(x) + iπ(dv/dμ)(x)

(from the upper half-plane). We add to S the points at which the
boundary value does not exist. Then for xgS (dT(σ)v/dμ)(x) exists,
and ( — ϊ>(z) + σ)~ι has the nontangential boundary value

(A.3) {( —P(α?) + σ) + iπidv/dμXx)}-1 .

Consider the restriction ω of T(σ)v to a compact neighborhood of
x. According to the definition of T(σ)v the Hubert transform ώ(z)
differs from (—ΰ(z) + cr)"1 by a function holomorphic in the neigh-
borhood of x; this function will take real values on the real axis.
The nontangential boundary value of ώ(z) at x therefore exists, and
its imaginary part is equal to the imaginary part of (A.3). Since
(dω/dμ)(x) = (dT(σ)v/dμ)(x) exists, it follows by another theorem in
[15] (p. 34) that

-W + σr + iπjj iz(A.4) iψl ^
dμ dμ

By deleting from J a set of arbitrarily small μ measure we can sup-
pose J n S = 0 .

Given ε > 0, we can partition J into a finite number of /^-measur-
able sets Δi on each of which g has oscillation < ε. Let g{ be a
value of g on Δ{. Then

(A.5) μ{xeJ\ \vN{x) + g(χ)\ <ε} <Σ//{ίϋGZί ί| | vN(x) + g< \ < 2ε} .
i

By Lemma A2 the right side of (A.5) may be written

(A.6) Σ Γ< + 2 £ dμ(σ) [T(σ)vN] (A) .
i J-gi-2ε

Lemma Al shows that, as N—>co. (A.6) has the limit

(A.7) Σi[~9i+2εdμ(σ)[T(σ)v](Δi).
i J— 9i—2ε

(The convergence of [T(σ)vN\{Δ^ to [T(σ)v] (Δt) can be shown to be
bounded in σ.) Since Δ{ Π S = 0
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(A.8) [T(σ)v] (4) = \ dμ(s) dτ(Φ(s) .
J^i dμ

For s e Δ{ and | σ + g{ \ < 2s, ] σ + flr(s) | < 3ε so, if we choose ε < c/6,
(A.2) gives

I (-C(s) + σ) + iπ(dv/dμ)(s) \ > c/2 > 0

and from (A.4) and (A.8) we obtain

This gives for (A.7) the bound

(A.9) Σ 4ε.4c"2i;(Λ)

This bound —• 0 as ε —• 0.

Lemma A3 implies, in particular, that if dv/dμ Φ 0 a.e. (μ) on J,
then no subsequence of vN(x) converges on any subset of J of positive
μ measure. Convergence to + °° or — co on a subset of J of positive
μ measure is also excluded since {vN(x)} is bounded in measure by-
Lemma 5. This negative result is to be contrasted with the positive
result proved in [20] that norm convergence of a sequence {vN} of
measures implies convergence in measure for the sequence {vN(x)}.

An alternative proof of Lemma 11 (not relying on Lemma 10) may
be obtained by combining Lemma A3 with the theorem of Lusin and
Privalov [15] (p. 212) according to which a holomorphic function in
Im z > 0 (here v{z) + g{z)), which has nontangential boundary value
zero on a set of positive μ measure, vanishes identically.
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