A NOTE ON PRIMARY DECOMPOSITIONS OF A PSEUDOVALUATION

C. P. L. Rhodes

Some connections are established between a primary decomposition of a pseudovaluation v on a commutative ring and a primary decomposition of the zero ideal of the associated graded ring of v. The primary decomposition of a certain pseudovaluation v_{g} on a one-dimensional local ring Q is described in terms of the extensions of v_{a} to monoidal transforms of Q.

1. Primary decompositions and the associated graded ring. Let R be a commutative ring with an identity. We consider a pseudovaluation v on R. By this we mean that v is a mapping from R to P, the set of all real numbers together with ∞, such that

$$
v(0)=\infty, \quad v(1)=0
$$

and, for $x, y \in R$,

$$
v(x y) \geqq v(x)+v(y),
$$

and

$$
v(x-y) \geqq \min \{v(x), v(y)\}
$$

For each $a \in \boldsymbol{P}$, write $v_{a}=\{x \in R \mid v(x) \geqq a\}$ and $v_{\bar{a}}=\{x \in R \mid v(x)>a\}$. The associated graded ring of v, introduced by Szpiro in [11], is $G=\bigoplus_{a \in \boldsymbol{R}} v_{a} / v_{a}$. We shall use - to denote the natural mapping from R into G.

Let u be a pseudovaluation such that $u \geqq v$ (this means that $u(x) \geqq v(x)$ for all $x)$. We denote by $T(u)$ the set of all x, not in u_{∞}, such that $u\left(x^{n}\right)=n u(x)$ for all positive integers n, and by $S(u)$ the set of all x, not in u_{∞}, such that $u(x y)=u(x)+u(y)$ for all $y \in R$. As in [10], we call u primary if $T(u)=S(u)$. We denote by $F(u, v)$ the set of all x such that either $u(x)>v(x)$ or $u(x)=\infty$, and we put $T(u, v)=T(u) \backslash F(u, v)$.

Let $I(u, v)$ be the ideal generated in G by $\overline{F(u, v)}$.
Lemma 1. $\overline{F(u, v)}$ is the set of all homogeneous elements of $I(u, v)$, and $\overline{T(u, v)}$ is the set of all homogeneous elements of $G \backslash \operatorname{rad} I(u, v)$. If the pseudovaluation u is primary then the ideal $I(u, v)$ is primary.

Proof. Let $r \in R$ and $s \in F(u, v)$. Either $\bar{r} \bar{s}=\overline{0}$ or $\bar{r} \bar{s}=\overline{r s}$. In the latter case either $v(s)=\infty$ or

$$
v(r s)=v(r)+v(s)<u(r)+u(s) \leqq u(r s)
$$

Thus, in each case, $\bar{r} \bar{s} \in \overline{F(u, v)}$. If we suppose, also, that $r \in F(u, v)$ and that \bar{r} and \bar{s} have the same degree, then either $\bar{r}-\bar{s}=\overline{0}$ or $\bar{r}-\bar{s}=\overline{r-s}$. In the latter case either $v(r)=\infty$ or

$$
v(r-s)=v(r)=v(s)<\min \{u(r), u(s)\} \leqq u(r-s)
$$

Hence, in each case, $\bar{r}-\bar{s} \in \overline{F(u, v)}$. It is now clear that $\overline{F(u, v)}$ is the set of homogeneous elements of $I(u, v)$.

Let $r \in T(u, v)$ and let n be a positive integer. Then it is easy to see that $u\left(r^{n}\right)=v\left(r^{n}\right)=n v(r) \neq \infty$; i.e., $r^{n} \notin F(u, v)$. Therefore, $\bar{r}^{n}=\overline{r^{n}} \notin I(u, v)$. Now suppose that $r \notin T(u, v)$. If $r \notin T(v)$ then there exists m such that $\bar{r}^{m}=\overline{0}$. Suppose that $r \in T(v)$. Then, by 4.1 of [10], there exists n such that $r^{n} \in F(u, v)$. Hence $\bar{r}^{n}=\overline{r^{n}} \in I(u, v)$.

Finally let u be primary, and suppose that r, s are elements of R such that $r \in T(u, v), \bar{s} \neq \overline{0}$, and $\bar{r} \bar{s} \in I(u, v)$. Either $\bar{r} \bar{s}=\overline{0}$ and so $v(r)+v(s)<v(r s) \leqq u(r s)=u(r)+u(s)=v(r)+u(s)$, or $\bar{r} \bar{s}=\overline{r s}$ and so $v(r)+v(s)=v(r s)<u(r s)=u(r)+u(s)=v(r)+u(s)$. In each case $v(s)<u(s)$ and, hence, $\bar{s} \in I(u, v)$. Therefore, $I(u, v)$ is primary.

Remark. The set $S(u) \backslash F(u, v)$ is contained in the set $S_{0}(u, v)$ of all $x \notin F(u, v)$ such that $u(x y)=u(x)+u(y)$ for all $y \notin F(u, v)$. These sets and their images in G are multiplicatively closed, and $\overline{S_{0}(u, v)}$ is the set of all homogeneous elements of G which are relatively prime to $I(u, v)$.

If W is a collection of pseudovaluations the lower envelope $w_{0}=$ ΛW is defined by $w_{0}(x)=\inf \{w(x) \mid w \in W\}$. From Lemma 1 we deduce

THEOREM 1. If $u_{1} \wedge u_{2} \wedge \cdots \wedge u_{n}$ is a primary decomposition of v then $I\left(u_{1}, v\right) \cap I\left(u_{2}, v\right) \cap \cdots \cap I\left(u_{n}, v\right)$ is a primary decomposition of 0_{G}.

Corollary. Let $u_{1} \wedge u_{2} \wedge \cdots \wedge u_{n}$ be an irredundant primary decomposition of v, and suppose that G is Noetherian. Then, for each i, there exists $r_{i} \in R$ such that $T\left(u_{i}, v\right)$ is the set of x, not in v_{∞}, for which $v\left(x r_{i}\right)=v(x)+v\left(r_{i}\right)$.

Proof. The decomposition $0_{G}=I\left(u_{1}, v\right) \cap \cdots \cap I\left(u_{n}, v\right)$ is clearly irredundant. It follows that the homogeneous elements of G not in $\overline{T\left(u_{i}, v\right)}$ generate a prime ideal which belongs to 0_{G} and which, therefore, takes the form $0_{G}:\left(G \bar{r}_{i}\right)$ for some homogeneous element \bar{r}_{i} in G.

Remark. For each positive $b \in \boldsymbol{P}$, denote by $F(u, v, b)$ the set of all $r \in R$ such that either $u(r)=\infty$ or $u(r)-v(r) \geqq b$. The proof of Lemma 1 shows that $\overline{F(u, v, b)}$ is the set of homogeneous elements of the ideal $I(u, v, b)$ which it generates in G, and that $\overline{T(u, v)}$ is the set of homogeneous elements of $G \backslash \operatorname{rad} I(u, v, b)$. It is easy to verify that, for a (possibly infinite) collection of pseudovaluations $v_{i} \geqq v, v=\bigwedge_{i} v_{i}$ if and only if, for every $b>0,0_{G}=\bigcap_{i} I\left(v_{i}, v, b\right)$.

For all $b>0$ and $c>0$,

$$
I(u, v, b) I(u, v, c) \sqsubseteq I(u, v, b+c)
$$

Hence each $u \geqq v$ naturally induces a (nonnegative) pseudovaluation u^{\prime} on G. Thus $v=\Lambda_{i} v_{i}$ if and only if $\Lambda_{i} v_{i}^{\prime}$ is the trivial pseudovaluation on G.

When v is homogeneous the following result may be regarded as a special case of [11, Théorème 1]. Recall that v is said to be discrete if $v\left(R \backslash v_{\infty}\right)$ generates a discrete subgroup of \boldsymbol{R}.

Theorem 2. Suppose that v is a discrete pseudovaluation. If 0_{G} has a finite primary decomposition without embedded components then v has a primary decomposition.

Proof. Suppose that $H_{1} \cap H_{2} \cap \cdots \cap H_{k}$ is the primary decomposition of 0_{G}. For each i, write $\operatorname{rad} H_{i}=P_{i}$ and denote by S_{i} the set of elements $r \in R$ such that $\bar{r} \notin P_{i}$; then $v(a b)=v(a)+v(b)$ for all a and b in S_{i}, and S_{i} is multiplicatively closed. Mappings v_{i} are defined, for all $x \in R$, by

$$
v_{i}(x)=\sup \left\{v(x a)-v(a) \mid a \in S_{i}\right\}
$$

Observe that if $a, b \in S_{i}$ then

$$
v_{i}(x) \geqq v(x a b)-v(a b) \geqq v(x a)-v(a) \geqq v(x) .
$$

By 3.1 and 3.2 of [6], v_{i} is a pseudovaluation.
Let $x \in R \backslash v_{\infty}$. Then there exists i such that $\bar{x} \notin H_{i}$. If $c \in S_{i}$ then $\bar{x} \bar{c} \neq \overline{0}$, and so $v(x c)-v(c)=v(x)$. Thus $v_{i}(x)=v(x)$, and so $\Lambda_{i} v_{i}=v$.

We shall now show that v_{1}, being a typical v_{i}, is primary. Let $x \notin S\left(v_{1}\right)$ and suppose that $v_{1}(x) \neq \infty$. Then there exists $y \in R$ such that $v_{1}(x y)>v_{1}(x)+v_{1}(y)$. Therefore, we may choose $a \in S_{1}$ such that

$$
v_{1}(x)=v(x a)-v(a)
$$

and

$$
v_{1}(x y) \geqq v(x y a)-v(a)>v_{1}(x)+v_{1}(y)
$$

Now write $\bigcap_{i>1} P_{i}=K$ and choose $c \in R$ such that $\bar{c} \in K \backslash P_{1}$. Then $\bar{a} \bar{c} \notin P_{1}$, and so $\overline{a c}=\bar{a} \bar{c} \in K \backslash P_{1}$. We may therefore assume (by replacing a by ac) that $\bar{a} \in K \backslash P_{1}$. This implies that $\overline{a^{2}}=\bar{a} \bar{a} \in K \backslash P_{1}$. Since $v_{1}(x)=v\left(x a^{2}\right)-v\left(a^{2}\right)=v(x a)-v(a)$, it follows that

$$
v\left(x a^{2}\right)=v(x a)+v(a) .
$$

Therefore, $\overline{x a^{2}}=\overline{x a} \bar{a} \in K$, and so (replacing a by a^{2}) we may also assume that $\overline{x a} \in K$. If $\overline{x a} \notin P_{1}$ then

$$
v(x y a)-v(a)=v(y x a)-v(x a)+v(x a)-v(a) \leqq v_{1}(y)+v_{1}(x),
$$

which is false. Therefore, $\overline{x a} \in \bigcap_{i \geq 1} P_{i}$, and so, for some $n,(\overline{x a})^{n}=0_{q}$. Since $v_{1}(x) \neq \infty$, we have $v(x a) \neq \infty$ and so $v\left((x a)^{n}\right)>n v(x a)$. Therefore, $v_{1}\left(x^{n}\right) \geqq v\left(x^{n} a^{n}\right)-v\left(a^{n}\right)>n v(x a)-v\left(a^{n}\right)=n v_{1}(x)$. Thus $x \notin T\left(v_{1}\right)$. Therefore, $S\left(v_{1}\right)=T\left(v_{1}\right)$; i.e., v_{1} is primary.
2. Extensions of pseudovaluations. In this section we introduce some terminology for use in $\S 3$, and we prove a result pertinent to [2].

We suppose the definition of a pseudovaluation u to be modified as follows:
(i) $u \geqq 0$.
(ii) It is not required that $u(1)=0$ (this facilitates the statement of Lemma 2; moreover, the rings in this section need not contain an identity).

We consider a homomorphism f from a commutative ring R to a commutative ring S. If I is an ideal of $S\left(\right.$ resp. R) then $I^{c}\left(\right.$ resp. $\left.I^{c}\right)$ will denote $f^{-1} I$ (resp. the ideal generated by $f(I)$ in S). Suppose that v is a pseudovaluation on R. Define v^{e} to be the mapping from S to P such that, for all $x \in S$,

$$
v^{e}(x)=\sup \left\{a \in \boldsymbol{P} \mid x \in\left(v_{a}\right)^{e}\right\} .
$$

Lemma 2. The mapping v^{e} is a pseudovaluation on S.
Proof. It is clear that $v^{\circ}(0)=\infty$.
Let $x, y \in S$, and suppose that $x \in\left(v_{a}\right)^{e}$ and $y \in\left(v_{b}\right)^{e}$ where $a, b \in \boldsymbol{P}$. Then $x y \in\left(v_{a}\right)^{e}\left(v_{b}\right)^{e} \subseteq\left(v_{a} v_{b}\right)^{e} \cong\left(v_{a+b}\right)^{e}$. Thus

$$
v^{c}(x y) \geqq a+b .
$$

It follows that $v^{e}(x y) \geqq v^{e}(x)+v^{e}(y)$.
Similarly, assuming that $a \geqq b, x-y \in\left(v_{a}\right)^{e}+\left(v_{b}\right)^{e}=\left(v_{a}+v_{b}\right)^{e}=$ $\left(v_{b}\right)^{e}$. Thus $v^{\circ}(x-y) \geqq b$. It follows that

$$
v^{e}(x-y) \geqq \min \left\{v^{e}(x), v^{e}(y)\right\}
$$

Let w be a pseudovaluation on S. We shall denote $w f$ by w^{c}. It is easy to verify that w^{c} is a pseudovaluation on R which is primary if w is primary.

Lemma 3. (i) The pseudovaluation v on R satisfies $v \leqq v^{e c}$. (ii) The pseudovaluation w on S satisfies $w \geqq w^{c e}$.

Proof. (i) Let x be an element of R such that $v(x)=a$. Then $f(x) \in\left(v_{a}\right)^{e}$ and so $a \leqq v^{e}(f(x))=v^{e c}(x)$.
(ii) Let y be an element of S such that $y \in\left(\left(w^{c}\right)_{a}\right)^{e}$. Since $\left(w^{c}\right)_{a} \subseteq\left(w_{a}\right)^{c}, y \in\left(w_{a}\right)^{c e} \subseteq w_{a}$ and so $w(y) \geqq a$. It follows that $w(y) \geqq$ $w^{c e}(y)$.

Theorem 3. $v=v^{e c}$ if and only if $v_{a}=\left(v_{a}\right)^{e c}$ for each $a \in \boldsymbol{R}$.
Proof. If $v=v^{e c}$ then, for each $a \in P$,

$$
\left(v_{a}\right)^{e c} \cong\left\{x \in R \mid v^{e}(f(x)) \geqq a\right\}=\left(v^{e c}\right)_{a}=v_{a},
$$

and so $\left(v_{a}\right)^{e c}=v_{a}$. Conversely, suppose that $v_{a}=\left(v_{a}\right)^{e c}$ for each $a \in \boldsymbol{R}$. Let $x \in R$ and let $f(x) \in\left(v_{a}\right)^{e}$ where $a<\infty$. Then $x \in\left(v_{a}\right)^{e c}=$ v_{a}, that is $v(x) \geqq a$. It follows that $v \geqq v^{e c}$, and hence that $v=v^{e c}$.

We refer to [2, p. 296, Definition 2] for the definition of a best filtration. If v has a best filtration $\left\{A_{i}\right\}_{i=0}^{\infty}$ then, by [2, p. 297, Lemma 1], the set of all distinct A_{i} 's is the same as the set of all distinct v_{a} 's where $a<\infty$. Thus, taking f to be an inclusion map, our theorem includes, in the case of nonnegative pseudovaluations, Theorem 2, p. 299, and Theorem 4, p. 301, of [2].
3. An example in a one-dimensional ring. Let Q, \mathfrak{m} be a one-dimensional local ring and let \mathfrak{q} be an m-primary ideal of Q. We shall consider the pseudovaluation $v=v_{\mathrm{q}}$ determined by the powers of q according to the rule

$$
v_{\mathrm{q}}(x)=\sup \left\{n \mid x \in \mathfrak{q}^{n}\right\}
$$

By considering the associated graded ring G of v and proceeding as in Theorem 2, we could show that v decomposes into primary pseudovaluations corresponding to the isolated primary components of 0_{G} together with an "irrelevant" component. Apart from the irrelevant component this decomposition is unique (by [10]). We shall now show how the theory of monoidal transformations developed by Northcott and Kirby provides an alternative description of this
decomposition.
Let A denote the intersection of the primary components of 0_{Q} of rank nought, and write $Q / A=Q^{\prime}$ and $\mathfrak{q} Q^{\prime}=q^{\prime}$. Then not every element of $m Q^{\prime}$ is a zero divisor. Let \Re be the q^{\prime}-resolute of Q^{\prime}, for the definition of which see $p .136$ of [4]; let Q_{1}, \cdots, Q_{r} be the monoidal transforms of Q^{\prime} with respect to q^{\prime}, i.e., the rings of quotients of \Re with respect to the maximal ideals $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}$ of \Re; and, for $i=1, \cdots, r$, let f_{i} be the composition of the natural homomorphisms $Q \rightarrow Q^{\prime} \rightarrow Q_{i}$. Using the symbols e_{i} and c_{i} to relate to f_{i} in the same way that e and c were related to f in $\S 2$, we observe that $v^{e_{i}}$ is the pseudovaluation on Q_{i} determined the powers of the ideal $\mathfrak{q}^{e_{i}}$. However, by [4, Theorems 1 and 8, and Lemma 3] $q^{e_{i}}$ is a principal ideal of Q_{i}. Therefore, by an example in $\S 3$ of [10], $v^{e_{i}}$ is primary, and so $v^{e_{i} c_{i}}$ is primary.

Now, denoting by \mathfrak{q}_{i} the restriction to \mathfrak{R} of $\mathfrak{q}^{e_{i}}, \operatorname{rad} \mathfrak{q}_{i}=\mathfrak{p}_{i}$ and $\mathfrak{q}_{1} \cap \mathfrak{q}_{2} \cap \cdots \cap \mathfrak{q}_{r}$ is the primary decomposition of $\mathfrak{R q}$ (by the corollary on p .142 of [4] and since $\Re \mathfrak{m} \cong \operatorname{rad} \Re q)$. Therefore, for all n,

$$
\mathfrak{R} \mathfrak{q}^{n}=\mathfrak{q}_{1}^{n} \cap \mathfrak{q}_{2}^{n} \cap \cdots \cap \mathfrak{q}_{r}^{n} .
$$

By an argument on p .88 of [8], $\mathfrak{R} q^{n}=\mathfrak{q}^{\prime n}$ for all sufficiently large n. Therefore, for $n \geqq h$ say,

$$
\mathfrak{q}^{n}+A=\left(v^{e_{1} c_{1}} \wedge \cdots \wedge v^{e_{r} c^{r}}\right)_{n} .
$$

However, we may choose h such that $A \cap \mathfrak{q}^{h}=0_{Q}$ and, hence, for $n \geqq h, \mathfrak{q}^{h} \cap\left(\mathfrak{q}^{n}+A\right)=q^{n}$. Therefore, using e_{0} and c_{0} to relate to the natural map f_{0} from Q to Q / q^{h}, we have, for all n,

$$
\mathfrak{q}^{n}=\left(v^{e_{0} c_{0}}\right)_{n} \cap\left(v^{e_{1} c_{1}} \wedge \cdots \wedge v^{e_{r} c^{c} r}\right)_{n} .
$$

Finally we show that $v^{e_{0}},=w$ say, is primary. If $x \in f_{0}(\mathfrak{m})$ then, for some $k, w\left(x^{k}\right)=\infty$ and so $x \notin T(w)$. On the other hand, if x is a unit of Q / \mathfrak{q}^{h} then $w(x)=0$ and, for any y,

$$
w(x y)=w(y)=w(y)+w(x) ;
$$

i.e., $x \in S(w)$. Thus $T(w)=S(w)$.

It is now clear that

Theorem 4. In the notation developed above

$$
v^{e_{0} c_{0}} \wedge v^{e_{1} c_{1}} \wedge \cdots \wedge v^{e_{r} c_{r}}
$$

is a primary decomposition of v.
It is easy to extend this theorem and obtain a primary decomposition of the pseudovaluation v_{I} determined by an ideal I of rank 1
in a 1-dimensional Noetherian ring R. Let M_{1}, \cdots, M_{m} be the associated prime ideals (necessarily maximal) of I, and, for $j=1, \cdots, m$, let g_{j} be the natural homomorphism from R to the ring R_{j} of quotients of R with respect to M_{j}. For each positive integer n,

$$
I^{n}=\bigcap_{j}\left(I^{n}\right)^{e_{j} c_{j}}
$$

where e_{j}, c_{j} relate to g_{j}, and so

$$
v_{I}=\bigwedge_{j} v_{I}^{e_{j} c_{j}}
$$

which yields a primary decomposition of v_{I} on application of Theorem 4 to each $v_{I}^{e_{j}}$.

We conclude by describing a result, in the same vein as the foregoing, which is implicit, as a special case, in [9]. Suppose that our ring R is a domain; let \bar{v}_{I} denote the least homogeneous pseudovaluation $\geqq v_{1}$; and let $\bar{R}_{1}, \cdots, \bar{R}_{h}$ be the rings of quotients with respect to the maximal ideals of the integral closure of R which contain I. Then \bar{v}_{I} decomposes into valuations

$$
\bar{v}_{I}=\Lambda_{i}\left(\overline{v_{I}^{e_{i}}}\right)^{c_{i}}
$$

where, for each i, e_{i}, c_{i} refer to the natural mapping $R \rightarrow \bar{R}_{i}$.

References

1. G. M. Bergman, A weak nullstellensatz for valuations, Proc. Amer. Math. Soc., 28 (1971), 32-38.
2. J. A. Huckaba, Extensions of pseudo-valuations, Pacific J. Math., 29 (1969), 295-302.
3. —, Some results on pseudo-valuations, Duke Math. J., 37 (1970), 1-9.
4. D. Kirby, Monoidal transformations in a one-dimensional local ring, Mathematika, 9 (1962), 135-144.
5. K. Kiyek, Ein Struktursatz für Pseudobewertungen, Math. Z., 118 (1970), 139-156.
6. -, Homogene Pseudobewertungen, Arch. Math., 22 (1971), 602-611.
7. D. G. Northcott, On the notion of a first neighbourhood ring with an application to the $A F+B \Phi$ theorem, Proc. Camb. Phil. Soc., 53 (1957), 43-56.
8. -, The reduction number of a one-dimensional local ring, Mathematika, 6 (1959), 87-90.
9. D. Rees, Valuations associated with ideals (II), J. London Math. Soc., 31 (1956), 221-228.
10. C. P. L. Rhodes, The partial uniqueness of a primary decomposition of a pseudovaluation, J. London Math. Soc., (2), 6 (1973), 231-240.
11. L. Szpiro, Fonctions d'ordre et valuations, Bull. Soc. Math. France, 94 (1966), 301311.

Received May 15, 1972.
University College, Cardiff, Wales, U. K.

