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ONE SIDED PRIME IDEALS

JOHN DAUNS

Consider a right ideal L in a ring (with 1 e R or 1 £ R),
its idealizer N = {n e R \ nL ^ L}, the bound P = {reL\Rr ^
L}<R of L, and the idealH= {neN\nL £ P} < ΛΓ. II. Some
of the ideal structure of the ring iV/P is determined for a
class of one sided prime ideals L more general than the almost
maximal ones and without any chain conditions on R (Theorem
II). III. When L Φ P the following conditions are necessary
and sufficient for N/P to have precisely two unequal, nonzero
minimal prime ideals L/P and H/P:

( i ) HΦP;
(ii) LIP < RjP is not essential;
(iii) LIP is a maximal annihilator in RIP;
(iv) the left annihilator of LIP is not zero;
(v) L = {reR \ ureP} for some ue N\L (Theorem III).

Much of the theory of primitive rings arising from a regular
maximal right ideal has been generalized to an almost maximal right
ideal L in a ring R ([6], [7], and [8]). Thus if P S L is the biggest
ideal of R inside L, then RjP is called almost primitive. Recently,
the Krull-dimension of modules has received some attention ([9], [11],
and [12]), and has also been considered for ordinals rather than integers
([5]) In order to show how the results of [4] are a special case of
the present development, the above two apparently distinct concepts-
almost maximal one sided ideals and the Krull-dimension-are related
in Theorem I. Some of the ideal structure of the rings R/P and N/P
for L almost maximal can be obtained as a special case of a more
general result (Theorem II). The latter shows that either (0) is the
unique minimal prime ideal of N/P, or it has two distinct minimal
primes 0 Φ H/P and 0 Φ L/P. If L Φ P and L < R is not essential,
then the last alternative holds. However, necessary and sufficient
conditions for the latter to hold have to be phrased in terms of the
quotient ring R/P (Theorem III). Finally, to see whether some of the
results are best possible, some examples and counterexamples are
constructed. However, they fail to show that Theorem II is best
possible, and this still remains an open question.

1* Preliminaries. Various types of modules and one sided prime
ideals are defined.

NOTATION 1.1. For any ring R, define R1 as Rι = R in case R
has an identity; otherwise, R1 = Z x -β is the ring with an identity
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adjoined in the usual way, where Z are the integers. Identify R =
{0} x R <\ R\ where " <\ " will denote two sided while " < " will
always denote right ideals. For any right jβ-modules V and W,
abbreviate Horn* (V, W) = (V, W). For B < R and aeR, set ortB =
{r e RI ar e B) < R.

For L < i? a proper right ideal, JV — {w e iϊ | wX £ L} will denote
its idealizer in Ry while C is the multiplicative semigroup C = {xe
R\ae R,xae L =>ae L}. The term "proper" means L Φ R while L =
0 is permitted. The saturation L of any L < R is the right ideal in
LS L< R defined as L - {x e i?1 xi? S L}. Note that (L)~ ̂  L is
possible.

DEFINITIONS AND TERMINOLOGY 1.2. An extension of modules
over a ring R is rational if and only if it is rational in the usual
sense over JB1 ([11]). A module has been called strongly uniform
([12; 1.4]) if it is a rational extension of every one of its nonzero
submodules. A right ideal L of a ring R is critical ([12; §2], or [9;
§2] and [3]) if the module RjL is strongly uniform.

If Fis any right l?-module, its Krull-dimension—denoted as k(V)—•
is zero if V is Artinian and V Φ 0. If V = 0, k(V) = - 1. Let β be
an ordinal and assume that k(V) has already been defined for all
ordinals a < β for all modules V. Then k(V) = β if for every pro-
perly descending chain of submodules F D ••• A D S D , there are
at most a finite number of quotients A/B with k(A/B) < β. (I.e.,
k(A/B) < /3 means that it is not the case that either k(AjB) = α: for
some α:</3 or k(A/B) is undefined.) (See [5; §1], or for the case of
integers [4; 3.23], [9; §4], or [10; §2].) It should be noted that if
k(V) exists, then V has finite uniform dimension, i.e. V does not
contain an infinite direct sum of nonzero submodules ([5; 1.4]).

Any module V is critical, or more precisely, a-critical ([5; §3]) if
k(V) = a, but for any submodule 0 Φ We V, k(V/W) < a. If a is an
integer, k will be written in place of a.

A module V is compressible provided every nonzero submodule of
V contains an isomorphic copy of V By abuse of terminology, some-
times a right ideal L < R is called α-critieal or compressible provided
R/L is.

1.3. A proper right ideal L < R is prime (semi-prime) if for any
s,teR, the inclusion sRH£L (sR1s£L) implies se L or te L (se L).

1.4. A proper L < R is Γ-prim with respect to a multiplicative
subsemigroup Γ Q C, if

Vs e JR\L, 3s* e J? such that ss* e Γ .
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If L is C-prim, then L has already been called (by J. Lambek) prim.
One of the reasons why the next two kinds of prim right ideals

are of interest is because there has been a considerable amount of
literature about them ([6], [7], and [8]).

DEFINITION 1.5. A right ideal L < R is idealizer complement
prim (or iV\L-prim) if

(1) N\L Φ 0 is a multiplicative semigroup;
(2) Vs e R\L, 3s* 6 R such that ss* e N\L.

Furthermore, L < R is almost maximal ([7; 5.11] or [8]), if in addi-
tion to (1) and (2), the following condition holds

(3) VB<R with L c B, L Φ B and Vα 6 R:

L £ α-lB =>Lcza-B,L Φ aΓxB

2* Compressible and α:-critical right ideals* Some of the basic
facts are summarized below. An identity is not assumed.

2.1. An (^-critical module is strongly uniform, but not vice versa
([9; 4.2 and 4.3]).

2.2. A nonzero submodule of a strongly uniform (or (^-critical)
module is strongly uniform (or α-critical) ([5; 3.5], and [12; 1.4] (or
[4; 3.23])).

2.3. A compressible module with Krull-dimension a is α-critical
for some a ([5; 3.37]).

2.4. The endomorphism ring of a strongly uniform module is an
integral domain. (The proof follows from [12; 2.8]; for rings with
identity, see [12; 7.5] and [9; 2.9(a)].)

2.5. For any L < R, N/L £ (R/L, RJL) = (R/L, R/L). If L is
regular, the last inclusion is an equality. Thus if R/L is strongly
uniform, then N/L is an integral domain. Note that L — L if L is
semi-prime, and in particular, if almost maximal.

2.6. If L < R is iV\L-prim (i.e., 1.5(1) and (2) hold), then
(i) Vn e N\L, n(R\L) £ R\L.

Thus (i) in addition to 1.5(1) and (2) implies that
(ii) R/L is compressible.

2.7. If L < R is almost maximal, then
(i) R/L is strongly uniform and
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(ii) N/L is an integral domain with the right Ore condition ([8; 3.1]).

Note that the restrictive hypotheses (ii) (a) and (b) below are not
serious because they hold automatically if JB has an identity.

For the case when 1 e R, H. Storrer ([11]) defines L <R to be
almost maximal if and only if R/L is quasi-simple. If 1 € R, then the
next theorem is an immediate consequence of Storrer's result [11; 7.6].
However, if 1 $ R, the above definition of almost maximal is not
acceptable and the apparently totally different definition 1.5 has to
be used. In [6; 1.3], K. Koh shows that R/L may be quasisimple
without L being almost maximal.

THEOREM I 2.8. For a right ideal L < R in any ring R, let
N be its idealίzer and assume that the Krull-dimension of R/L exists.
Then the conditions (i) and (ii) are equivalent:

(i) L is an almost maximal right ideal of R.
(ii) (a) L — L is saturated)

(b) N\LΦ0;
(c) R/L is compressible.

Proof, (i) ==> (ii). (a) Suppose x e R\L such that xR £ L. Since
xeN, by 2.6(i), xR g L implies R g L, thus contradicting that L
is proper. Thus L — L. (b) and (c). These conclusions hold by 1.5
and 2.6(ii).

(ii) => (i). By 2.3, R/L is α-critical, where a = k(R/L). Now 2.1
shows that R/L is strongly uniform. Since N/L g (R/L> R/L), and
since by 2.4 the latter is an integral domain, it follows that (1) iV\L
is a semigroup. If s e R\L then sR + L Φ L, since sR £ L would
imply s e L by hypothesis. There exists a module monomorphism
ψ: R/L —• (sR + L)/L. For any n e N\L Φ 0 , set f(n + L) = SS* + LΦL

where s* e R. The last equation shows that (2) ss* e N\L.

Suppose La B < R, B Φ L and ae R with L £ a~ιB are given as
in 1.5 (3). If ae L, then R = a~lB Φ L; so let a£L. Assume L =
a~xB. But then the module homomorphism R/L —> (aR + B)/B, defined
for all r e R by r + L —* ar + B, is an isomorphism. By assumption,
aR ξ£ L. As was already seen above, R/L is ^-critical and a = k(R/L).
Since L c B, L Φ B, we have a strict inequality

k(R/B) <a = k(R/L) .

Thus also k((aR + £)/£) < a, contradicting that (aR + £)/£ = -β/L.
Hence the condition (3) that aΓxB Φ L holds, and L is almost maximal.

REMARK 2.9. If R is an additive cyclic group of prime order
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with zero multiplication and L — 0, then R/L is compressible and k-
critical with k = 0. However, L is not almost maximal.

A known result is now an immediate corollary of the previous
theorem and 2.7(ii).

COROLLARY TO THEOREM I 2.10. Consider a right ideal L < R
with L = {xe R\xR Q L) and proper idealizer N, i.e., N\L Φ &. If
R/L has a Krull-dimension and is also compressible, then the integral
domain N/L satisfies the right Ore condition.

3* Idealizer complement prim right ideals* Some of the results
established in [4] for a right Noetherian ring R and a right ideal
L < R, with R/L compressible and α:-critical, here will be investigated
for much more general rings and right ideals.

NONATION 3.1. Consider any ring R, a proper right ideal L <
R, and as before, its idealizer N, semigroup C, and saturation L. By
the bound of any subring of R will be understood the unique largest
two sided ideal of R contained inside that subring. Let P be the
bound of L. For any L < R, set R1: L = {reR\ Rιr g L) < R1 and
similarly for R: L <] Rι. Define a subring H = {reR\rL £ P} and
I(H) = {reR\Hr^H}. The bound of H in R will be abbreviated
as bd (if). The Zβ/ί annihilator 1{L) of Z, in R is Z(£) = {r e i?|r.L =
0}. A right ideal {0} ̂  i? ̂  R is called an annihilator if there exists
a subset 0^S g /? such that 2? = {r e iί |sr = 0, all se 5}. Here, for
a maximal annihilator right ideal B ̂  R, the cases B = 0 or B = R
are also allowed.

The proof of most of the following observations is straightforward
and is omitted.

3.2. Without any assumptions on the proper right ideal L < R,
the following hold:

(1) (i) RH^H^NQI(H),HN^H.
(ii) (if Π L)2 g iJL g P ϋ if; consequently every prime right ideal

of JV/P contains one of the ideals H/P < iV/P or L/P < iV/P.
(iii) bd (jff) = {a? e JBI ̂ (i?L + L ) g P } ,
(iv) P = (R:L)f]L = iί1: L g iί: L. (The inclusion may be pro-

per. In a ring with zero multiplication, P = Lcz R: L = R.)
(v) There is a homomorphism of rings H —̂  (R/L, R/P) with

kernel HOP.
( 2 ) (i) H = R — N = R — L < J?, in which case R = N= Hz)

L = P.
(ii) ί ί ̂  L, for if if = L, then by (l)(i) RH = RL ̂  H = L.
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Hence by (2)(i) H = R = L, a contradiction since L is proper,
(3) If L < R is regular (in (3) only), i.e., there exists a ueR

with ur — re L for all re R, then
(i) ue (N\L) Π I(H); in particular N Φ L.
(ii) P = R:LSL.
(4) If Z, < iί is semi-prime then
(i) P=R:LSL = L,
(ii) and R: L <] R is semi-prime (see 3.3).
(iii) Furthermore, L < 2? prime ==> P = R: L <} R is also prime

(see 3.3).
(iv) if - JV« i? = N= Hz)L = P. ForiίH=N, then L S H,

and hence L2 £ iJL £ P. Thus LJB L £ P, and L g P ,
The next proposition for the prime case is proved by A. W. Goldie

in [4] for a right Noetherian ring and a compressible and fc-critical
right ideal. In 3.3—3.5, his results are either used or modified to
obtain a theorem applicable to a much wider class of rings that include
in particular the rings of most interest here—the almost primitive
ones. For a counterexample that 3.3(i) cannot be improved by adding
that also L <| N is prime, see 4.2 and 4.3, where L > R is prime but
L <| N is not.

PROPOSITION 3.3. If L < R is a semi-prime (or respectively,
prime) right ideal in any ring R and ifP^H^N and bd(H) are
as above, then

( i ) P<]R and H<\N are semi-prime (or respectively prime) ideals;
(ii) N Φ R and HΦ P=*H£L and L g H;
(iii) L Φ P,L<R prime =* bd(H) = P.

Proof. Note that 3.2(3)(iv) may be used to restate 3.3(ii) as
"H Φ N and H Φ P=> •••". For the prime case, the proof given in
[4; 3.42] is applicable and requires only that R/P be prime.

( i ) If s e R with sRιs £ P, then (Rιs)R\Rιs) £ L, hence R*s £
L, and s e P.

If aNxa £ ff for α e JV, then Rι(aLRιa)L £ R\H)L £ P. Since P
is semi-prime, i^αL £ P. Hence αL £ P and ae H.

(ii) If £ΓgL, then RΉR1 S-L; hence HR1 ̂  P, H Q P, and
thus H = P, which is a contradiction. If La H, then Li?1!/gP. By
(i), L = P. Hence N = R, SL contradiction.

(iii) For any J <j R with J £ H, also JJBXL £ P. Since L g P,
we have J £ P. Thus bd (iϊ) = P.

In the next corollary, the proof in [4; 3.42] has to be slightly
modified by utilizing a result of [9; 2.7], because in the corollary R/L
is not critical but merely strongly uniform.

COROLLARY 3.4. With the same notation as in the previous
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proposition, if L < R is a prime right ideal with proper idealizer
NΦ L and R/L is strongly uniform, then

(iv) NΦ Rand HΦ P=> H/P < N/P and L/P <\ N/P are distinct
minimal prime ideals;

(v)

Proof, (iv) If L < R is prime, L = L and 2.5 shows that N/L
is an integral domain. By hypothesis L Φ N, and thus L/P <] N/P
is proper and hence prime. The relation (H/P){L/P) = 0 shows that
these are minimal primes.

(v) Clearly N S I(H). lίxe I(H) and r e H\L are any elements,
then HxL S P and r#L g P g L Here 3.2(2)(ii) and 4(i) have been
used. Thus L + ώ S r""1!/ with r g i . If L = r^L, then &L g L.
In this case x e N and hence I(H) = N. So assume L c r^L is proper.
Any module R/L is strongly uniform if and only if for any right ideal
LaB<R with L Φ B, (R/B, E(R/L)) = 0 ([9; 2.6] and [11; 1.1]),
where E(R/L) is the injective hull of R/L. Since L = L, r"1!, ̂  /?,
and

0 ^ Λ/t^ιL = (rR + L)/L S E(R/L)

contradicts the fact that (R/r^L, E(R/L)) = 0. Thus I(H) = iV.
In [4], Goldie proves the next theorem for R/L compressible and

of Krull-dimension a. But then R/L is ̂ -critical ([5; 4.6] or [4; 3.37]),
and by Theorem I, then L is almost maximal. However, not every
almost maximal right ideal need be of this special latter type. The
next theorem is not only applicable to almost maximal right ideals,
but even to more general one sided primes.

THEOREM II 3.5. Suppose that in any ring R (with or without
identity) the right ideal L < R is idealizer complement prim (1.5). If
PgLcJV,PgίίgiV, and H S I(H) are as in 3.1, then

(1) P <] R, H/P Φ L/P <\ N/P are distinct prime ideals.
( 2 ) (a) Either H = P, or H = N and H/P, L/P <\ N/P are two

distinct prime ideals, one of which is always zero, ordered by in-
clusion as follows

H= P*=~H(Z L ,

(b) or Hφ Pand Hφ N'(in which case LΦP) and the ringN/P
has exactly two distinct minimal nonzero prime ideals H/P Φ L/P <] N/P.

(3) The bound of H in R is P.
(4) I(H) = N.

Proof. First (without any assumptions), by 3.2(2)(ii), H Φ L.
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Hence H/P Φ L/P are always distinct.
(1) By 3.3(i) and 1.5(1) the ideals H/P, L/P < N/P are always

prime.
(2) (a) I f f f c L , then / ? # £ # £ L, hence ffg P, and H = P.
If either L cz H, or if H = N, in both cases we have L a H.

But then L2 £ iTL g P and P < /2 is prime. Hence L = PczR =
JV= H.

(b) By (2)(a), H£L,L£H,LΦP and iV^ Λ. (Alternative
proof: By 3.3(ii), i ϊ g L and L£H, i.e., if/P and L/P are not ordered
by inclusion.) Finally by 3.2(l)(ii), (H/P)(L/P) = 0 shows that every
prime ideal of N/P contains either H/P or L/P. The latter together
with 3.5(1) shows that these are minimal primes and that there are
no others in N/P.

(3 ) is a consequence of 3.3.
(4) If as before x e I(H) and r e H\L, then rxL £ P and L +

xL£r~ιL. Suppose $L§£L. Let ae L with $α g L. By 1.5(2), choose
t e R such that (a?α)t € N\L. But then r € H\L £ JV\L, #α£ € N\L, while
r(xat) e rxL £ L contradicts that iV\ί/ is a semigroup.

It remains yet to determine necessary and sufficient conditions
for each of the two alternatives 2(a) or (b) in Theorem II to hold.
The next lemma and proposition not only establish, clarify, and supple-
ment such necessary and sufficient conditions, but are also of inde-
pendent interest.

LEMMA 3.6. An ίdealizer complement prime right ideal L < R
and its left annihίlator l(L) in R satisfy the following:

( i ) Vu e l(L)\L => L = u~ι0.
(ii) L < R is not essential <=> l(L)\L Φ 0 .
(iii) If in addition R is semi-prime, then there does not exist

B^R with LdB, L Φ B, and l(B) Φ 0.

Proof, (i) Since l(L)\L £ N\L, and since n(R\L) £ R\L for all
n e N\L, it follows that L — u~%0.

(ii) =>: There is a right ideal 0 Φ K ^ R with KC\ L = 0. Hence
Kf](N\L) Φ 0 . Since (K n N)L £ Kf) L = 0, it follows that Kf]
(N\L)^l(L)\LΦ 0.

(ii) <= : For any n e N\L, reR,nreL implies that reL. Thus
nR Π L = wL. But Z(I/)\L £ N\L. Thus for any w 6 1{L)\L, uR Φ 0
and %i? Π L — uL — 0.

(iii) Any right ideal B <£ i? in a semi-prime ring ίί with Z(J5) ^
0 is proper and satisfies l(B)\B φ 0 . For suppose l(B) £ B. Then
1{B)RH(B) £ Z(J3)JS = 0 and hence l(B) = 0. Suppose that there does
exist a ΰ ^ £ as in (iii). (E.g., an annihilator right ideal B properly
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containing L.) Since L c B we have l(B)\B S l(L)\L S #Vk Take
any α?6 i(J?)\B and any beBf] (N\L). Then cc& = 0 with x, be N\L
contradicts that N\L is a semigroup.

For almost maximal right ideals, conclusion (ii) of the next
proposition is due to K. Koh (verbal communication, also see [8; 2.3]).

PROPOSITION 3.7. If L < R is an idealizer complement prime
right ideal in any ring R (1 e R or 1 $ R)9 then.

(i) L < R is not essential <=> L = u~*0 for some u e R\L.
If in addition it is assumed that R is semi-prime, then
(ii) L < R is not essential <=> L is a maximal annihilator.

Proof, (i) follows from 3.6(ii) and (i).
(ii) =>: Again by 3.6(ii), or alternatively by 3.7(i), L is an anni-

hilator. The semi-primeness of R together with 3.6(iii) shows that L
is a maximal annihilator.

(ii) <= : Since l(L) Φ 0 and R is semi-prime the argument used
in the proof of 3.6(iii) shows that l(L)\L Φ 0 . But now 3.6(ii) shows
that L < R is not essential.

Since the case H — R is uninteresting, the next theorem determines
exactly when each of the two alternatives in Theorem II hold.

THEOREM III 3.8. Suppose that L < R is idealizer complement
prim (1.5) in any ring R (leR or UK), and that H,P and l(LfP)
are as previously (3.1). The following conditions are all equivalent:

( i ) HΦP.

(ii) L/P< R/P is not essential.
(iii) L/P is a maximal annihilator in R/P.
(iv) l(L/P)\L/P Φ 0 .
(v) L — u~ιP for some u e R\L.

Proof. Since P <| R is prime by 3.3(i), the equivalence of (ii)—
(v) follows from 3.6 and 3.7. Only in this proof and no where else
is the notation L other than the saturation of L. Set L = L/P < R =
JB/P, P - 0, and H = H/P N = N/P. Since the idealizer of L in R is N,
also L < R is idealizer complement prim. However, l(L) = H. The
"H associated with any right ideal L by 3.1" for L is H, i.e., {xe
R\xL £ P} = H/P = l(L). Application of 3.6(ii) to L < R in place
of L < R shows that

L < R is not essential <=* 1{L)\L φ 0 ^==> H\L φ 0 .

More generally, without any special assumptions on L < 22 whatever

H\P Φ 0 —> H\L Φ 0 <=* H\L Φ 0 <=>HΦO .
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For if h e H\P, then hh £ P = Rι: L, while Rιh g; L. Thus ph $ L
for some peR1 but pΛ, e RXH\L = ίf\L. Hence L < β is not essential
iff ff =*= P.

For a right Noetherian ring the next corollary is stated in [4;
3.42]. It is a special case of 3.8. The converse implication below
fails for maximal ideals L in a commutative semi-prime ring R with
R — H Φ P = L, where L and i? can be so chosen that L < i? either
is, or is not essential.

COROLLARY TO THEOREM III 3.9. With the same hypotheses and
notation as in the last theorem

L < R is not essential => H Φ P .

COROLLARY TO THEOREMS II AND III 3.10. With the hypotheses
and notation of Theorem II,

( 2) (a) H = P <=> LIP < R/P is essential.
(a) JT= N~L = P.
(b) HΦN,HΦP*=>LΦP, and L/P < Λ/P ώ ^oί essential.

4. Examples* It has to be determined by means of counterex-
amples how much of Theorem II and its Corollaries could still be
proved under the following possibilities for weakening the hypotheses
on the right ideal L < R:

(l)(a) prim irreducible, (b) prim; (2)(a) prime irreducible, or (b)
prime, where L < R is irreducible if it is not the intersection of two
right ideals properly bigger than L.

4.1. Throughout, F will be a field. In the free ring R = F[$, y]
of noncommuting polynomials in indeterminates x and y, the right
ideal L = xR < R is prim irreducible, but not N\L ~ F — prim. Con-
clusion (4) of Theorem II fails, for H = 0 and I(H) = i?, but not JV
as required by (4). The Corollary 3.9 to Theorem II also fails, for
L < R is not essential while H = P = 0.

Next a prim right ideal L <, R will be constructed such that
L < N is not prime in its idealizer.

4.2. Suppose σ: F—+F is a one-to-one homomorphism of F into
î 7 but not onto. Set E = (jPσ)<7 aFσ Φ F. Consider the twisted
polynomial ring R = F[x, σ] with coefficients on the left and xnc =
cσ(w)αf for ceF and σ(w) == <7n for 0 ^ ne Z, where Z is the ring of
integers. Then R is a left but not right Ore domain. View elements
a, βeR as functions α, β: Z-+R that are eventually zero and vanish
on the negative integers under pointwise addition and the multiplication
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(aβ)(n) = Σ{a{i)[β{j)σ{i)\ \i,jeZ;i + j = n} for neZ. Denote by E[x,

σ]cR the subring of all polynomials with left coefficients in E, i.e.,
E[x,σ] = {aeR\a(Z) <^E}.

4.3. The right ideal L = αΛR < i? is also given by L = £/[&, σ]Λ
Its idealizer JV is JV= j&[a?, σ]. Since α iVα g L with α?e JV\L, L when
viewed as an ideal in the subring L <] N is not even semi-prime;
consequently, conclusion (1) of Theorem II is false. It should also be
noted that H = 0 = P, I(H) = R. Consequently, (4) of Theorem II
fails again.

In order to see that L is reducible, take any scalar / $ Fσ and
form (fxR φ L) Π (xfxR @L) = L, where

Π L = xfxR Γ\L = /αJR Π £ / £ # - 0 .

If α = α(/c)xfe + α(Λ + l)x"+1 + , β = β(m)xm + e 12 with
L, then aβ{m)~ιβ e L implies that α(fc) 6 £7, while afβ{m)~xβ e L shows
that k ̂  2. Hence α e L . It will be shown below that L < iί is
actually prim with respect to a subsemigroup Γ Q C.

4.4. Define Γ g C a s the subsemigroup Γ = {7 e C \ Ύ(R\{0}) S
R\L}. First we must determine when a typical element p = p(m)ίEm +
• + £>(u)£u e i2 belongs to Γ, where the first and last nonzero coeffi-
cients of p are p(m), p(u) e F with m ^ u. Since pe Γ implies p +
L g Γ , and since L = E[x, σ]x*% without loss of generality assume
that for j ^ 2, either p(j) g £? or p(i) = 0. Throughout, it will be
assumed that pae L with α = a(k)xk + + a(s)xs; a(k) Φ 0, a(s) Φ 0,
and k ^ s.

PROPOSITION 4.5. TFίίfe p e R and m the degree of p satisfying
the conventions in 4.4,

(a) pe Γ provided either one of the following two conditions hold:
(1) m ^ 2 ;
(2) p = p ( l > + •••; m = 1

(b) L < R is Γ-prim.

Proof. (a)(l). For 0 =£ α e iί, pα e L implies p(m)[α:(/b)σ(m)] 6 E,
which in turn gives the contradiction that 0 Φ p{m) e E for m >̂ 2.

(a)(2) Now paeL requires that fc ̂  1 and p(l)[a(k)σ] e E, which
contradicts that p(ΐ) ί Fσ.

(b) Let a = a(k)xk + + a(s)xs e R\L with k g s. If 7 e Γ,
then 7 + LSΓ Hence for any XeR, the condition (a + L)X Π Γ Φ
0 is equivalent to aX e Γ. Consequently, it may be assumed without
any loss of generality that for j ^ 2, either a(j) = 0 or a(j) $ E. Take
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any feF\Fσ. Then a&L is one of the following four mutually

exclusive forms

k ^ 2; a{k) g E ==> aeΓ

k = 0; =>aa(0) ιfx*eΓ

k = ϊ, a(ΐ) gFσ = » aeΓ

k = 1; a(l) e Fσ .

In the last and only remaining case a{l) = cσ for a unique c e F. Since
fσ $ E, (a)(l) shows that acmlfx* = (fσ)xz + e Γ. Thus for any
a 6 J?\L, αF/a;2 Π Γ ^ 0 and L < J? is Γ-prim.

REMARK 4.6. With p e / ί as in 4.4, p e f if any one of the
following conditions hold:

( 3) u ^ 2 (and hence p(w) ί E).
( 4 ) w = 1 and p(l) $ Fσ.

Furthermore, peC in case any one of the following hold:
(v) 0 Φ p(m) 6 E and p(m + i)gE for some i ^ 1.

(To prove 4.6(v), it suffices to take p = p(0) + p(l)x with 0 Φ p(0) 6 E
but p(ϊ) $ E. For if m + i ^ 2, then also u ^ 2 and 4.6(3) => 4.6(v).
So m+l^m + i<2 and m = 0, i — 1.)

(vi) j> G #[#, o ] with p(0) Φ 0.
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