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A HAUSDORFF-YOUNG THEOREM
FOR

REARRANGEMENT-INVARIANT SPACES

COLIN BENNETT

The classical Hausdorff-Young theorem is extended to the
setting of rearrangement-invariant spaces. More precisely, if
1 ^ V ̂  2, p~x + q-1 = 1, and if X is a rearrangement-invariant
space on the circle T with indices equal to p~ι

9 it is shown
that there is a rearrangement-invariant space X on the integers
Z with indices equal to ςr1 such that the Fourier transform
is a bounded linear operator from X into X. Conversely, for
any rearrangement-invariant space Y on Z with indices equal
to q"1,2 < q ^ oo, there is a rearrangement-invariant space
Y on T with indices equal to p"1 such that J?~ is bounded
from Y into Y.

Analogous results for other groups are indicated and ex-
amples are discussed when X is Lp or a Lorentz space Lpr.

By Lp = LP(T) we denote the usual Lebesgue space on the unit
circle Γ, and by lp = lp{Z) the corresponding space on the integers
Z. The index conjugate to p will always be denoted by q so that
p-i + ςr1 = 1. The Fourier transform Jf defined by

2τr

is a bounded linear operator from L1 into Z°° and from If into Z2 so by
the M. Riesz-Thorin interpolation theorem ([9], p. 95), J7~ is bounded
also from Lp into lq whenever 1 < p < 2. This is the assertion of
the classical Hausdorff-Young theorem ([9], p. 101).

Hardy and Littlewood ([5]; [9], p. 109) showed that J7~ is bounded
from Lp, 1 < p < 2, into lq

p9 the "weighted" Lebesgue space of all
sequences {cn} for which

j1'" = {Σ [(1

is finite; since ϊp

ff £ Zff, as a simple computation shows, their result
improves on that of Hausdorff and Young. A still sharper version,
again due to Hardy and Littlewood ([6]; [9], p. 123), is based upon
the observation that even the (symmetric) decreasing rearrangement
of the sequence {f{n)} belongs to l9

p, or, what amounts to the same
thing, ^f belongs to the Lorentz space lqp (cf. [3], [4], and [9]
for the precise statements and definitions). Thus ^~ is a bounded

311



312 COLIN BENNETT

linear operator from Lv into lqp whenever 1 < p < 2. More generally,
the recent interpolation theorem of Calderόn ([3], p. 293) shows that
^~ is bounded from Lpr into lqr, l < p < 2 , l ^ r ^ c o , the Hardy-
Littlewood results thus being contained in the special case r — p.

It is our intention in this paper to extend the above results to
the setting of arbitrary rearrangement-invariant spaces. Intrinsic
interest apart, the need for such a theorem arises naturally in pro-
blems concerning the ideal structure of Lipschitz subalgebras of rear-
rangement-invariant spaces (cf. [1]). Our main results, in which the
Lv spaces are replaced by rearrangement-invariant spaces with indices
(cf. [2]) equal to p~\ are as follows:

THEOREM A. Let X be a rearrangement-invariant space on T
with indices (p~\ p"1), 1 ^ p tί 2. Then there is a rearrangement-
invariant space X on Z with indices (q~~\ g"1), p~ι + q~γ — 1, such that
j ^ is a bounded linear operator from X into X.

THEOREM B. Let Y be a rearrangement-invariant space on Z with
indices (q"1, tf"1), 2 < q ^ °o. Then there is a rearrangement-invariant
space Ϋ on T with indices (p~\ p"1), p~ι + q~ι = 1, such that J7~ is a
bounded linear operator from Y into Y.

The construction of the spaces X, Y depends crucially on the
properties of the maximal operator S = S(σ) of Calderόn ([3]), and
the proof of the boundedness of ^" follows from the corresponding
interpolation theory. One advantage of this type of proof is that it
is then easy to see that Theorems A and B extend to transforms
given by arbitrary uniformly bounded orthonormal systems as in
earlier results of F. Riesz and Paley ([9], pp. 102, 121). Our results
extend to the Fourier transform defined on Z (the "duals" to Theorems
A, B) and the real line R, and to more general groups (although the
theory presented here requires that the Haar measure be always
σ-finite); we shall not aim for this level of generality. Examples are
discussed which show that Theorems A and B contain as special cases
the results of Hardy-Little wood and Calderόn mentioned above.

2* Rearrangement-invariant spaces• This section contains a
brief synopsis of results from the theory of rearrangement-invariant
spaces required later. We shall assume that the reader is familiar
with the material in the paper of Boyd ([2]) whose notation we shall
by and large adhere to; for further details see [4], [7], and [8].

Thus (Ω, j?~, μ) will denote a totally σ-finite measure space, μ ^ 0,
satisfying one of the following conditions:
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(2.1) μ is nonatomic and μ{Ω) = oo ,

(2.2) μ is nonatomic and μ(Ω) < oo ,

ju is completely atomic, all atoms having equal measure

1, and μ(Ω) — co #

denote respectively the measurable and nonnegative
measurable functions on Ω. A function norm is a mapping p:
[0, oo] which, for all / , / Λ e ^ ( β ) , all scalars λ > 0, satisfies:

(2.4)

(2.5) p(Xf) = λp(/) /, ^ /2 μ - a.e. - p(fj ^ p(f2)

(2.6) ,<>(/; + /2) ^ ^(/2) + p(f2)

(2-7) M # ) < ~ - rtz*) < ~ Γ ) ;

(2.8) μ(#) < oo => f /d^ ^ A^(/) , for some AE < oo

(2.9) / , l / / i - a.e. => ί>(Λ) \ p(f) (Fatou property) .

The space X = Lp consists of all functions fe^f(Ω) for which
p(\f\) < co. When functions differing on at most a null-set are
identified, X is a Banach space under the norm \\f\\x = p(\f\), called
a Banach function space. If X contains, along with a function f19

every function f2 equimeasurable with fiy we say that X is a rear-
rangement-invariant space; we may and shall assume that if fx and
f2 are equimeasurable then H/Jlx = ||/2||x (cf. [7], §16).

If a space X has all the properties of a rearrangement-invariant
space except that instead of the Fatou property (2.9) it satisfies the
weaker Riesz-Fischer property

(2.10) Λ G X, Σ Pifn) <oo=~p(± Λ

we shall say that X is a Riesz-Fischer space (cf. [8], Notes I and II).
The nonincreasing rearrangement / * of / is defined as in [2],

and the Hardy maximal rearrangement /** is given by

(2.11) /**(ί) - λ [f*(s)ds , 0 < t < - .
t Jo

We shall make frequent use of the following well-known inequality
(cf. [7], §10)

V̂  -L̂ j \Jι ~r J2) ~ Ji + J2 '

denotes the characteristic function of a set E.
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The domain of definition of f , / G ^ ( β ) , will be denoted by β*;
thus if Ω satisfies (2.1) (resp. (2.2), (2.3)) we set Ω* = R+ (resp.
[0, μ(Ω)], Z+). To each rearrangement-invariant space X on Ω there
corresponds (via the Luxemburg representation theorem [7], §12) a
rearrangement-invariant space X* on J2*. The norms on X and X*
are related by

(2.13) 11/11* = | |/* ||χ., feX.

When X = 1/ we shall write X* = Z/\
The associate space X' of X is defined as in [2]; note the result-

ing Holder inequality (setting a =

(2.14) ( |/flf|dj«^(β/*(*)ί/*(ί)ίί^ll/IUIIfflU', feX,geX'.

The dilation operators E8, Fs, 0 < s < oo, and <?s, s or s"1eZ+

9

2

are defined as follows:
When β* = i2+, 0 < s < oo, set

(2.15) (#./)(«) = /(βί) , 0 < t < oo ,

When i2* = [0, α] and 0 < s < co, set

(2.16) (FJ)(t) - /(si) , 0 ̂  ί ^ α , / € ^T([0, α]) ,

where /(έ) is defined to have value 0 if ί > α.
When β* = Z + and m e Z+, set

(2 Π) ί
' (Gm-if)(n) - /([(Λ - l)/m] + 1) n e Z\

where [a] denotes the integer part of a.
Now let X be a rearrangement-invariant space on Ω. If 42* = R+

we define \\E8\\{X) by

(2.18) j | £ U U - s u p { | | ^ / | |z*:| |/ | |z £ 1} , 0 < s < oo

in case Ω* = [0,a]yZ
+ there are analogous formulas for HJP.IICZ) and

||Gβ | | (z), respectively.
The Boyd indices ([2]) of X are defined in the nonatomic case by

(2.19) «(Z) = li f ^ ( X ) l i m
log S s->oo log s

(with ί78 replaced by F9 if β* = [0, α]), and in the atomic case by

(2.20) tt(X) = Iim ίQgll0*-1!!^) /9(X)^l im ~ l o f H g l ^/ 9 ( X ) l i m f
log m m-̂ oo l o g m

2 The notation used here differs from that of Boyd ([2]).
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THEOREM 2.1 (Boyd [2]). Let X be a rearrangement-invariant
space on (Ω, j?~9 μ). Then the limits (2.18) {or (2.19) as appropriate)
exist and

(2.21) 0 ^ β(X) ^ a(X) ^ 1 .

Moreover, if Xr is the associate space of X, then

(2.22) a{X') = 1 - β(X) β{Xr) = 1 - a{X) .

When X is Lp or a Lorentz space Lpr both indices are equal to
jr 1.

3* The Calderόn maximal operator & For each fe Lι(R+), set

(3.1) (Sf)(t) - Γ^/Wds + i - ί-1'8 Γ 8"^f(8)d8 , 0 < t < oo .
Jo 2 Ji/ί

The operator S so defined is precisely the Calderόn maximal operator
S= S(σ) ([3], p. 288) for the segment σ in the plane joining the
points (1, 0) and (1/2, 1/2). It is a simple matter to check that S(f*)
is nonnegative, nonincreasing and continuous on J2+([3], p. 288) and
hence that (S(/*))* = S(f*). In subsequent sections we shall need to
consider the maximal average (cf. (2.11)) (S/*)** of Sf*.

LEMMA 3.1. For any feLl(R+),

S ilt r°°

Γ(s)ds + r 1 / 2 8^2f*(8)d8 , 0<t< oo .
0 J l / ί

Furthermore, we have,

(3.3) S(f? + /2*)(ί) - (Sf*)**(t) + (Sf*)**(t) , 0 < t < - ,

, if fuf2zU{T),

/*)*)**(*) ^ (SΛ*)**(ί) + (S/2*)**(t) , 0 < t < oo.

Proof. Equation (3.2) is established by a routine change in the
order of integration. Note the similarity to (3.1). Putting f = f* +
f*, we have / * - (f* +f*)*=f* +/ 2* = / , and (3.3) follows directly
from (3.2).

If fe&(T), then / * is supported in [0,1] and so from (3.2) we

see that (Sf*)** has the constant value I f*(s)ds on [0,1]. Hence,

if flff2 e U(T) we have for all ί, 0 < t ^ ί,

- (Sf*)**(t) + (Sft*)**(t) .
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Thus, it remains only to show that the preceding inequality persists
for all t > 1.

Now, if ί > 1, we set

ψt(s) = 1 , O ^ s ^ l / t ; ψt(s) = (st)~112 , 1 / t ^ s ^ l ,

so that by (3.2) we have

(S/ )**( t)= [f*(s)ψt(s)ds, t>l.
Jo

Note that ψt is continuous and nonincreasing on [0,1]. If f,f2 e Lι(T),
we deduce from (2.12) that

Γ (A + ή)*(s)ds £ [ (A* + A*)(s)ds , 0 < u ^ 1 ,
Jo Jo

and so it follows by a theorem of Hardy (cf. [7], §5) that

Γ(/i + A)*(8Ht(8)d8 £ Γ(/i*(β)f *(β) + A*(8)ψt(8))d8
Jo Jo

i.e.,

S((A + Λ)*)**(ί) ^ (SΛ*)**(ί) + (S/f*)**(ί) , t > 1 .

This completes the proof.
It follows easily from (3.2) that (Sf*)** is nonnegative, nonin-

creasing and continuous on R+.

LEMMA 3.2 (Calderόn [3], p. 288). The operator S is of (strong)
type (1, °°) and of weak type (2, 2). The same is therefore true of
the operator /-> (Sf*)**.

The next theorem justifies the terminology 'maximal operator'
which we have applied to S.

THEOREM 3.3 (Calderόn [3], p. 290). Let U be any linear operator
defined on Lι(T) whose values are functions defined on Z. If U is
of type (1, oo) and weak type (2, 2) then

where c is a constant independent of f.

Since the Fourier transform ^ is of strong (hence weak) types
(1, oo) and (2, 2) we deduce the following result:

COROLLARY 3.4. For each feLι(T), there is the estimate
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)* ^ cSf* ,

where c is a constant independent of /.

4* The space Xo. Let X be an arbitrary rearrangement-invariant
space on the circle T (no restrictions on the indices are necessary at
this stage). In this case the conditions (2.7) and (2.8) imply

(4.1) L-QXQL1

with continuous embeddings, i.e., there are constants Ci = c{(X), i = 1, 2,
such that

(4.2) 11/11, ^ C l \ \ f \ \ Σ , f e X ; \\f\\x ^ c2\\f\U , /eL~.

The set Xo of functions on Z is defined by

(4.3) X0={g = (g(n)):=^: g** g (Sf*)** for some feX}

and we set

(4.4) \\g\\tQ = inf {||/|LY: g** ^ (S/*)**} g e Xo

equivalently, by (2,13),

(4.5) Hflfll̂  - inf {||/*||x : g** £ (Sf*)**} , g e Xo .

It will be established in the following series of lemmas that the
space Xo so defined is a Riesz-Fischer space which fails in general to
satisfy the Fatou property (2.9) (cf. §7). However, we show in the
next section how to construct from Xo a second space X with all of
the desired properties.

For notational convenience we shall use | |( )ll to denote the norm
on X and ||( )llo to denote the norm on XQ.

LEMMA 4.1. If g e Xo then

(4.6) |]f7lU^c||0| |o

where c is a constant independent of g.

Proof. Since g e Xo, there exists a function feX satisfying

(4.7) g** ^ (Sf*)** .

But then by Lemma 3.2 (or directly)

\\g\\- = !|0*

Combining this last estimate with (4.2) we have \\g\\co ^ c | | / | | and so



318 COLIN BENNETT

taking the inίimum of the right-hand side over all / satisfying (4.6),

we deduce from (4.4) t h a t \\g\\<» ^ e||#llo

L E M M A 4 . 2 . \\g\\0= o<=> g = o.

Proof. If g = 0 then, by (4.4), \\g\\0 — 0. The reverse implication

is a direct consequence of Lemma 4.1.

The proof of the next lemma is obvious and we omit i t .

L E M M A 4.3. (a) ||λβr||0 = | λ | ||<?||0,

(b) I ^ l ^ l ^ l - H ^ l i o ^ ll&llo.

L E M M A 4.4. \\gx + # 2 | | 0 ^ | |&||o + ll&llo

Proof. Let gugzeXQ and fix ε > 0. Then there exist f,f2eX

with gf* ^ (S/f)** and \\f\\ < \\gi\\0 + ε/2, i = 1, 2. I t follows from

(2.12) and (3.3) t h a t

to + </2)** ̂  0?* + or ^ (Sfϊ)** +
- S(f* + //)** - S((f *

Hence, from (4.5) and (2.13)

| | Λ + ftHo ̂  ||Λ* +Λ*|U ^ HΛΊIx* + | |/ 2 *|μ - H/JI + ||/2 | |

and by the choice of f,f2

\\9i + ^ l l o ^ II01HO+ II^HoH- ε .

Since ε is arbi trary, this completes the proof.

LEMMA 4.5. Characteristic functions of all finite sets belong to

Proof. If g is the characteristic function of a set of n points,

then g**(t) = 1, 0 < t < n; g**(t) = n/t91 ̂  n. Now the constant func-

tion f(Θ) = n, 0 < θ < 2π, belongs to L°°(T), hence, by (4.1), to X.

It is a simple matter to check that g** <g (Sf*)** and hence that

r̂ G Xo We omit the details.

LEMMA 4.6. For each NeZ+ there is a constant AN < 00 such

that

(4.8) Σ |0(tt)l^^||flr| |o, geXQ.
\n\SN

Proof. Since Σ i m ^ I^W I ̂  (2ΛΓ + 1 ) | | ^ | U , t h e est imate (4.8)
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follows directly from (4.6).

LEMMA 4.7. Xo has the Riesz-Fischer property.

Proof. Let (gn)ζ=1 be a sequence of functions gn e Xo with
Σn=i [|0«||o < °° By (2.10), we must show that g = Σ~=i#* belongs to
XQ. Now for each neZ+ there exists a function fne X such that

flfί* ^ (S/*)** , | |Λ | |^ | |0r ||o + 2- .

It follows that

(4.9) Σ ||/* IU. = Σ 11/. II ΞS Σ lift. II. + Σ 2 - < ~ .
n=l

But X* has the Riesz-Fischer property so from (4.9) we deduce that
the function / = /* = Σ ϊ U / * belongs to X*.

Again using (4.9) and (4.2) we see that for each fixed teR+,

Σ (Sf*)**(t) <£ Σ IIΛΊUW) ^ c± \\f:\\x* < - .
n=l n=l n=l

Hence by the dominated convergence theorem and (3.2)

* (t) = Σ (["/Mas + r^ Γ 8-*f*(8)d8)
71 = 1 \JO Jl/ί /

S l/ί oo foo oo

Σ f:(s)ds + r 1 ' 2 s-1'2 Σ f:(s)ds
0 Λ = l Jl/ί w = l

But then

2J gn) ίk 1J gn

Since /* G X*, it follows from (4.5) that g e Xo. This completes the
proof.

THEOREM 4.8. Let X be any rearrangement-invariant space on
T. Then the space Xo is a Riesz-Fischer space and ̂  is a bounded
linear operator from X into Xo.

Proof. That Xo is a Riesz-Fischer space is the content of Lemmas
4.2, , 4.7. If fe X then by (3.4), (^"/)* ^ cSf* = S(ef*) and so
(JT-/)** ^ (iS(c/*))**. Since c/e X it follows from (4.4) that j ^ / e Xo

and that | | ^ " / | | 0 ^ | | c / | | x = e | | / | | x . This completes the proof. o

* The space X We denote by χn the characteristic function
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of the set { — n, , — 1, 0,1, , n) g Z, and for each function g
defined on Z we set

(5.1) \\g\\i = sup HflFZ Ho = lim||flrχ,||0.

The space X then consists of all functions g for which \\g\\i < °o.
Note that if g e Xo then | gχn | <; | g | so by Lemma 4.3 (b), || gχn ||0 ^

\\g\\o From (5.1) we deduce that g e X. Thus

(5.2) X0^X

and

(5.3) | |flr | |*Ξ£||ίjr | |o, geX0.

The properties (2.4), •••,(2.8) for X are easily verified from the
corresponding properties for Xo (Lemmas 4.2, « ,4.6). To see that
X is rearrangement-invariant, let gxeX and suppose that g1 and g2

are equimeasurable. If NeZ+, then g2χN assumes only finitely many
values. But then the fact that gι and g2 are equimeasurable implies
the existence of MeZ+ such that the values of g2χN all are assumed
b y gau- H e n c e {g2χNY ^ (gjCu)* s o b y L e m m a 4 . 3 ( b ) , \\g2χN\\Q^
llΛZifllo ^ ll^illi This holds for all NeZ+ so we deduce from (5.1)
that g2eX and | |# 2 | |x ^ ikillx Interchanging the roles of g1 and #2

we obtain the reverse inequality and so finally we have \\gx\\χ — H&lli
The Fatou property is "built-in" to the norm on X. Indeed it is

clear from (5.1) that | | # χ j | i t WβWz a s n~+°°> for any ^ G X , and by
Theorem 5.9 of ([8], Note II,) this is enough to ensure that X has
the Fatou property. The next theorem is useful in identifying the
space X when X is given in concrete terms (e.g. a Lorentz or Lebesgue
space); see §7. We omit the obvious proof.

THEOREM 5.1. Let X be a rearrangement-invariant space on T.
Then X = Xo (with identical norms) if and only if XQ has the Fatou
property.

THEOREM 5.2. Let X be a rearrangement-invariant space on T.
Then the space X is a rearrangement-invariant space on Z and J7~
is a bounded linear operator from X into X.

Proof. That X is a rearrangement-invariant space has been
established above. The boundedness of ^~ follows from (5.2), (5.3),
and Theorem 4.8.

6* Indices of X. The first theorem in this section enables us
to estimate the indices of X in terms of those of Xo.
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THEOREM 6.1. Let X be any rearrangement-invariant space on
T. Then the indices of Xo and X are related by

(6.1) β(X0) £ β(X) £ a(X) £ a(X0) .

Proof. Fix g e X and m e Z+. It is clear that {Gmg*)χn = Gm(g*χmn)
for all n e Z+, and so

*)χ.||0 = sup| |G,(ί/*χ,.) | | .

It follows from (2.18) that | | G m | | ( i , ^ | | G w | | ( i o ) and hence by (2.20)
that /?(X0) ^ β(X) An entirely analogous proof for the operators
Gl!m now shows that || G1/w||(jb ^ || G1 / w | | (£0, and hence that a(X) ^ a(X0).
The proof is completed by applying (2.21).

In order to compute the indices of XQ we need the following
lemma.

LEMMA 6.2. Let / * e L\R+), g* e l°°(Z+) and fix me Z+. If
#** ^ (S/*)** then the following inequalities also are valid:

(6.2) (G1/Wflf*)** ^ mS(Emf*)** ,

(6.3) (Gng*)** £ mr'S{EUmf*)** .

Proof. We show first that

(6.4) (Gllmg*)** = S1/W(ί/**) .

Indeed, if teR+, then £ has a unique decomposition £ = km + a:,
fc G Z + , 0 ^ α: < m, so from (2.17)

1 Γfm Γkm fί ~1

= — \ ff*(l)<te + + g*(k)ds + g*(k + l)α7s
t LJo JU-l)m Jftm J

= T- Γ Σ ff*0") + — ^*(^ + 1)1 = ̂  Γ"i/*(β)<fe
£ U=i m J £ Jo

- 0**(ί/m) - Ellm(g**)(t) .

The identity

(6.5) £?i/»[(S/*)**] - mS(Enf*)**

is established by a similar "change of variable" argument. The desired
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result (6.2) now follows from (6.4), the hypothesis g** ̂  (S/*)**,
and (6.5). The inequality (6.3) can be established in similar fashion.

THEOREM 6.3. Let X be any rearrangement-invariant space on
T. Then

(6.6) a(X0) ̂  1 - β{X) .

Proof. Fix me Z+ and let 3 be any number satisfying 3 > 1.
Then for each ge Xo, g Φ 0, there exists a function feX such that
g** ^ (Sfψ* and | | / | | < 3\\g\\0. It follows from (6.2) that (Gllmgψ* ^
mS(Fmf*)**, since Es = F$ for s > 1, and so from (4.5) we deduce
that Gllmg* e Xo and

Hence, by choice of /, we have

\\Gllmg^\\0^m3\\Fm\\{X)\\g\\0.

This last estimate holds for all g e Xo so we find that | |G 1 / m | | (i o ) ^
m3\\Fm\\U). This in turn holds for all 3 > 1 so we have \\G1Im\\(ϊo) ^
m | | j F J | m , and by (2.19) and (2.20) this suffices to show that a(X0) ^
1 — /9(X). The proof is complete.

The analogue of (6.6) for the lower index β(X0) is a little more
difficult to establish, although the proof follows the same lines as
that of Theorem 6.3. The difficulty arises from the fact that we
cannot, in general replace £71/m/* by F^f* (since the former is sup-
ported in [0, m], the latter in [0,1]). However, it is fairly straight-
forward to estimate their difference and for this we need the following
lemma. For each meZ+, we set

(6.7) fm(t) = r^χ ( 2-» f l ](ί) , O ^ t ^ l .

LEMMA 6.4. Let Y be a rearrangement-invariant space on [0,1]
with lower index β satisfying 0 ^ / 3 ^ 1/2. Then for each ε > 0,
there is a constant c — c(e), depending only upon ε (and Y), such that

(6-8) ll/.llr^c(6)(2-) 1^+ , meZ+.

Proof. It is clear from (6.7) that /,*(*) = (ί + 2-w)-1/2χ(0,1_2-w]fί),
0 ^ t ^ 1. Thus, if fmk is defined by

fmk — /m%(2A:-m-l_2-m,2/ί-m_2-ίw] , fc — 1, 2, , m ,

we have / * = YJ^fmk and hence

(6.9) | | / j | r = ||/* | | r ̂  Σ ll/ *llr - Σ IIΛMIr.
fc=l fe=l



A HAUSDORFF-YOUNG THEOREM 323

Now if h(t) = (ί + 1)~1/2, 0 £ t £ 1, we have

fUt) = (t + 2-»+*-1)-1/2χ(0,8-»+*-i](ί) =

so from (6.9) we deduce that

m

(6.10) \\fm\\r 5Ξ Σ (2«- f c + 1) 1 '2 I I F , . - * ^ 11

It follows from (2.19) that there is a positive integer M= M(e)
such that k ^ M implies \\F2k\\{γ] ̂  (2k)~?+ε. Hence, if m ^ M, we
have from (6.10)

M m

11/- l!(i-» ^ c0 Σ 2

since |(i^ s[| ( κ ) ^ 1 if s ^ 1. The first term on the right-hand side is
a constant, say cx, depending only on M and hence ultimately only
upon ε; by hypothesis on β we have 1/2 — β + ε > 0, so the second
term is dominated by a multiple of (21/2-<s+ε)m. Hence

I ! / J ! F ^ ^(e) + c2(ε)(2m)1/2^+ε ^ c(ε)(2m)1/2-^+ε , m ^ M(e) ,

where c = maxfe, c2), and it is clear that by a suitable choice of
constant c(ε) this inequality can be made to persist for all m e Z+.
This completes the proof.

THEOREM 6.5. Let X be a rearrangement-invariant space on T
with upper index a = a(X) satisfying 1/2 ^ a ^ 1. Then

(6.11) β(X0) ^ 1 ~ a{X) .

Proof. Fix ε > 0 and meZ+. If g e Xo then there is a function
feX satisfying

(6.12) #** ̂  (£/*)**

From the inequality (6.3) of Lemma 6.2 we have

(6.13) (G2*g*)**(t) S 2~wS(ί72-w/*)**(O , 0 < t < <*> .

Now it is routine to verify that for all ί ^ 1,

2rnS(E2-»f*)**(t) = 2
(6.14) / ri
v + r 1 / 2 ( 2 ~ w / 2 s-1/

\ J2-W

and hence by (6.13)



324 COLIN BENNETT

(GW*)**(ί) ^ 2-mS(F%-mf*)**(t)
(6.15)

In order to find a similar estimate for ί < 1, we observe that (G2mg*)**
is constant on [0,1] so for each s, 0 < s ^ 1, we have from (6.14)
(with t = 1),

V*"1 Γ s-ιi2f*(s)ds

^ 2-mS(F2~mf*)**(s) + [V""2 Γ s-1I2f*(s)ds] ,
\ J2-W /

the last inequality because S(( . )*)** decreases on i?+ (cf. §3). Com-
bining this with (6.15) we have

(6.16) (G2.flr*)**(ί) S 2

( ^ ) 0 < t

where φ(t) = min (1, t 1 / 2). Now if h(t) — 1, 0 ̂  £ ̂  1, it is a simple
matter to check that φ(t) ̂  (Sh*)**(t), 0 < ί < oo, so using (3.3) we
can reduce (6.16) to the form

f ί Γ1 \ \ **

0 < t < oo .

It follows from (4.4) that G2™g* e Xo and

O-m/2 Q—l/2 f*iQ\dQ \ l | / i * | |

, , - ^ ,, Λ J 2 m /

We estimate separately each of the terms on the right-hand side
of (6.17). From (2.19) we note that there is a constant M— M(e)
such that m ̂  M implies \\F2-m\\{x) ^ (2m)α+ε. Hence, if m ^ Λf,

/ί? 1 Q\ O—mil 77̂  | | \\ -PW <* (Om\a—l + e | | JC 11

lΌ.lOJ ^ | | i ^ 2 - m | | ( X ) | | / | | ^ ^ j l l/ l l

To estimate the second term we invoke the Holder inequality (2.14)
to obtain

(6.19)

Now, by hypothesis, the upper index a of X satisfies 1/2 ̂  α ^ 1 so
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by (2.22) the lower index of (X*)' is equal to 1 — a and hence lies
between 0 and 1/2. It follows from Lemma 6.4 and (6.19) that there
is a constant c — c(ε) such that

(6.20) 2"^2 \_j~ll2f*(s)ds ^ φ)l |/ | | x (2*r- 1 + £ , meZ+ .

We can now combine (6.18) and (6.20) with (6.17) to obtain

||GW*||o ^ c1(ε)(2wr-1+ε | |/|| , m ^ M(e) ,

and hence, taking the infimum over all / satisfying (6.12),

IIGWIlo ^ c1(6)(2*)β-ι+β||flr||0 , m ̂  M(ε) .

This is valid for all g e Xo so (2.18) shows that

and by (2.20) this in turn implies that β(X0) ̂  1 — a — ε. Finally,
since ε is arbitrary, we have β Ξ> 1 — a, and this completes the proof.

We are now in a position to prove our main result (Theorem A)
which we restate as follows:

THEOREM 6.6. Let X be a rearrangement-invariant space on T
with indices (p~\ p~ι), 1 ̂  p ^ 2. Then the space X is a rearrange-
ment-invariant space on Z with indices (q~\ g"1), p~ι + q~ι — 1, and

is a bounded linear operator from X into X.

Proof. In view of Theorem 5.2 we need only show that the indices
of X coincide and are equal to q~~\ But from (6.1), (6.6), and (6.11)
we have

(Γ1 - 1 - a{X) rg β(X0) ̂  β(X) ^ a{X) ^ a(X0) ̂  1 - β(X) = g"1 ,

and so the proof is complete.
When 2 < p ^ oo, it is no longer true that JT~ maps Lp into lq.

Indeed (cf. [9], p. 101), there are functions in L°°, hence in Lp, whose
Fourier transforms do not lie in any of the classes lr, 1 ̂  r < 2.
For precisely this reason we cannot expect the indices of X to exceed
1/2 whenever X has indices equal to p~~\ 2 < p ^ oo. In fact, we
shall see in §7 that the following result holds.

THEOREM 6.7. Let X be a rearrangement-invariant space on T.
If X g i 2 1 (hence certainly if X has indices p~\ 2 < p <; oo), then
X — I2o°, with equivalent norms, and so a(X) = β(X) = 1/2.

7* Examples. We give a brief description of the space Xwhen
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X is a Lorentz space3. In particular, we show that the results of
Hardy-Littlewood and Calderόn mentioned in § 1 are contained in ours
as special cases.

(1). If X= Lpr, l < ί ) < 2 , H r ^ o o , then X, = X = I",
p-1 + g-i = 1. Indeed, if g e lqr, then f(t) = f*(t) = r 1 g**(t+1), 0 < ί < 1,
belongs to Lpr and

g**(s) £ 8~ιf**(s) = [!'f*(u)du ^ (Sfψ*(s) .
Jo

Hence, by (4.3), g e XQ and so ί ί r g l f l . Conversely, if g e XQ and
feLpr satisfies g** ̂  (Sf*)**, it follows from Hardy's inequality (cf.
[4], Chap. I) that \\g\\m ^ c\\f\\LPr. Hence, by (4.4), gelqr and
\\g\\ιqr ^ ||^||x0. This shows that Jt0 = lqr with comparable, hence
equivalent, norms. Finally, since lqr has the Fatou property, it
follows from Theorem 5.1 that Xo = X = ̂ r .

(2) If X = L1, then Xo = c0 and X = I". This follows in much
the same way as above upon observing that there are functions / in

S l/t

f*(s)ds tends to zero arbitrarily slowly as t—> ^>.
0

Note that c0 does not have the Fatou property. Indeed, c0 is generated
by the function norm ρ(f) = | | /IU,/ec 0 , p(f) = oo ?/gc0. Thus, if
χΛ is the characteristic function of the set {1, 2, , n) and χ is identi-
cally equal to 1 on Z+, we have χn f χ pointwise but p(χn) — 1 for all
n while p(χ) = co. The space X = Z°° of course has the Fatou property.

( 3 ) When X — U, Theorem 6.6 fails to reproduce the Plancherel
theorem, i.e., Xφl2. This is of course due to the weak-type
behavior of the Calderόn operator S (cf. Lemma 3.2). Thus, at least
as far as the Hausdorff-Young theorem is concerned, our results for
spaces of index 1/2 are uninteresting and will not be pursued here.

( 4 ) If XS L2ί then X = Xo = l2oa. For if I g L2\ then

l/ί

and so (S/*)**(ί) decays as t~112 as t—^ co. Moreover, this rate of
decay is always attained (take / = constant). Thus, arguing as in
example (1) above, we see that Xo and hence X coincides with l2oa,
with equivalent norms.

8* The space Y. Let Y be a rearrangement-invariant space on
the integers Z. We wish to construct a rearrangement-invariant
space Y on T such that ^ is bounded from Y into Y. Thus we
define Ϋ to be the collection of all functions f on T for which
(Sf*)** ^ #**, for some g e Y, and we set

3 For the definition of Lorentz spaces, see [3] or [4], Chap. I.
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(8.1) Il/Hί - inf {Hffllr: ( # / * ) * * ^ </**} , /e Γ.

We remarked in the preceding section that ($/*)** cannot decay
faster then t~112 so in order that Y contain the constant functions we
need to know that there are functions g in Y such that g decays
more slowly that ί~1/2. This will be the case if, for instance, the
indices of Y are equal to q~\ 2 < q ^ <χ>, because then i2 o og Y.

THEOREM 8 1 (Theorem B). Let Y be a rearrangement-invariant
space on Z with indices (q~~\ q"1), 2 < q gj oo. 27i,ew, ίfee space Γ i s a
rearrangement-invariant space on T with indices (p~~\ p~ι), p~ι + q~~ι =
1, and ^ " is a bounded linear operator from Y into Y.

Proof. The properties (2.4), , (2,8) for Ϋ are established in
much the same way as for the space Xo in §4; we prove only the
triangle inequality (2.6).

Thus, if f,f2e Ϋ, then given ε > 0 there are functions gteY
such that (Sff)** ^ gΐ* and | | ^ | | F ^ | |/4 | |? + e/2, i = 1, 2. From
Lemma 3.2 we have

** ^ flr** + flf2** = (gf + βr?)** ,

so from (8.1) we deduce t h a t f + f2 e Y and

ll/i + / . I I ? ^ IIΛ* + fc*||r ^ IIΛ*IIΓ + HftΊlz

- H Λ I I F + I I ^ I I F ^ ll/illf + IIΛIIf + e .

Since ε is arbitrary, this shows t h a t \\f + / 2 | | r ^ ll/illr + IIΛIIFJ as
desired.

Note t h a t the infimum in (8.1) is a t ta ined. Indeed, if fe Ϋ then
II/IIF = \\9f\\γ where gf = g} is the unique function in Y satisfying
(gf)**(m) = (Sf*)**(m - 1), m e Z+. Thus, if fn ] f, we have (Sf*)** ί
(Sf*)** and hence gfn j ^/. Since F has the Fatou property we have
H/nllF = \\dfn\\γ ί I|0/HF = I I / H F , and hence Ϋalso has the Fatou property.

The proof of the boundedness of J7~ and the computation of the
indices are much the same as before so we omit the details.

9* Extensions* The preceding theory extends fairly easily to
more general groups but one or two remarks are in order. If G is
a locally compact abelian group with dual group Γ (we assume that
the Haar measures are σ-finite) then the Fourier transform ^~G defined
on (L1 + L2)(G) is bounded from L\G) into L°°(Γ) and from L\G)
into L2(Γ); hence, if X is a rearrangement-invariant space on G with
indices (p~\ p"1), 1 < p < 2, then XQ (L1 + L2)(G) and so ^ maps
X into (L2 + L~)(Γ).
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Once these properties of <^ΓG have been noted, the group structure
is no longer needed. The space Xo is constructed as before and the
computation of the indices is the same. We define X by means of
the norm \\g\\^ — sup \\gχEn\\x0> where the supremum is taken over all
sequences {En}~=ι of sets En of finite measure such that En j Γ.
Of course, if Γ has finite measure then Xo and X are identical, but
if Γ has infinite measure then the example X — L1, in which case
X is L°°(Γ) and Xo is the closure in L°°(Γ) of functions of compact
support, shows that X and Xo need not coincide (cf. §7, Ex, (2)).
Similar remarks apply to the construction of the space Y.

Note that Theorems A and B are not special to the Fourier trans-
form ^~; they are valid for any operator of weak types (1, oo) and (2, 2),
In the same vein, we remark that Theorems A and B have obvious
analogues for operators of weak types (p0, pj and (q0, gj, l<^piy q^ oo.
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