NONSOLVABLE FINITE GROUPS ALL OF WHOSE LOCAL SUBGROUPS ARE SOLVABLE, VI ${ }^{1}$

John G. Thompson

This is the last paper in this series ${ }^{2}$ and it contains the analysis of the remaining case, that is, $2 \in \pi_{4}$ and $e=1$. As it happens, earlier work on this case was faulty, as I missed the group ${ }^{2} F_{4}(2)$ and its simple subgroup of index 2 . This lacuna is filled here, and the only change it necessitates in the earlier work is that the Main Theorem needs to be altered by added ${ }^{2} F_{4}(2)^{\prime}$ to the list of simple N-groups. ${ }^{3}$
16. The case $\mathfrak{I} \in \mathscr{M}^{*}$. All results in this paper are proved on the hypothesis that $2 \in \pi_{4}$ and $e=1$. In this section, we also assume that if \mathfrak{I} is a S_{2}-subgroup of $\mathbb{C S}$, then $\mathfrak{I} \in \mathscr{M}^{*}$. And we assume that (53) is a minimal counterexample to the Main Theorem.

Set $\mathfrak{M}=\boldsymbol{M}(\mathfrak{V})$.
Lemma 16.1. If $\mathfrak{F} \triangleleft \mathfrak{M}$ and \mathfrak{F} is an elementary abelian 2-group, then $\mathfrak{F} \notin \mathscr{M}^{*}$.

Proof. Suppose false, so that $\mathfrak{M}=M(\mathfrak{U})$ for every solvable subgroup of \mathfrak{U} of (5) which contains \mathfrak{F}. In particular, $C(F) \subseteq \mathfrak{M}$ for all $F \in \mathfrak{F}^{\sharp}$, and also, of course $N(\mathfrak{I}) \subseteq \mathfrak{M}$. By Lemma 13.2, there is a 2,3 -subgroup \mathfrak{F} of (5) satisfying (a) through (e) of Lemma 13.2.

Let $\mathfrak{F}_{0}=\mathfrak{F} \cap \mathfrak{S}_{\mathrm{I}}, \mathfrak{F}_{1}=\mathfrak{F} \cap \mathfrak{S}_{1}$, where $\mathfrak{N}_{1}=\boldsymbol{O}_{2}(\mathfrak{N})$. Since $\mathfrak{F} \in \mathscr{M}^{*}$, we have $\mathfrak{F}_{0} \subset \mathfrak{F}$. Since $e=1, \mathfrak{S}_{3}$ is cyclic. Since $N\left(\mathfrak{S}_{2}\right) \subseteq \mathfrak{M}$, it follows that $\left|\mathfrak{F}_{2}: \mathfrak{S}_{1}\right|=2$, whence $\left|\mathfrak{F}_{0}: \mathfrak{F}_{1}\right| \leqq 2$.

If $\mathfrak{F}_{0}=\mathfrak{F}_{1}$, then since $\mathfrak{F}_{0} \subset \mathfrak{F}$, \mathfrak{K}_{1} centralizes a subgroup $\mathfrak{F} / \mathfrak{F}_{0}$ of $\mathfrak{F} / \mathfrak{F}_{0}$ of order 2. Hence, [$\left.\mathfrak{F}_{2}, \mathfrak{F}\right] \subseteq \mathfrak{F}_{0} \subseteq \mathfrak{N}_{1}$, and so $\left\langle\mathfrak{S}_{2}\right.$, $\left.\mathfrak{F}\right\rangle$ is a 2 -subgroup of $N\left(\mathfrak{S}_{1}\right)$. Since Lemma $13.2(\mathrm{e})$ holds, we have $\mathfrak{F} \subseteq \mathfrak{S}_{2} \cap \mathfrak{F}=$ $\mathfrak{F}_{0}=\mathfrak{F}_{1}$, against $\left|\mathfrak{F} / \mathfrak{F}_{0}\right|=2$. Hence, $\left|\mathfrak{F}_{0}: \mathfrak{F}_{1}\right|=2$.

Choose $F \in \mathfrak{F}_{0}-\mathfrak{F}_{1}$. Since $F \notin \boldsymbol{O}_{2}(H)$, we may assume that F normalizes \mathfrak{K}_{3}. Set $\mathscr{R}=\left[\mathfrak{F}_{1}, \mathfrak{F}_{2}\right]$. Thus, \mathfrak{S}_{3} has no fixed points on \Re / Ω^{\prime}, and so

$$
\Omega=\left\langle[\Omega, F],[\Re, F]^{H}\right\rangle,
$$

[^0]where H is a generator for \mathscr{S}_{3}. Since $[\Re, F] \subseteq \mathfrak{F}$, it follows that $[\Re, F]$ is a normal elementary abelian subgroup of \Re and so $\mathrm{cl}(\Re) \leqq 2$, $\Re^{\prime} \subseteq[\Re, F] \cap[\Re, F]^{H}$. Since F centralizes \mathscr{R}^{\prime}, so does \mathfrak{S}_{3}. Since $C\left(F_{1}\right) \subseteq \mathfrak{M}$ for all $F_{1} \in \mathfrak{F}^{\sharp}$, and since $\mathfrak{R}^{\prime} \subseteq \mathfrak{F}$, while $\mathscr{S}_{3} \nsubseteq \mathfrak{M}$, we conclude that
$$
\mathfrak{R}=[\Re, F] \times[\Omega, F]^{H} \quad \text { is elementary abelian }
$$

Also, $\boldsymbol{C}_{\mathscr{\Omega}}(F)=[\Re, F]=\mathfrak{F} \cap \Re, \boldsymbol{C}_{\mathfrak{S}_{1}}\left(\mathfrak{S}_{\mathrm{B}}\right) \cap \mathfrak{R}=1 . \quad$ Suppose $F_{1} \in \mathfrak{F}_{1}$. Then $F_{1}=U V$, where $U \in \boldsymbol{C}_{\mathfrak{S}_{1}}\left(\mathscr{S}_{\mathfrak{c}}\right), V \in \Re . \quad$ Since $F_{1}=F_{1}^{F}$, and since F normalizes $\boldsymbol{C}_{\mathfrak{S}_{1}}\left(\mathfrak{S}_{3}\right)$ and \Re, it follows that $U=U^{F}, V=V^{F} \in \boldsymbol{C}_{\mathfrak{R}}(F)=[\Re, F] \cong \mathfrak{F}$. Hence, $U=F_{1} \cdot V^{-1} \in \mathfrak{F}$. Since $\mathscr{S}_{3} \nsubseteq \mathfrak{M}$, we get $U=1$, and so $[\Re, F]=\mathfrak{F}_{1}$.

Set $\mathfrak{A}=[\Re, F]^{H}=\mathfrak{F}_{1}^{H}$, so that $\Re=\mathfrak{F}_{1} \times \mathfrak{N}$. Furthermore, since \mathfrak{F}_{2} is a S_{2}-subgroup of $N(\Re)$, it follows that $N_{\tilde{F}}(\Re)=\mathfrak{F}_{0}$. Let $\mathfrak{F}^{1} / \mathfrak{F}_{0}$ be a subgroup of $\mathfrak{F} / \mathfrak{F}_{0}$ of order 2 which admits $\mathfrak{\Re}$. Thus, $\left[\Re, \mathfrak{F}^{1}\right]=$ $\left[\mathfrak{V}, \mathfrak{F}^{1}\right] \subseteq \mathfrak{F}_{0}$, and $\mathfrak{F}^{1} \equiv N(\Re)$, so that $\left[\mathfrak{Z}, \mathfrak{F}^{1}\right] \not \equiv \mathfrak{F}_{1}$. Let $\mathfrak{F}^{1}=\mathfrak{F}_{0} \times\langle U\rangle$, and choose A in $\mathfrak{\imath}$ such that $[A, U]=V \in \mathfrak{F}_{0}-\mathfrak{F}_{1}$. Since $A^{2}=1$, we have $[A, V]=1$, and so $V \in \boldsymbol{C}_{\Im_{0}}(A)$. Since $A \in \mathfrak{F}_{1}$, and since $C_{\Omega}(F)=\mathfrak{F}_{1}$, we get $V \in \mathfrak{F}_{1}$. This contradiction completes the proof.

Set $3=\Omega_{1}\left(\boldsymbol{R}_{2}(\mathfrak{M})\right)$, and let \mathscr{J} be the set of involutions J of \mathfrak{M} such that $\boldsymbol{C}_{\mathfrak{2}}(J) \in \mathscr{M}^{*}$. Since $\mathfrak{I} \in \mathscr{M}^{*}$, we have

$$
\begin{equation*}
\Omega_{1}(\boldsymbol{Z}(\mathfrak{T}))^{\ddagger} \cong \mathscr{J} . \tag{16.1}
\end{equation*}
$$

Lemma 16.2. One of the following holds:
(a) $|3|=2$.
(b) $\boldsymbol{C}\left(\mathfrak{Z}_{0}\right) \subseteq \mathfrak{M}$ for every hyperplane \mathfrak{Z}_{0} of \mathfrak{B}.

Proof. Suppose that (a) does not hold, so that $|\mathfrak{3}| \geqq 4$. Let $3^{*}=\Omega_{1}(\boldsymbol{Z}(\mathfrak{T}))$, and suppose that 3_{0} is a hyperplane of 3 with $\boldsymbol{C}\left(3_{0}\right) \nsubseteq \mathbb{M}$. By (16.1), we have $\mathcal{B}_{0} \cap 3=1$, and so $\left\langle Z^{*}\right\rangle=3^{*}$ is of order 2. Set $\mathfrak{C}=C(B)$ and let $\mathfrak{D} / \mathfrak{C}$ be a minimal normal subgroup of $\mathfrak{M} / \mathbb{C}$. Since 3 is 2 reducible in $\mathfrak{M},|\mathfrak{D} / \mathbb{C}|$ is odd. Since $\left|3^{*}\right|=2$ and $|3|>2$, we have $|\mathfrak{D} / \mathscr{C}|>1$. Set $\mathcal{B}_{1}=[\mathcal{Z}, \mathfrak{D}]$, so that $1 \subset \mathcal{Z}_{1} \triangleleft \mathfrak{M}$, whence $Z^{*} \in \mathcal{B}_{1}$. Since $\mathcal{B}_{1}=\left[\mathcal{Z}_{1}, \mathfrak{D}\right]$, we have $Z^{*} \in \mathfrak{D}^{\prime}$. By (16.1), we have $Z^{* M} \notin \mathcal{B}_{0}$ for all M in \mathfrak{M}.

Let \mathfrak{Q} be a S_{2}-subgroup of \mathfrak{D}, and let $\mathfrak{S}=3_{1} \mathfrak{S}$. Since $\left[\mathcal{B}_{1}, \mathfrak{D}\right]=\mathfrak{B}_{1}$, so also $\left[\mathfrak{Z}, B_{1}\right]=3_{1}$. Let $\mathfrak{B}^{\circ}=\mathfrak{B}_{0} \cap B_{1}$. Since $Z^{*} \in B_{1}$, we get that \mathfrak{B}^{0} is a hyperplane of \mathfrak{Z}_{1}, and so $Z^{* Q} \in \mathfrak{Z}_{1}-\mathfrak{3}^{\circ}$ for all $Q \in \mathfrak{Z}$. This violates Lemma 5.38, and completes the proof.

Lemma 16.3. One of the following holds:
(a) $|3|=2$.
(b) $\boldsymbol{C}\left(\mathcal{B}_{0}\right)=\boldsymbol{C}(\mathcal{3})$ for every hyperplane \mathcal{B}_{0} of 3 .
(c) \mathfrak{M} has a normal four-group \mathfrak{W} such that $\boldsymbol{A}_{\mathfrak{m}}(\mathfrak{W})=$ Aut \mathfrak{W}.

Proof. Suppose $|3|>2$ and 3_{0} is a hyperplane of 3 such that $\boldsymbol{C}\left(3_{0}\right) \neq \boldsymbol{C}(3)$. By Lemma 16.2, $\boldsymbol{C}\left(3_{0}\right)=\boldsymbol{C}_{\mathfrak{m}}\left(\mathcal{B}_{0}\right)$. Since $\mathcal{B}_{0} \subset 3$, we have
$\boldsymbol{C}\left(\mathcal{B}_{0}\right) \supset \boldsymbol{C}(\mathbb{3})=\mathbb{C}$. Set $\widetilde{\mathbb{C}}=\boldsymbol{C}\left(\mathcal{B}_{0}\right)$. Since $\widetilde{\mathbb{C}}$ stabilizes the chain $3 \supset$ $3_{0} \supset 1$, we see that $\widetilde{\mathbb{C}} / \mathbb{C}$ is an elementary abelian 2 -group. Choose $T \in \widetilde{\mathbb{C}}-\mathfrak{C}$, and let $\mathfrak{D} / \mathbb{C}=\boldsymbol{O}(\mathfrak{M} / \mathbb{C}), \mathfrak{F} / \mathscr{C}=\boldsymbol{F}(\mathfrak{D} / \mathbb{C})$. Since $\boldsymbol{O}_{2}(\mathfrak{M} / \mathbb{C})=1$, and $e=1, \mathfrak{F} / \mathbb{C}$ is a cyclic group and T does not centralize $\mathfrak{K} / \mathbb{C}$. Let $\mathfrak{F}_{1}=[\mathfrak{F}, \mathfrak{x}] \cdot \mathbb{C}$, so that $\mathfrak{F}_{1} / \mathbb{C} \neq 1$. Since T inverts $\mathfrak{F}_{1} / \mathbb{C}$, and since $\mathfrak{F}_{1} / \mathbb{C}$ acts faithfully on 3 , it follows that $\left|\mathfrak{F}_{1} / \mathbb{C}\right|=3$, while $\left[3, \mathfrak{F}_{1}\right]=\mathfrak{B}$ is a normal four-subgroup of \mathfrak{M}. The proof is complete.

Lemma 16.4. $|3|=2$.
Proof. Suppose false. Define \mathfrak{F} as follows: if Lemma 16.3(b) holds, take $\mathfrak{F}=3$, and if Lemma 16.3(c) holds, but Lemma 16.3(b) does not hold, let \mathfrak{F} be a normal four-subgroup of \mathfrak{M} with $\boldsymbol{A}_{\mathfrak{m}}(\mathfrak{F})=$ Aut (夭).

By Lemma 16.1, $3 \notin \mathscr{M}^{*}$. Set
$\mathscr{T}=\left\{\mathfrak{F} \mid \mathfrak{Z} \subseteq \mathfrak{F}, \mathfrak{B}\right.$ is a 2 -subgroup of $\left.\mathfrak{M}, \mathfrak{B} \notin \mathscr{M}^{*}\right\}$. Choose \mathfrak{I}_{0} in \mathscr{T} with $\left|\mathfrak{I}_{0}\right|$ maximal. We assume without loss of generality that $\mathfrak{I}_{0} \subseteq \mathfrak{Z}$. This normalization is admissible, since $3 \triangleleft \mathfrak{M}$. Let \mathcal{S} be a solvable subgroup of \mathbb{C} which contains \mathfrak{I}_{0} and is not contained in \mathfrak{M}, with $|\mathfrak{C}|$ minimal. Since $N_{\mathfrak{z}}\left(\mathfrak{X}_{0}\right) \in \mathscr{M}^{*}$, it follows that \mathfrak{X}_{0} is a S_{2}-subgroup of \mathfrak{C}. By minimality of $|\mathfrak{S}|$, we have $\mathfrak{S}=\mathfrak{x}_{\mathfrak{n}} \mathfrak{Q}$, where $\mathfrak{\Omega}$ is a p-group and p is an odd prime. Since $C\left(\mathcal{Z}_{0}\right) \subseteq \mathfrak{M}$ for every hyperplane 3_{0} of $\mathcal{3}$, it follows that $3 \subseteq C(O(\subseteq))$, and so $\mathfrak{I}=O_{2}(\subseteq) \neq 1$. By maximality of \mathfrak{X}_{0}, it follows that \mathfrak{X}_{0} is a S_{2}-subgroup of $N(\mathfrak{F})$. Since $O(N(\mathfrak{F}))=1$ so also $\boldsymbol{O}(\subseteq)=1$. Since $e=1, \mathfrak{\imath}$ is cyclic.

Let $\mathfrak{B}=V\left(\operatorname{ccl}_{8}(\mathfrak{3}) ; \mathfrak{T}_{0}\right) . \quad$ Thus, $\mathfrak{B} \nrightarrow \mathfrak{S}$, since $N_{\mathfrak{z}}(\mathfrak{B}) \supset \mathfrak{Z}_{0} . \quad$ Choose G in \mathscr{F} such that $\mathfrak{\beta}^{G}=\mathfrak{X} \subseteq \mathfrak{T}_{0}, \mathfrak{X} \nsubseteq \mathfrak{N}$. Since $\mathfrak{\Omega}$ is a cyclic p-group, $\mathfrak{X} \cap \mathfrak{Y}=\mathfrak{Y}$ is a hyperplane of \mathfrak{X}. On the other hand, $N_{\mathfrak{x}}(\mathfrak{F})=\mathfrak{X}_{0}$, and so $\boldsymbol{Z}(\mathfrak{Z}) \subseteq \mathfrak{I}_{0}$, whence $Z(\mathfrak{Z}) \cong Z(\mathfrak{l})$, as $\boldsymbol{C}_{\star}(\mathfrak{F})=\boldsymbol{Z}(\mathfrak{g})$. Set $\mathfrak{u}=$ $\Omega_{1}\left(\boldsymbol{Z}(\mathfrak{X})^{\sigma}=\Omega_{1}(\boldsymbol{Z}(\mathfrak{Z}))^{\mathfrak{n}}\right.$. Since $\mathfrak{\Omega} \neq \mathfrak{M}$, it follows from (16.1) that $\mathfrak{\Omega}$ does not centralize \mathfrak{U}, and so $\boldsymbol{C}_{5}(\mathfrak{l})=\mathfrak{g} \mathfrak{N}_{0}$, where $\mathfrak{N}_{0} \subseteq \boldsymbol{D}(\mathfrak{\mathfrak { N }})$. Let $\mathfrak{X}=\mathfrak{Y} \times\langle X\rangle$. Since X inverts $\mathfrak{S} \mathfrak{Q} / \mathfrak{K}$, we assume without loss of generality that X inverts $\mathfrak{\Omega}$. Thus, X does not centralize \mathfrak{u}. In particular, $\boldsymbol{C}(\mathfrak{F}) \supset \boldsymbol{C}(\mathfrak{X})$, and so \mathfrak{F} is a four-group.

Let $\mathfrak{M}=V\left(\operatorname{ccl}_{s}(\mathfrak{F}) ; \mathfrak{T}_{0}\right) . \quad$ Since $N_{\mathfrak{z}}(\mathfrak{F}) \supset \mathfrak{I}_{0}$, it follows that $\mathfrak{M} \nsubseteq \mathfrak{S}$, and $\mathfrak{B} \nsubseteq \mathfrak{F}$. Choose G_{1} in \mathfrak{F} such that $\mathfrak{F}^{G_{1}}=\mathfrak{Z} \subseteq \mathfrak{I}_{0}, \mathfrak{Z} \nsubseteq \mathfrak{F}$. Set $\mathfrak{R}_{1}=\Omega \cap \mathfrak{F}$, so that $\left|\mathfrak{R}: \mathfrak{R}_{1}\right|=2$.

Now \mathfrak{Z} is a normal 4 -group of $\mathfrak{M}^{G_{1}}$ and $\boldsymbol{A}_{\mathfrak{N} G_{1}(\mathbb{R})}=$ Aut ($\left.\mathfrak{Z}\right)$, so every involution of \mathbb{Z} is central in some S_{2}-subgroup of $\mathfrak{M}^{a_{1}}$. Hence, by (16.1), $\boldsymbol{C}(L) \subseteq \mathfrak{M}^{G_{1}}$ for all $L \in \mathbb{R}^{\sharp}$. In particular, $\mathfrak{u} \subseteq C\left(L_{1}\right) \subseteq \mathfrak{M}^{\epsilon_{1}}$, and so $[\mathfrak{U}, \mathfrak{R}] \subseteq \mathbb{R}$. Since \mathfrak{Q} does not centralize \mathfrak{U}, and since $\mathbb{R}=\mathfrak{R}_{1} \times\langle T\rangle$, where T inverts $\mathfrak{g} \mathfrak{Q} / \mathfrak{E}, T$ does not centralize \mathfrak{u}. Since $[\mathfrak{u}, \mathfrak{R}] \cong \mathfrak{R}$, we get that $[\mathfrak{u}, \mathfrak{R}]=\mathfrak{R}_{1} \subseteq Z(\mathfrak{g})$, and so $\mathfrak{S} \subseteq \mathfrak{M}^{\sigma_{1}},|\mathfrak{Q}|=3$. But now we get that $[\mathfrak{K}, \mathfrak{R}]=\mathfrak{R}_{1}$, whence $[\mathfrak{K}, \mathfrak{N}]=\mathfrak{K}_{1}$ is a 4 -group, $\mathfrak{F}=\mathfrak{K}_{1} \times$
$\mathfrak{S}_{2}, \mathfrak{S}_{2}=\boldsymbol{C}_{\mathfrak{s}}(\mathfrak{N})$. Furthermore, $\mathfrak{S}_{1} \triangleleft \mathfrak{S}$, and so $\mathfrak{R}_{1} \subseteq Z\left(\mathfrak{I}_{0}\right)$ whence $\mathfrak{I}_{0} \subseteq$ $\mathfrak{M} \cap \mathfrak{M}^{G_{1}}$. By maximality of \mathfrak{I}_{0}, we conclude that $\mathfrak{M}=\mathfrak{M}^{G_{1}}, \mathfrak{R}=\mathfrak{F}$.

Since $\mathfrak{I}_{0} \subset \mathfrak{I}$, there is $U \in N_{\mathfrak{X}}\left(\mathfrak{I}_{0}\right)-\mathfrak{I}_{0}$ with $U^{2} \in \mathfrak{I}_{0}$. Thus, U normalizes $\boldsymbol{C}_{\mathfrak{x}_{0}}(\mathfrak{F})=\mathfrak{F} \times \mathfrak{K}_{2}$, and so U normalizes $\boldsymbol{D}\left(\boldsymbol{C}_{x_{0}}(\mathfrak{F})\right)=\boldsymbol{D}\left(\mathfrak{S}_{2}\right)$. Since $\mathfrak{\Omega} \subseteq N\left(\boldsymbol{D}\left(\mathfrak{F}_{2}\right)\right)$, and since $\left\langle\mathfrak{I}_{0}, U\right\rangle \in \mathscr{I}^{*}$, it follows that \mathfrak{K}_{2} is elementary. Since $\mathfrak{S}_{2} \cap \mathfrak{S}_{2}^{U}$ is normalized by $\left\langle\mathfrak{I}_{0}, U, \mathfrak{\Omega}\right\rangle$, we conclude that $\mathfrak{F}_{2} \cap \mathfrak{S}_{2}^{U}=1$, and so $\left|\mathfrak{K}_{2}\right|=2^{h}$, where $h \leqq 2$. In this case, \mathfrak{I}_{0} has precisely 2 elementary subgroups of order 2^{h+2}, namely, \mathscr{S}_{5} and $\boldsymbol{C}_{\tilde{x}_{0}}(\mathfrak{F})$, whence U normalizes \mathfrak{S}. This is false, since \mathfrak{I}_{0} is a S_{2}-subgroup of $N(\mathfrak{F})$. The proof is complete.

Proof. By Lemma 16.4, $3=\Omega_{1}(Z(\mathfrak{P})$) is of order 2, and $3 \subseteq Z(\mathfrak{M})$. We assume by way of contradiction that $C(U)=\mathbb{C} \nsubseteq \mathfrak{M}$. Thus, $\mathfrak{u}=3 \times\langle U\rangle$. Let \mathfrak{S} be an element of $\mathscr{M} \mathscr{S}(\mathbb{S})$ which contains \mathfrak{C} and let $\mathbb{S} \supseteq \Re \supset \mathfrak{S}$, such that \mathfrak{S} is a maximal subgroup of \Re.

It is crucial to show that

$$
\begin{equation*}
|\mathfrak{S}: \mathfrak{S} \cap \mathfrak{M}|=3 . \tag{16.2}
\end{equation*}
$$

In any case, since $\mathfrak{C} \subseteq \mathfrak{S}$, we have $\mathfrak{S} \nsubseteq \mathfrak{M}$, and so $|\mathfrak{S}: \mathfrak{S} \cap \mathfrak{M}|=d>1$. Let $\mathfrak{I}_{0}=C_{\mathfrak{x}}(U)$, so that $\left|\mathfrak{I}: \mathfrak{I}_{0}\right|=2$. Since $\mathfrak{I} \subseteq N\left(\mathfrak{I}_{0}\right)$, we have $N\left(\mathfrak{I}_{0}\right) \subseteq \mathfrak{M}$. Since $\mathfrak{I} \in \mathscr{M}^{*}$, it follows that \mathfrak{I}_{0} is a S_{2}-subgroup of \mathfrak{S}.

Since \mathfrak{u} centralizes every element of $И\left(\mathfrak{U} ; 2^{\prime}\right)$, it follows that $\mathfrak{S}=\boldsymbol{O}_{2}(\mathfrak{S}) \neq 1$. Since $\mathfrak{S}=N(\mathfrak{S})$, it follows that $\boldsymbol{O}(\mathbb{S})=1$. For each odd prime p, let \mathfrak{S}_{p} be a S_{p}-subgroup of \mathfrak{S} permutable with \mathfrak{I}_{0}, and let $\mathfrak{S}(p)=\mathfrak{I}_{0} \cdot \mathfrak{S}_{p}$. Thus, $\boldsymbol{O}\left(\mathfrak{S}_{(}(p)\right)=1$ for all p. Since $J\left(\mathfrak{I}_{0}\right)$ and $\boldsymbol{Z}\left(\mathfrak{I}_{0}\right)$ are normal in \mathfrak{I}, it follows that $\left\langle N\left(J\left(\mathfrak{I}_{0}\right)\right), N\left(Z\left(\mathfrak{I}_{0}\right)\right)\right\rangle \subseteq \mathfrak{M}$. Hence, $\mathfrak{S}(p) \subseteq \mathfrak{M}$ for all $p \geqq 5$, by Lemma 5.53. By Lemma $5.54, O^{1}(\Im(3)) \subseteq \mathfrak{M}$. This is (16.2).

Next, set $\mathfrak{S}_{0}=\mathfrak{S} \cap \mathfrak{M}$ and suppose that $\mathfrak{S}_{0} \subset \mathfrak{M}_{0} \subseteq \mathfrak{M}$, and that \mathfrak{M}_{0} contains a S_{2}-subgroup of \mathfrak{M}. Let $\pi=\pi\left(\mathscr{S}_{0}\right)$ and let $\widetilde{\mathfrak{R}}$ be a S_{π}-subgroup of \mathfrak{m}_{0} which contains \mathfrak{S}_{0}. Let $\tilde{\mathcal{F}}=\boldsymbol{O}_{2}(\tilde{\mathfrak{N}}), \tilde{\mathfrak{S}}_{0}=\tilde{\mathcal{I}} \cap \mathfrak{S}_{0}$. Since $\mathfrak{I}_{0} \subseteq \Im_{0}$ and \mathfrak{I}_{0} is of index 2 in a S_{2}-subgroup of \mathfrak{M}, it follows that $\left|\tilde{S}_{2}: \tilde{\mathcal{S}}_{0}\right| \leqq 2$.

We argue that $\mathcal{M}_{0}-\mathfrak{S}_{0}$ contains a 2 -element T which normalizes \mathfrak{S}_{0}. This is clear if $\left|\tilde{\tilde{S}}: \tilde{\mathfrak{S}}_{0}\right|=2$, since in this case, we may take $T \in \tilde{\mathcal{F}}-\tilde{\mathcal{S}}_{0}$. Suppose $\tilde{\mathcal{F}}=\tilde{\mathcal{F}}_{0}$. Let $\tilde{\mathfrak{F}} / \tilde{\mathcal{S}}=\boldsymbol{F}(\tilde{\mathfrak{W}} / \tilde{\mathfrak{F}})$, so that $\tilde{\mathfrak{F}} / \tilde{\mathcal{F}}$ is a cyclic group of odd order, and $\widetilde{\mathfrak{M}}^{\prime} \subseteq \tilde{\mho_{\imath}}$. Let \Re_{0} be a $S_{2^{2}}$-subgroup of \mathfrak{S}_{0} and let Ω be a S_{2}-subgroup of $\widetilde{\mathfrak{M}}$ which contains Ω_{0}. Since Ω is a Z-group, it follows that subgroups of Ω are conjugate if and only if they have the same order. This implies that $N_{\tilde{\sim}}\left(\Re_{0}\right) \tilde{\tilde{F}}$ contains a S_{2}-subgroup of $\widetilde{\mathfrak{M}}$, and since $\mathfrak{I}_{0} \subseteq \tilde{\mathcal{S}_{2}} . N_{\tilde{M}}\left(\mathbb{R}_{0}\right)$, it follows that \mathfrak{S}_{0} is normalized by a S_{2}-subgroup of $\widetilde{\mathfrak{M}}$, so T exists.

Case 1. \mathfrak{I}_{0} is not a S_{2}-subgroup of \mathfrak{R}.
Let \mathfrak{I}_{1} be a S_{2}-subgroup of \mathfrak{R} which contains \mathfrak{I}_{0}. Since $\mathfrak{I} \subseteq N\left(\mathfrak{I}_{0}\right)$, we have $N\left(\mathfrak{T}_{0}\right) \subseteq \mathfrak{M}$, and so $\mathfrak{I}_{1} \subseteq \mathfrak{M}$. Let $\mathfrak{M}_{0}=\mathfrak{M} \cap \mathfrak{R}$, so that $\mathfrak{M}_{0} \supseteq\left\langle\mathfrak{I}_{1}, \mathfrak{S}_{0}\right\rangle$. Choose $T \in N_{\mathbb{N}_{0}}\left(\mathfrak{S}_{0}\right)-\mathfrak{S}_{0}, T$ a 2 -element. We may assume that $T^{2} \in \mathfrak{S}_{0}$. Now $\mathfrak{S} \subset \mathfrak{R}$, and so \mathfrak{R} is not solvable. Since \mathbb{C} is an N-group, so is \Re, and so 1 is the only solvable normal subgroup of \Re. In particular,

$$
\bigcap_{R \in \mathfrak{F}} \mathfrak{S}^{R}=1
$$

and so \Re is represented faithfully as permutations of the cosets of \mathfrak{S} in \mathfrak{R}. Since \mathfrak{S} is a maximal subgroup of \mathfrak{R}, this permutation group is primitive. Since $\mathfrak{S} \cap \mathfrak{S}^{T}=\mathfrak{S}_{0}$, \mathfrak{S} has an orbit of size 3 . By the Main Theorem of Wong [Determination of a class of primitive permutation groups, Math. Zeitschr. 99, 235-246 (1967)], \Re is isomorphic to one of the following groups:
$A_{5}, S_{5}, \operatorname{PGL}(2,7), \operatorname{PSL}(2,11), \operatorname{PSL}(2,13), \operatorname{PSL}(2, q)$
(q a prime $\equiv \pm 1(\bmod 16)$), $\mathrm{SL}(3,3)$, Aut $(\mathrm{SL}(3,3))$.
Since $2 \in \pi_{4}$, it follows that $\mathscr{S} \mathscr{C} \mathscr{N}_{3}\left(\mathfrak{T}_{1}\right) \neq \varnothing$. However, a S_{2}-subgroup of each of the above groups has no elementary normal subgroup of order 2^{3}.

Case 2. \mathfrak{I}_{0} is a S_{2}-subgroup of \Re.
In this case, since \mathfrak{I}_{0} is not a S_{2}-subgroup of $\mathbb{C S}$, we have $\mathfrak{R} \subset \mathbb{C}$. Since \mathbb{B} is a minimal counterexample, \mathfrak{R} contains a simple normal subgroup \Re_{0} such that $C_{\Re}\left(\Re_{0}\right)=1$, and such that \Re_{0} is one of the groups listed in the (augmented) Main Theorem. Let $\Re_{1}=\Re_{0} \mathfrak{I}_{0}$. If $\Re_{0} \cong$ ${ }^{2} F_{4}(2)^{\prime}$, then either $\mathfrak{R}_{1}=\Re_{0}$ or $\Re_{1} \cong{ }^{2} F_{4}(2)$. Both possibilities are excluded since $\Omega_{1}\left(Z\left(\mathfrak{I}_{0}\right)\right)=\mathfrak{U}$, while S_{2}-subgroups of both ${ }^{2} F_{4}(2)^{\prime}$ and ${ }^{2} F_{4}(2)$ have cyclic centers.

Suppose $\Re_{0} \cong U_{3}(3)=\operatorname{PSU}(3,3)(=\operatorname{SU}(3,3))$. Since $\mathrm{GU}(3,3)=$ $\operatorname{SU}(3,3) \times \boldsymbol{Z}(\mathrm{GU}(3,3))$ it follows that either $\Re_{1} \cong U_{3}(3)$ or $\Re_{1} \cong U_{3}(3)\langle S\rangle$, where S is induced by a field automorphism. In either case, a S_{2}-subgroup of \Re_{1} contains no normal elementary subgroup of order 2^{3}, against $\mathfrak{I}_{0}=\boldsymbol{C}_{\varepsilon}(U)$.

If $\Re_{0} \cong M_{11}$, then $\Re_{1} \cong M_{11} \cong \operatorname{Aut}\left(M_{11}\right)$. This case is excluded since $\mathscr{S} \mathscr{C} \mathscr{N}_{3}\left(\mathfrak{T}_{0}\right) \neq \varnothing$.

If $\Re_{0} \cong L_{3}(3)$, then \Re_{1} is either isomorphic to $L_{3}(3)$ or to $L_{3}(3)\langle S\rangle$, where S is the transpose inverse map. This case is also excluded, since $\mathscr{S} \mathscr{C} \mathscr{N}_{3}\left(\mathfrak{I}_{0}\right) \neq \varnothing$.

If $\Re_{0} \cong A_{7}$, then $И\left(\mathfrak{T}_{0} ; 3\right) \neq 1$, against $2 \in \pi_{4}$.
If $\Re_{0} \cong S z(q)$, then $\Re_{0}=\Re_{1}$, since Aut $(S z(q)) / I(S z(q))$ has odd order. In this case, every 2 -local subgroup of \Re_{1} is 2 -closed. This is false, since \mathfrak{I}_{0} is a S_{2}-subgroup of \mathfrak{S} and $\mathfrak{S} \nsubseteq \mathfrak{M}$, while $N\left(\mathfrak{I}_{0}\right) \subseteq \mathfrak{M}$.

Suppose $\Re_{0} \cong L_{2}\left(2^{n}\right)$. Since \mathfrak{C} is not 2-closed, \mathfrak{I}_{0} is non abelian. Since \Re_{1} is an N-group, the only possibility is that $\Re_{1} \subseteq \Sigma_{5}$. This violates $\mathscr{S} \mathscr{C} \mathscr{N}_{3}\left(\mathfrak{T}_{0}\right) \neq \varnothing$.

So $\Re_{0} \cong L_{2}(q)$ for some odd q. Let $q=p^{a}, p$ a prime. Then Aut $\left(L_{2}(q)\right) / I\left(L_{2}(q)\right)$ is the direct product of a group of order 2 and a cyclic group of order a. Thus, \Re_{1} / \Re_{0} is abelian, and is either cyclic or of type ($2,2^{b}$).

Let $\mathfrak{Z}^{0}=\mathfrak{T}_{0} \cap \Re_{0}$. Thus, \mathfrak{X}^{0} is a dihedral group. First, suppose $\left|\mathfrak{T}^{0}\right| \geqq 16$. In this case, $\mathscr{S} \mathscr{C} \mathscr{N}_{2}\left(\mathfrak{T}^{0}\right)=\varnothing$, and so it is straightforward to verify that $\mathscr{S} \mathscr{C} \mathscr{N}_{3}\left(\mathbb{T}_{n}\right)=\varnothing$, the desired contradiction. Hence $\left|\mathfrak{T}^{0}\right| \leqq 8$. If $\left|\mathfrak{L}^{0}\right|=4$, then $a=0$, and so $b=0$, and \mathfrak{X}_{0} is non abelian of order 8 , against $\mathscr{S} \mathscr{C} \mathscr{N}_{3}\left(\mathfrak{T}_{0}\right) \neq \varnothing$. Hence, $\left|\mathfrak{T}^{0}\right|=8$.

Since $\left|\mathfrak{Z}^{0}\right|=8$, it follows that a is either odd or twice an odd number. Since \mathfrak{I}_{0} contains an element of $\mathscr{S} \mathscr{C} \mathscr{N}_{3}(\mathfrak{I})$, it follows that $\boldsymbol{U}\left(\mathfrak{I}_{0}: 2^{\prime}\right)=\{1\}$. Thus, if Z_{0} is the central involution of \mathfrak{R}^{0}, then $\boldsymbol{C}_{\mathrm{x}_{0}}\left(Z_{0}\right)$ is core free, that is, if $\varepsilon \equiv q(\bmod 4)$, then $(q-\varepsilon)$ is a power of 2 . Since $\left|\mathfrak{I}^{0}\right|=8$, we get $q-\varepsilon=8$, whence $q=7$ or 9 . If $q=7$, we get $\mathscr{S} \mathscr{C} \mathcal{N}_{3}\left(\mathfrak{T}_{0}\right)=\varnothing$. So $q=9$, and the only possibility is that $\Re_{1} \cong \Sigma_{6}$. In this case, we see that $\mathfrak{G} \cong Z_{2} \times \Sigma_{4}$. Thus, \mathfrak{I}_{0} has precisely 2 elementary subgroups of order 8 , one of which is an element of $\mathscr{S} \mathscr{C} \mathcal{N}(\mathfrak{Z})$. Hence, \mathfrak{I} normalizes both of these elementary subgroups, and so \mathfrak{Z} normalizes $\boldsymbol{O}_{2}(\mathfrak{S})$. This is false, since $\mathfrak{S}=\boldsymbol{N}\left(\boldsymbol{O}_{2}(\mathbb{S})\right)$, and $\mathfrak{I} \nsubseteq \mathbb{S}$. The proof is complete.

Lemma 16.6. If \mathfrak{F} is a non cyclic normal elementary abelian 2 -subgroup of \mathfrak{M}, then $\boldsymbol{C}\left(\mathfrak{F}_{0}\right) \cong \mathfrak{M}$ for every hyperplane \mathfrak{F}_{0} of \mathfrak{F}.

Proof. Since \mathfrak{F} is non cyclic and $Z(\mathfrak{Z})$ is cyclic, \mathfrak{F} contains an element \mathfrak{U} of $\mathscr{U}(\mathfrak{Z})$. Since $\mathfrak{F}_{0} \cap \mathfrak{U} \neq 1$, this lemma is a consequence of Lemma 16.5.

By Theorems 13.5, 13.6, 13.7, \mathfrak{M} contains a non cyclic normal elementary abelian 2 -subgroup, so we can choose \mathfrak{F} such that
(a) $\mathfrak{z} \triangleleft \mathfrak{M}$.
(b) \mathfrak{F} is an elementary abelian 2 -group.
(c) $\mathfrak{F} / \mathcal{B}$ is a chief factor of \mathfrak{M}.

Lemma 16.7. Suppose T is an involution of \mathfrak{M}. Then one of the following holds:
(a) $[\overparen{F}, T] \cong 3$.
(b) $\mathfrak{F} / 3$ is a free $F_{2}\langle T\rangle$-module.

Proof. Suppose $[\mathfrak{F}, T] \not \equiv 3 . \quad$ Set $\overline{\mathfrak{F}}=\mathfrak{F} / 3$, and let $\mathfrak{C}=\boldsymbol{C}_{\mathrm{m}}(\overline{\mathfrak{z}})$, $\bar{M}=\mathfrak{M} / \mathbb{C}, \bar{T}=\mathbb{C} T$. Thus $\overline{\bar{T}} \neq 1$, and $\boldsymbol{O}_{2}(\mathfrak{M})=1$. Let $\tilde{\mathscr{F}}=\boldsymbol{F}(\bar{M})$. Thus, $\tilde{\mathfrak{F}}$ is a cyclic group of odd order and $\boldsymbol{C}_{\overline{\mathfrak{M}}}(\tilde{\mathfrak{F}})=\tilde{\mathfrak{F}}$. Hence, \bar{T}
inverts a subgroup \mathfrak{B} of $\tilde{\mathscr{F}}$ of prime order. Since \mathfrak{F} char $\tilde{\mathscr{F}}$, we have $\mathfrak{B} \triangleleft \overline{\mathfrak{M}}$, and since $\overline{\mathfrak{M}}$ acts faithfully and irreducibly on $\overline{\mathfrak{F}}$, we have $\boldsymbol{C}_{\overline{\mathfrak{y}}}(\mathfrak{P})=1$. The lemma follows.

Lemma 16.8. Suppose $\mathfrak{X}=\langle X\rangle \times\langle Y\rangle$ is a four-group contained in \mathfrak{F} and $\mathfrak{3} \nsubseteq \mathfrak{X}$. Suppose \mathfrak{S} is a S_{2}-subgroup of $C_{\mathfrak{m}}(X)$. Then there is S in \mathfrak{S} such that $[Y, S]$ generates 3 .

Proof. Let $\mathbb{C}=\boldsymbol{C}(\mathfrak{F}), \mathfrak{D} / \mathbb{C}=\boldsymbol{O}_{(}(\mathfrak{M} / \mathscr{C})$. Since \mathfrak{F} is not 2-reducible in \mathfrak{M}, we get that $C_{\mathfrak{F}}(\mathfrak{D})=3,[\mathfrak{F}, \mathfrak{D}]=3$, and so $\mathfrak{D} / \mathbb{C}$ is isomorphic to the stability group of the chain $\mathfrak{F} \supset 3 \supset 1$. Let \mathfrak{S}_{1} be a S_{2}-subgroup of $C_{\mathbb{®}}(X)$ and let \mathscr{S}_{2} be a S_{2}-subgroup of $C_{\mathbb{R}}(X)$ which contains \mathscr{S}_{1}. Since $[\mathfrak{D}, X]=3, \mathfrak{S}_{1}$ is of index 2 in a S_{2}-subgroup of \mathfrak{D}. Also $\mathfrak{S}_{2}^{M}=\mathfrak{S}$ for some $M \in \boldsymbol{C}_{\mathfrak{P}}(X)$, and so \mathfrak{S} contains \mathfrak{C}_{1}^{M}. Since $\mathfrak{D} \triangleleft \mathfrak{M}$, \mathbb{S}_{1}^{M} is of index 2 in a S_{2}-subgroup of \mathfrak{D}, and so $\langle X, 3\rangle=C_{\mathfrak{\Sigma}}\left(\mathcal{S}_{1}^{M}\right)$. So we can choose S in $\mathfrak{S}_{1}^{\mu}-\boldsymbol{C}(Y)$, whence $[Y, S]$ generates 3 , as required.

Lemma 16.9. If $|\mathfrak{F}| \leqq 2^{4}$, then $C(F) \cong \mathfrak{M}$ for all $F \in \mathfrak{F}^{*}$.
Proof. Since $|\mathfrak{F}| \leqq 2^{4}$ and $\mathfrak{F} / 3$ is a chief factor of M, while $F \sim F Z$ for all F in $\mathfrak{F}-3$ (where $3=\langle Z\rangle$), it follows that \mathfrak{M} is transitive on $\mathfrak{F}-3$, so this lemma is a consequence of Lemma 16.5.

Lemma 16.10. Suppose \mathfrak{F} is a hyperplane of \mathfrak{F} and T is an involution of \mathfrak{M} with $\boldsymbol{C}_{\mathfrak{y}}(T)=\mathfrak{C}$. Then one of the following holds:
(a) $[\mathfrak{F}, T]=3$.
(b) $|\mathfrak{F}|=2^{3}$.

Proof. This lemma is a consequence of Lemma 16.7.
With these results at our disposal, we turn to the final configuration of this section. By Lemma 16.1, $\mathfrak{F} \notin \mathscr{M}^{*}$. Let

$$
\mathscr{I}=\left\{\mathscr{S} \mid \mathfrak{F} \cong \subseteq \subseteq \subseteq M, S \notin \mathscr{M}^{*}, \mathfrak{S} \text { is a } 2 \text {-group }\right\}
$$

Choose \mathfrak{I}_{0} in \mathscr{T} with $\left|\mathfrak{I}_{0}\right|$ maximal. Since $\mathfrak{F} \triangleleft \mathfrak{M}$, we assume without loss of generality that $\mathfrak{X}_{0} \cong \mathfrak{I}$. Thus, if \mathfrak{I}_{1} is any 2 -subgroup of \mathbb{C} which contains \mathfrak{I}_{0} properly, then $\mathfrak{I}_{1} \subseteq \mathfrak{M}$, and $\mathfrak{X}_{1} \in \mathscr{M}^{*}$. Let

$$
\mathscr{S}=\left\{\mathfrak{S} \mid \mathfrak{I}_{0} \subseteq \mathfrak{S}, \mathfrak{S} \subseteq \mathfrak{G}, \mathfrak{S} \nsubseteq \mathfrak{M}, \mathfrak{S} \text { solvable }\right\}
$$

and choose \mathfrak{S} in \mathscr{S} of minimal order. Thus $\mathfrak{S}=\mathfrak{X}_{0} \mathfrak{F}$ where \mathfrak{B} is a p-group for some odd prime p. Since $C\left(\xi_{0}\right) \subseteq \mathfrak{M}$ for all hyperplanes \mathfrak{F}_{0} of \mathfrak{F}, it follows that $\boldsymbol{O}(\subseteq) \subseteq \mathfrak{M}$. Hence, \mathfrak{F} centralizes $\boldsymbol{O}(\mathbb{S})$, and so $O_{2}(\mathcal{S})=\mathfrak{I} \neq 1$. By maximality of \mathfrak{X}_{0}, it follows that \mathfrak{I}_{0} is a S_{2}-subgroup of $\boldsymbol{N}(\mathfrak{F})$, and so $\boldsymbol{O}(\mathscr{S})=1$. Since $e=1, \mathfrak{F}$ is cyclic. By

Lemma 5.53, $p=3$.
Set $\mathfrak{B}=\Omega_{1}\left(\mathbf{R}_{2}(\mathfrak{S})\right)$, so that $\mathfrak{3} \subseteq \mathfrak{B}$. Since $\mathfrak{F} \nsubseteq \mathfrak{M}$, we have $[\mathfrak{B}, \mathfrak{F}]=\mathfrak{B}_{0} \neq 1$. Set $\mathfrak{W}=V\left(\operatorname{ccl}_{\bullet}(\mathfrak{F}) ; \mathfrak{I}_{0}\right)$. Since $N_{\mathfrak{r}}(\mathfrak{B}) \supset \mathfrak{I}_{0}$, we have $\mathfrak{W} \nexists \mathfrak{S}$, and so $\mathfrak{W} \not \equiv \mathfrak{F}$. Choose G in \mathbb{S} such that $\mathfrak{X}=\mathfrak{F}^{G} \cong \mathfrak{I}_{0}, \mathfrak{X} \nsubseteq \mathfrak{S}_{2}$. Let $\mathfrak{X}_{1}=\mathfrak{X} \cap \mathfrak{S}_{\text {, }}$, so that \mathfrak{X}_{1} is a hyperplane of \mathfrak{X}. Choose $F \in \mathfrak{X}-\mathfrak{X}_{1}$. Since F inverts some S_{3}-subgroup of \mathfrak{S}, we assume without loss of generality that F inverts \mathfrak{P}. Now \mathfrak{B}_{0} is a free $F_{2}\langle F\rangle$-module, and $\mathfrak{B}_{0} \subseteq C\left(\mathfrak{X}_{1}\right) \subseteq \mathfrak{M}^{G}$. Also, $\mathfrak{B}_{0} \triangleleft \mathfrak{I}_{0}=\mathfrak{S}\langle F\rangle$, and so $\left[\mathfrak{B}_{0}, F\right] \subseteq Z\left(\mathfrak{I}_{0}\right)$. We argue that $C\left(\left[\mathfrak{B}_{0}, F\right]\right) \subseteq \mathfrak{M}^{G}$. This is clear if $\mathcal{B}^{G} \subseteq\left[\mathfrak{B}_{0}, F\right]$, and if $\mathfrak{Z}^{G} \nsubseteq\left[\mathfrak{B}_{0}, F\right]$, then Lemmas 16.10 and 16.9 imply that $C(V) \subseteq \mathfrak{M}^{\epsilon}$ for all $V \in \mathfrak{X}^{\#}$. So in any case, $C\left(\left[\mathfrak{B}_{0}, F\right]\right) \subseteq \mathfrak{M}^{G}$. In particular, $\mathfrak{Z}_{0} \subseteq \mathfrak{M}^{G}$. By a previous remark, this forces $\mathfrak{M}=\mathfrak{M}^{G}, \mathfrak{X}=\mathfrak{F}$. So $\mathfrak{F} \triangleleft \mathfrak{I}_{0}$. Since F inverts \mathfrak{F} and $\sigma^{1}(\mathfrak{P}) \subseteq \mathfrak{M}$, we have $|\mathfrak{F}|=3$.

Let $\mathfrak{K}_{1}=[\mathfrak{F}, \mathfrak{P}], \mathfrak{K}_{2}=\boldsymbol{C}_{\mathfrak{\wp}}(\mathfrak{F})$, and let P be a generator for \mathfrak{F}. Let $\mathfrak{F}=\left[\mathfrak{S}_{1}, F\right]$. Thus, \mathfrak{F} is a normal elementary subgroup of \mathfrak{K}_{1}, and $\left\langle\mathfrak{C}, \mathfrak{C}^{P}\right\rangle=\mathfrak{F}_{1}$, the equality holding since $\mathfrak{S}_{1} / D\left(\mathfrak{F}_{\mathcal{E}_{1}}\right)$ is a free $F_{2}\langle F\rangle$ module.

Since $\mathfrak{K}_{1}=\mathfrak{F}^{P} \cdot \mathfrak{F}$, we have $\operatorname{cl}\left(\mathfrak{N}_{1}\right) \leqq 2, \mathfrak{S}_{1}^{\prime} \subseteq \mathfrak{G} \cap \mathfrak{F}^{P}$. Since F centralizes $\mathfrak{K}_{1}^{\prime}$, so does \mathfrak{F}, and so $3 \nsubseteq \mathfrak{S}_{1}^{\prime}$. We argue that

$$
\left|\mathfrak{S}_{1}^{\prime}\right| \leqq 2 .
$$

In any case $\mathfrak{S c}_{1}^{\prime} \triangleleft \mathfrak{S}$, so if $\mathfrak{S}_{1}^{\prime} \neq 1$, we can choose $X \in \mathfrak{S}_{1}^{\prime} \cap Z(\mathbb{S})^{*}$. Suppose $\left|\mathfrak{F}_{1}^{\prime}\right| \geqq 4$, and $\langle X, Y\rangle$ is a four-group contained in $\mathfrak{S}_{1}^{\prime}$. By maximality of \mathfrak{I}_{0}, it follows that \mathfrak{I}_{0} is a S_{2}-subgroup of $C(X)$. By Lemma 16.8, [Y, S] is a generator of 3 for some $S \in \mathfrak{I}_{0}$. This is false, since $3 \nsubseteq \mathfrak{S}_{1}^{\prime}$, while $\mathfrak{S}_{1}^{\prime} \triangleleft \subseteq$. So $\left|\mathscr{S}_{1}^{\prime}\right| \leqq 2$.

Case 1. \mathfrak{F}_{1} is a four-group.
Here we get $\mathfrak{S}_{c}=\mathfrak{S}_{1} \times \mathfrak{S}_{2}$. Choose $T \in N_{\mathfrak{\Sigma}}\left(\mathfrak{I}_{0}\right)-\mathfrak{I}_{0}$ with $T^{2} \in \mathfrak{I}_{0}$. Then $\mathfrak{S}_{2} \cap \mathfrak{S}_{2}^{T}=1$, since $\left\langle\mathfrak{P}, \mathfrak{I}_{0}, T\right\rangle \subseteq N\left(\mathfrak{K}_{2} \cap \mathfrak{S}_{2}^{T}\right)$, and $\left\langle\mathfrak{I}_{0}, T\right\rangle \in \mathscr{M}^{*}$. Since $\mathfrak{I}_{0} / \mathscr{S}_{2}$ is a dihedral group of order 8 , we conclude that \mathscr{S}_{2} is isomorphic to a subgroup of a dihedral group of order 8. First, suppose that \mathfrak{K}_{2} is elementary abelian. Since $\mathfrak{S} \neq J\left(\mathfrak{I}_{0}\right)$, we conclude that F centralizes \mathfrak{S}_{2}. Thus, $\boldsymbol{C}_{\mathfrak{x}_{0}}(\mathfrak{F})$ and \mathscr{S}^{2} are the only elementary subgroups of \mathfrak{I}_{0} of index 2. Since T normalizes $C_{\mathfrak{x}_{0}}(\mathfrak{F})$, we get $T \in N\left(\mathfrak{S}_{2}\right)$, which is false. Next, suppose \mathfrak{S}_{2} is cyclic of order 4. If $\mathfrak{S}_{2} \subseteq C(\mathfrak{F})$, then $\mathfrak{I}_{0}=\mathfrak{S}_{2} \times$ $\left\langle\mathfrak{S}_{1}, F\right\rangle$, so that $\boldsymbol{D}\left(\mathfrak{S}_{2}\right)$ char \mathfrak{I}_{0}. This is false, since $\mathfrak{S}_{2} \cap \mathfrak{S}_{2}^{T}=1$. If $\left[\mathfrak{S}_{2}, F\right] \neq 1$, we get that $D\left(\mathfrak{S}_{2}\right) \subseteq \mathfrak{F}$. In this case, since $|\mathfrak{F}|=2^{3}$, Lemma 16.9 implies that $\boldsymbol{C}\left(\boldsymbol{D}\left(\mathfrak{S}_{2}\right)\right) \subseteq \mathfrak{M}$, against $\mathfrak{F} \subseteq C\left(D\left(\mathfrak{S}_{2}\right)\right)$. So \mathfrak{K}_{2} is a dihedral of order 8. Hence, $|\mathfrak{F}| \leqq 2^{4}$, and so by Lemma 16.9, $\mathfrak{F} \cap \mathfrak{S}_{2}=1$. In particular, \mathfrak{F} centralizes \mathfrak{S}_{2}, and $\mathfrak{I}_{0}=\mathfrak{S}_{2} \times\left\langle\mathfrak{S}_{1}, F\right\rangle \cong$ $D_{8} \times D_{8} . \quad$ Since $\boldsymbol{C}_{\mathfrak{x}_{0}}(F)=\mathfrak{S}_{2} \times\left\langle\left[\mathfrak{F}_{1}, F\right]\right\rangle \times\langle F\rangle$, we get that T normal-
izes $\boldsymbol{C}_{\mathfrak{x}_{0}}(F)^{\prime}=\mathfrak{S}_{2}^{\prime}$. This contradiction shows that this case does not arise.

Case 2. $\mathfrak{S}_{1}^{\prime}=1$.
Since \mathfrak{F} acts faithfully on \mathfrak{F}, and since Case 1 does not hold, we have $\left|\mathfrak{F}_{1}\right|=2^{2 w}$, where $w \geqq 2$. Also $C_{\mathfrak{F}_{1}}(F)=\left[\mathfrak{S}_{1}, F\right]=\mathfrak{K}_{1} \cap \mathfrak{F}$ is of order 2^{w}. A standard argument now shows that

$$
\mathfrak{F}_{1} \subseteq C\left(\mathfrak{S}_{1}\right), \mathfrak{F}_{1}=\left(\mathfrak{N}_{2} \cap \mathfrak{F}_{1}\right) \times\left(\mathfrak{S}_{1} \cap \mathfrak{F}_{1}\right) .
$$

Since $w \geqq 2$, there is H in \mathfrak{S}_{1} such that $[F, H] \notin 3$. Since $\mathfrak{F}_{1} \subseteq C(H)$, Lemma 16.10 implies that $|\mathfrak{F}|=2^{3}$. Hence, $w=2$. It follows readily that $J\left(\mathfrak{V}_{0}\right) \subseteq \mathfrak{S}_{\text {, }}$, and so $J\left(\mathfrak{I}_{0}\right) \triangleleft \mathfrak{S}$, against $N\left(J\left(\mathfrak{V}_{0}\right)\right) \subseteq \mathfrak{M}$.

Case 3. $\mathfrak{S}_{1}^{\prime} \neq 1$.
Let $\mathfrak{Y}=\boldsymbol{Z}\left(\mathfrak{S}_{1}\right)$. Since \mathfrak{P} has no fixed points on $\mathfrak{S}_{1} / \mathfrak{S}_{1}^{\prime}$, it follows that $\mathfrak{Y}=\mathfrak{Y}_{1} \times \mathfrak{S}_{1}^{\prime}$, where $\mathfrak{Y}_{1}=[\mathfrak{B}, \mathfrak{F}]$. Hence, $\mathfrak{K}_{1}=\mathfrak{Y}_{1} \times \mathfrak{B}$, where \mathfrak{F} is extra special. Since \mathfrak{Z} centralizes \mathfrak{K}_{1}, we conclude that $Z \notin \mathfrak{B}$.

Case 3a. \mathfrak{S}_{1} is extra special.
Since $\mathfrak{N}_{1} / \boldsymbol{D}\left(\mathfrak{S}_{1}\right)$ is a free $F_{2}\langle F\rangle$-module, it follows that $\mathfrak{N}_{1} \cap \mathfrak{F}$ contains a four-group \mathfrak{N} with $\mathfrak{N}_{1}^{\prime}=\langle X\rangle \subset \mathfrak{N}$. Since \mathfrak{I}_{0} is a S_{2}-subgroup of $C(X)$, Lemma 16.8 implies that $\mathfrak{Z} \subseteq \mathfrak{S}_{1}=\mathfrak{B}$. This is false, and so this case does not occur.

Case 3b. \mathfrak{K}_{1} is not extra special.
Here we can find a subgroup \mathfrak{Y}^{1} of \mathfrak{V} of order 2^{3} such that $\mathscr{S}_{1}^{\prime} \subset \mathfrak{Y}^{1} \triangleleft \mathfrak{S}$. Since $\mathfrak{K}=\mathscr{S}_{1} \mathscr{F}_{2}$, we get $\mathfrak{Y}^{1} \cong Z\left(\mathfrak{S}_{2}\right)$, and so $\left[\mathfrak{Y}^{1}, \mathfrak{F}\right]=$ $\mathfrak{Y}^{*} \triangleleft \mathfrak{S}, \mathfrak{Y}^{*}$ a four-group. Choose $Y^{*} \in \mathfrak{Y} *-\boldsymbol{C}_{\mathfrak{Y}^{*}}(F)$. Thus, $\boldsymbol{C}_{\tilde{y}}\left(Y^{*}\right)=\mathfrak{F}_{1}$ is a hyperplane of F. If $\left[Y^{*}, F\right]$ is not a generator for B, then Lemma 16.10 implies that $|\mathfrak{F}|=2^{3}$. Since $\left\langle\left[Y^{*}, F\right]\right\rangle \times \mathfrak{S}_{1}^{\prime} \cong \mathfrak{F}_{1}$, we get that $\mathfrak{F}_{1}=\left\langle\left[Y^{*}, F\right]\right\rangle \times \mathfrak{S}_{1}^{\prime}$. This is false, since $\mathfrak{S}_{1} / \mathscr{S}_{1}^{\prime}$ is a free $F_{2}\langle F\rangle$ module, and since $\left[\mathscr{E}_{1}, F\right] \subseteq \mathfrak{F}_{1}$. So $\left[Y^{*}, F\right]$ is a generator for 3.

Let $\mathfrak{F}_{2}=\mathfrak{F} \cap \mathscr{S}_{1}$, and suppose that $|\mathfrak{F}|=2^{2 n+1}$. Then $n \geqq 2$, and so $|\mathfrak{F}|>2^{3}$. Furthermore, $\mathfrak{S}_{1} \cap \mathfrak{S}_{2}=\mathfrak{S}_{1}^{\prime}$ and if $H \in \mathfrak{S}_{1}$ and $[H, F] \subseteq \mathfrak{S}_{1}^{\prime}$, then $[H, F]=1$. This is so since $\left[\mathfrak{S}_{1}, F\right]$ covers $C_{\mathfrak{F}_{1} / \mathfrak{F}_{1}^{\prime}}(F)$, and $\left[\mathfrak{S}_{1}, F\right] \subseteq \mathfrak{F}$, so that $\left[\mathscr{S}_{1}, F, F\right]=1$. Now suppose $F_{1} \in \mathfrak{F}_{1}$. Then $F_{1}=U V, U \in \mathfrak{S}_{2}$, $V \in \mathfrak{K}_{1}$. Since F normalizes both \mathfrak{S}_{1} and \mathfrak{S}_{2}, we get $U V=U^{F} \cdot V^{F}$, $U^{-F} \cdot U=V^{F} \cdot V^{-1} \in \mathfrak{S}_{1} \cap \mathscr{S}_{2}$. Thus, $\quad U^{-F} \cdot U=V^{F} \cdot V^{-1}=1$, and so $V \in C_{\mathfrak{F}_{1}}(F)=\mathfrak{F} \cap \mathfrak{K}_{1}$, whence $U \in \mathfrak{F}$. So once again we have $\mathfrak{F}_{1}=$ $\left(\mathfrak{F} \cap \mathfrak{S}_{1}\right) \times\left(\mathfrak{F} \cap \mathfrak{S}_{2}\right) . \quad$ since $\mathfrak{F} \cap \mathfrak{S}_{2}$ centralizes \mathfrak{F} and $\mathfrak{F} \cap \mathfrak{S}_{1}$, we con-
clude that $\mathfrak{F} \cap \mathfrak{K}_{2}$ centralizes \mathscr{K}_{1}.
Let $|\mathfrak{Y}|=2^{1+2 r}$. If $r \geqq 2$, there is $W \in \mathfrak{V}$ such that $[W, F] \notin \mathcal{B}$. By Lemma 16.10, we get $|\mathfrak{F}|=2^{3}$. This is false, as we have seen. So $r=1$.

Choose $H \in\left(\mathfrak{F} \cap \mathfrak{F}_{\mathfrak{1}}\right)^{P}-\mathfrak{F}_{1}^{\prime}$, where P is a generator for \mathfrak{F}. Then $\left[\mathfrak{F}_{1}, H\right] \subseteq \mathfrak{g}_{1}^{\prime}$, and $\left[\mathfrak{F}_{1} \cap \mathfrak{F}_{1}, H\right]=\mathfrak{W}_{1}^{\prime}$. Since $\mathfrak{F}_{1}^{\prime} \neq \mathfrak{3}$, we conclude that $H \notin \boldsymbol{C}_{\mathfrak{m}}(\mathfrak{F} / \mathcal{B})$. By Lemma $16.7, \mathfrak{F} / 3$ is a free $F_{2}\langle H\rangle$-module. Since \mathfrak{F}_{1} is a hyperplane of \mathfrak{F} and $\boldsymbol{C}_{\tilde{\gamma}_{1}}(H)$ is a hyperplane of \mathscr{F}_{1}, we have $\left|\mathfrak{F}: C_{\mathfrak{F}}(H)\right|=2^{2}$. Hence, $|\mathfrak{F}|=2^{5}$. Since $\mathfrak{F} / 3$ is a chief factor of \mathfrak{M}, we get that $5 \| \boldsymbol{A}_{\mathfrak{m}}(\mathfrak{Y} / 3) \mid$. If 3.5 divides $\boldsymbol{A}_{\mathfrak{m}}(\mathfrak{F} / \mathcal{3})$, then \mathfrak{M} is transitive on $\mathfrak{F}=\mathfrak{Z}$, and so $C(X) \subseteq \mathfrak{M}$ for all $X \in \mathfrak{F}^{\sharp}$. This is false, since $\boldsymbol{C}\left(\mathfrak{S}_{\mathfrak{F}}^{\prime}\right) \nsubseteq \mathfrak{M}$. So a $S_{2^{2}}$-subgroup of $\boldsymbol{A}_{\mathfrak{m}}(\mathcal{F} / 3)$ is of order 5, and $\boldsymbol{A}_{\mathfrak{m}}(\mathcal{F} / 3)$ is isomorphic to a subgroup of a Frobenius group of order 20. In particular, $\boldsymbol{A}_{\mathbb{m}}(\mathfrak{F} / 3)$ contains no four-group.

On the other hand, $n \geqq 2$, and $|\mathfrak{B} \cap \mathfrak{F}|=2^{3}$. Let $\tilde{\mathscr{F}}$ be a complement to $\mathfrak{g}_{1}^{\prime}$ in $\mathfrak{B} \cap \mathfrak{F}$, so that $\tilde{\mathfrak{F}}^{p}$ is a four-group normalizing \mathfrak{F} and acting faithfully on $\mathfrak{F} / 3$. This contradiction shows that

$$
\mathfrak{I} \notin \mathscr{N}^{*},
$$

the aim of this section.
17. Some properties of $\mathscr{M}(\mathfrak{T})^{4}$. From now on, \mathfrak{Z} denotes a S_{2}-subgroup of \mathfrak{G}. For each solvable subgroup \mathfrak{S} of $\mathbb{C}, \mathscr{M}(\mathbb{S})$ is the set of elements of $\mathscr{M} \mathscr{S}(\mathbb{E})$ which contain \mathfrak{G}. Thus, $|\mathscr{M}(\mathfrak{Z})| \geqq 2$.

Set

$$
\mathfrak{B}_{0}=Z(\mathfrak{Z}), \quad 3_{1}=Z(J(\mathfrak{Z})), \quad 3_{2}=Z\left(J_{1}(\mathfrak{Z})\right) .
$$

If \mathbb{R} is a solvable subgroup of \mathfrak{B}, denote by $f(\mathbb{Z})$ the number of integers i such that

$$
0 \leqq i \leqq 2, \quad \mathcal{B}_{i} \triangleleft \Omega
$$

As it turns out, $f(\mathcal{Z})$ is an important invariant.
Hypothesis 17.1. There are $\mathfrak{M}, \mathfrak{R} \in \mathscr{M}(\mathfrak{I}), \mathfrak{M} \neq \mathfrak{R}$ such that $\mathfrak{M} \cap \mathfrak{n} \supset \mathfrak{Z}$.

Lemmas 17.1 through 17.11 are proved under Hypothesis 17.1.
Lemma 17.1. Let p be the largest prime in

$$
\mathrm{X}_{\mathfrak{x} \in(z)} \pi(\mathfrak{X}) .
$$

Then $p \geqq 7$.

[^1]Proof. Suppose false. Let \mathfrak{D} be a S_{2}-subgroup of $\mathfrak{M} \cap \mathfrak{N}$. Then $\mathfrak{D} \neq 1$ since $\mathfrak{M} \cap \mathfrak{N} \supset \mathfrak{I}$. Let $\mathfrak{D}_{1}, \mathfrak{D}_{2}$ be $S_{2^{\prime}}$-subgroups of $\mathfrak{M}, \mathfrak{N}$ respectively, such that $\mathfrak{D} \subseteq \mathfrak{D}_{1} \cap \mathfrak{D}_{2}$.

Since $p \leqq 5$, and $\mathfrak{D}_{1}, \mathfrak{D}_{2}$ are Z-groups, they are both cyclic and so $\mathfrak{F}=\left\langle\mathfrak{D}_{1}, \mathfrak{D}_{2}\right\rangle \subseteq C(\mathfrak{D})$, so that \mathfrak{F} is solvable. Since $\mathfrak{M}=\mathfrak{D}_{1}$, and $\mathfrak{N}=\mathfrak{T} \mathfrak{D}_{2}$, it follows that $\mathfrak{I} \mathfrak{F}=\mathfrak{R}$ is a group. Now

$$
\bigcap_{L \in \mathfrak{Z}} \mathfrak{M}^{L}=\bigcap_{E \in \mathbb{E}} \mathfrak{M}^{E} \supseteq \mathfrak{D}
$$

and so \mathbb{R} has a non identity solvable normal subgroup. As \mathbb{F}_{5} is an N-group, \mathbb{B} itself is solvable, and so $\mathfrak{M}=\mathfrak{R}, \mathfrak{R}=\mathfrak{Z}$. The proof is complete.

Lemma 17.2. $\quad \mathscr{(I)}(\mathfrak{T})$ has a unique element of order divisible by p (where p is as in Lemma 17.1).

Proof. Choose $\mathfrak{X} \in \mathscr{M}(\mathfrak{T})$ with $p \| \mathfrak{X} \mid$, and let \mathfrak{X}_{p} be a S_{p}-subgroup of \mathfrak{X}. Let \mathfrak{S} be a S_{2}-subgroup of \mathfrak{X} containing \mathfrak{X}_{p}, so that \mathfrak{S} is a Z-group and $\mathfrak{X}_{p} \triangleleft \mathfrak{S}$. Let $\mathbb{R}=\mathfrak{I} \cdot \mathfrak{X}_{p}$. By Lemma $5.53, f(\mathbb{R}) \geqq 2$.

Suppose $\mathfrak{X}^{*} \in \mathscr{M}(\mathfrak{I})$ and $p \| \mathfrak{X}^{*} \mid$. Let \mathfrak{X}_{p}^{*} be a S_{p}-subgroup of \mathfrak{X}^{*}, let \mathfrak{S}^{*} be a S_{2}-subgroup of \mathfrak{X}^{*} which contains \mathfrak{X}_{p}^{*}, and set $\mathbb{R}^{*}=\mathfrak{N} \cdot \mathfrak{X}_{p}^{*}$. Since $f\left(\Omega^{*}\right) \geqq 2$, there is $i \in\{0,1,2\}$ such that $\mathcal{B}_{i} \triangleleft\left\langle\Omega, \Omega^{*}\right\rangle$. Set $\Re=\left\langle\mathfrak{R}, \mathbb{R}^{*}\right\rangle$. Since \mathfrak{R} is solvable and p is the largest prime in $\pi(\Re)$, while a S_{2}-subgroup of Ω is a Z-group, it follows that $\mathfrak{I} \mathfrak{P}=\mathfrak{I} \cdot \mathfrak{F}^{*}$, where $\mathfrak{P}=\Omega_{1}\left(\mathfrak{X}_{p}\right)$, $\mathfrak{P}^{*}=\Omega_{1}\left(\mathfrak{X}_{p}^{*}\right)$. Thus, there is T in \mathfrak{I} such that $\mathfrak{P}^{T}=\mathfrak{P}^{*}$. Hence, $\mathfrak{F}=\left\langle\mathfrak{S}^{T}, \mathfrak{S}^{*}\right\rangle \subseteq N\left(\mathfrak{S}^{*}\right)$, and so \mathfrak{F} is solvable. Since $\mathfrak{X}=\mathfrak{T} \mathfrak{S}$, so also $\mathfrak{X}=\mathfrak{I} \cdot \mathfrak{S}^{T}$, and so $\mathfrak{R}=\mathfrak{I} \mathfrak{F}$ is a solvable group. Hence, $\mathfrak{X}=\mathfrak{R}$, $\mathfrak{X}^{*}=\mathfrak{R}$. The proof is complete.

Next, let

$$
\mathscr{P}=\left\{\left(\mathfrak{S}_{0}, \mathfrak{S}_{1}\right) \mid \mathfrak{S}_{i} \in \mathscr{M}(\mathfrak{I}), \mathfrak{S}_{0} \neq \mathfrak{S}_{1}, \mathfrak{S}_{0} \cap \mathfrak{S}_{1} \supset \mathfrak{I}\right\}
$$

We may assume that notation is chosen so that

$$
\max _{q \in \pi(\mu \cap \cap)}\{q\} \geqq \max _{q \in \pi\left(\widetilde{刃}_{0} \cap \Im_{1}\right)}\{q\}
$$

for all $\left(\mathscr{S}_{0}, \mathfrak{S}_{1}\right) \in \mathscr{P}$.
Let \mathfrak{D} be a $S_{2^{2}}$-subgroup of $\mathfrak{M} \cap \mathfrak{R}$ and let $\mathfrak{F}, \mathfrak{F}$ be $S_{2^{2}}$-subgroups of $\mathfrak{M}, \mathfrak{R}$ respectively with $\mathfrak{D} \subseteq \mathfrak{F} \cap \mathfrak{F}$.

Lemma 17.3. If $1 \subset \mathfrak{D}_{1} \triangleleft \mathfrak{D}$, then either $\mathfrak{D}_{1} \nexists \mathfrak{F}$ or $\mathfrak{D}_{1} \nexists \mathfrak{F}$.
Proof. If $\mathfrak{D}_{1} \triangleleft\langle\mathfrak{F}, \mathfrak{F}\rangle$, then $\langle\mathfrak{F}, \mathfrak{F}\rangle$ is solvable, and $\mathfrak{R}=\mathfrak{I}\langle\mathfrak{F}, \mathfrak{F}\rangle$ is also solvable, whence $\mathfrak{M}=\mathfrak{R}, \mathfrak{R}=\mathfrak{R}$. The proof is complete.

Let \mathfrak{X} be the unique element of $\mathscr{M}(\mathfrak{I})$ such that $p \| \mathfrak{X} \mid$.

Lemma 17.4. Either $\mathfrak{F}^{\prime} \neq 1$ or $\mathfrak{F}^{\prime} \neq 1$.
Proof. This lemma is an immediate consequence of Lemma 17.3.
Choose notation so that $\mathfrak{F}^{\prime} \neq 1$.
Lemma 17.5. $\mathfrak{M}=\mathfrak{X}$.
Proof. Let r, s be primes such that a $S_{r, s}$-subgroup of \wp is non abelian, with $r>s$. Let \Re be a $S_{\{2, r, s\}}$-subgroup of $\mathfrak{M}, \Re \supset \mathfrak{I}$, and choose a Sylow system \mathfrak{I}, K_{r}, \Re_{s} for $\Re_{\text {. Then }} \Re_{r}=\left(\Re_{r} \Re_{s}\right)^{\prime}$, since \Re_{r} and \Re_{s} are cyclic. Also, $r \equiv 1(\bmod s)$, and so $r \geqq 7$. If $\mathfrak{U} / \mathfrak{B}$ is a chief factor of \Re of order r, then Ω^{\prime} centralizes $\mathfrak{U} / \mathfrak{B}$. Since \Re_{s} does not centralize \Re_{r}, it follows that $\Re_{s} \nsubseteq \Omega^{\prime}$, and so $\mathfrak{I}_{r} \triangleleft \mathfrak{R}$, so that $\mathfrak{I} \triangleleft \mathfrak{I}_{s}$. Hence, $f\left(\mathfrak{T}_{s}\right)=3$ and so $f\left(\mathfrak{T}_{\mathfrak{R}} \Re_{s}\right) \geqq 2$. By Lemma 17.2, we conclude that $\mathscr{R} \subseteq \mathfrak{X}$.

Let \mathfrak{S} be a S_{2}-subgroup of $\mathfrak{X}, \mathfrak{S} \supseteq \Re_{r} \Re_{s}$. Then $\Re_{r} \triangleleft \mathfrak{S}$, and so $\langle\mathfrak{S}, \mathfrak{F}\rangle \subseteq N\left(\Re_{r}\right)$, whence $\mathfrak{R}=\mathfrak{T}\langle\mathfrak{S}, \mathfrak{F}\rangle$ is solvable, and so $\mathbb{R}=\mathfrak{X}, \mathbb{R}=\mathfrak{M}$. The proof is complete.

Note that we now know that $\mathfrak{F}^{\prime}=1$, since $\mathfrak{N} \neq \mathfrak{M}$.
Lemma 17.6. ©f is a Frobenius group with complement \mathfrak{D} and kernel (5'.

Proof. Suppose $1 \subset \mathfrak{D}_{0} \subseteq \mathfrak{D}$. Since \mathfrak{D} is cyclic and is permutable with \mathfrak{I}, so is \mathfrak{D}_{0}. Hence, $\boldsymbol{N}_{\mathscr{G}}\left(\mathfrak{D}_{0}\right)$ is also permutable with \mathfrak{T}, and so $\mathfrak{T}\left\langle N_{\mathbb{E}}\left(\mathfrak{D}_{0}\right), \mathfrak{F}\right\rangle$ is a solvable group, whence $\mathfrak{I}\left\langle\boldsymbol{N}_{\mathbb{E}}\left(\mathfrak{D}_{0}\right), \mathfrak{F}\right\rangle=\mathfrak{R}$. Thus, $\mathfrak{M} \cap \mathfrak{N}=\mathfrak{I} \mathfrak{D} \supseteq \mathfrak{I} \cdot N_{\mathbb{G}}\left(\mathfrak{D}_{0}\right) \supseteq \mathfrak{M} \cap \mathfrak{R}$, and so $\mathfrak{D}=\boldsymbol{N}_{\mathscr{G}}\left(\mathfrak{D}_{0}\right)$. The proof is complete.

From Lemma 17.6, we conclude the $\mathfrak{D} \cap \mathfrak{M}^{\prime}=1$, and so \mathfrak{D} has a normal complement in \mathfrak{M}, namely, $\mathfrak{I} \cdot \mathfrak{s}^{\prime}$. Hence, $\mathfrak{I} \triangleleft \mathfrak{T} \mathfrak{D}$.

Lemma 17.7. If $1 \subset \mathfrak{D}_{0} \subseteq \mathfrak{D}$, then $\boldsymbol{C}_{\mathfrak{x}}\left(\mathfrak{D}_{0}\right)$ contains no four-group.
Proof. Suppose false. We may assume that \mathfrak{D}_{0} is of prime order r, and that \mathfrak{B} is a four-group in $\boldsymbol{C}_{\mathfrak{\Sigma}}\left(\mathfrak{D}_{0}\right)$. Thus, S_{r}-subgroups of (G5 are cyclic and $\mathfrak{D}_{0} \subseteq N\left(\mathfrak{D}_{0}\right)^{\prime}$.

Choose $X \in N\left(\mathfrak{D}_{0}\right)$; then $\mathfrak{I}, \mathfrak{T}^{x} \in И^{*}\left(\mathfrak{D}_{0} ; 2\right)$. Since $C_{\mathfrak{x}}\left(\mathfrak{D}_{0}\right) \neq 1$ and $\boldsymbol{C}_{\varkappa^{x}}\left(\mathfrak{D}_{0}\right) \neq 1$, it follows that $\mathfrak{I}=\mathfrak{T}^{X C}$ for some C in $C\left(\mathfrak{D}_{0}\right)$. Hence $N(\mathfrak{T})$ covers $N\left(\mathfrak{D}_{0}\right) / C\left(\mathfrak{D}_{0}\right)$, and in particular, $\mathfrak{D}_{0} \subseteq N(\mathfrak{T})^{\prime}$. Then $N(\mathfrak{T}) / \mathfrak{T}$ is non cyclic. Hence, $N(\mathfrak{T}) \subseteq \mathfrak{M}$, since otherwise $\left(\mathfrak{M}, \mathfrak{M}_{1}\right) \in \mathscr{P}$ for some $\mathfrak{M}_{1} \in \mathscr{I}(\mathfrak{T})$ such that $N(\mathfrak{T}) \subseteq \mathfrak{M}_{1}$. This violates $\mathfrak{F}^{\prime}=1$. \quad So $N(\mathfrak{I}) \subseteq \mathfrak{M}$, whence $\mathfrak{D}_{0} \subseteq N(\mathfrak{T})^{\prime} \subseteq \mathfrak{M}^{\prime}$. This is false, since \mathfrak{D} has a normal comple-
ment in \mathfrak{M}, and $\mathfrak{D}^{\prime}=1$. The proof is complete.
LEMMA 17.8. $|\mathfrak{D}|=r$ is a prime.
Proof. FF is faithfully represented on $\mathfrak{B}=\boldsymbol{O}_{2}(\mathfrak{M}) / \boldsymbol{D}\left(\boldsymbol{O}_{2}(\mathfrak{M})\right)$. Hence, \mathfrak{B} contains a free $F_{2} \mathfrak{D}$-submodule \mathfrak{B}_{0}. If $|\mathfrak{D}|$ is not a prime, then $\left|\boldsymbol{C}_{\mathfrak{F}_{0}}\left(\mathfrak{D}_{0}\right)\right| \geqq 2^{3}$ for each subgroup \mathfrak{D}_{0} of D of prime order. Hence $\boldsymbol{O}_{2}(\mathfrak{M}) \cap \boldsymbol{C}\left(\mathfrak{D}_{0}\right)$ has a section which is not generated by two elements, and so $\boldsymbol{O}_{2}(\mathfrak{M}) \cap \boldsymbol{C}\left(\mathfrak{D}_{0}\right)$ has more than one involution, so contains a fourgroup, against Lemma 17.7. The proof is complete.

Let \mathfrak{X}_{p} be the unique subgroup of \mathfrak{F} of order p and let $\mathbb{Z}=\mathfrak{I} \mathfrak{D} \cdot \mathfrak{X}_{p}$. Thus, \mathbb{Z} is a subgroup of $\mathfrak{M}=\mathfrak{X}$, and $\mathfrak{D} \cdot \mathfrak{X}_{p}$ is a Frobenius group with kernel \mathfrak{X}_{p}.

Lemma 17.9. One of the following holds:
(a) $\mathfrak{I} \triangleleft \mathbb{R}$.
(b) \mathbb{Z} has a unique central involution.

Proof. Let $\mathfrak{S}=\boldsymbol{O}_{2}(\mathbb{Z})$. Suppose (a) does not hold. Then $\mathfrak{S} \subset \mathfrak{I}$. Let $\overline{\mathfrak{R}}=\mathfrak{R} / \mathfrak{S}$. Now $\boldsymbol{O}_{2,2},(\mathfrak{R}) \cap \mathfrak{D} \mathfrak{X}_{p} \neq 1$, and so $\mathfrak{X}_{p} \subseteq \boldsymbol{O}_{2,2^{\prime}}(\mathfrak{R})$. Since $\boldsymbol{O}_{2}(\overline{\mathfrak{R}})=1$, it follows that $\boldsymbol{F}(\overline{\mathfrak{R}})=\mathfrak{S} \cdot \mathfrak{X}_{p} / \mathfrak{N}=\overline{\mathfrak{X}}_{p}$. Thus, $\overline{\mathfrak{R}}$ is a Frobenius group with kernel $\overline{\mathfrak{X}}_{p}$ and complements of order $2^{a} \cdot r$, where $a \geqq 1$. Since $C_{z}(\mathfrak{D})$ contains no four-group, this implies that \mathfrak{X}_{p} centralizes every characteristic abelian subgroup of $\mathfrak{S}_{\varepsilon}$. Let $\mathfrak{S}_{1}=\left[\mathfrak{S}_{\mathcal{L}}, \mathfrak{X}_{p}\right], \mathfrak{B}=\mathfrak{S}_{1} / \boldsymbol{D}\left(\mathfrak{K}_{1}\right)$. Then since $\boldsymbol{C}_{\mathfrak{z}}(\mathfrak{D})$ contains no four-group, and since $\alpha \geqq 1$, it follows that $|\mathfrak{B}|=2^{2 r}$, and $C_{8}(\mathfrak{D})$ is a four-group. Since \mathscr{S}_{1} is special and $\boldsymbol{C}_{\mathfrak{S}_{1}}(\mathfrak{D})$ contains no four-group, it follows that $\boldsymbol{C}_{\mathfrak{S}_{1}}(\mathfrak{D})$ is a quaternion group of order 8. Since \mathfrak{B} is a chief factor of \mathbb{R}, we have $\left[\mathfrak{S}_{\mathcal{C}}, \mathfrak{S}_{1}\right] \subseteq \mathfrak{S}_{1}^{\prime}$, and so $\left[\mathfrak{S}_{2}, \mathfrak{F}_{1}, \mathfrak{F}_{1}\right]=1$. Hence, $\mathfrak{N}_{1}^{\prime} \subseteq Z(\mathfrak{K})$, and so $C_{\mathfrak{F}_{1}}^{\prime}(\mathfrak{D})=\langle Z\rangle$, where Z is a central involution of \mathfrak{B}. Since $\boldsymbol{C}_{\mathfrak{\Sigma}}(\mathfrak{D})$ contains no four-group, Z is unique.

Lemma 17.10. $\mathfrak{I} \triangleleft \mathbb{R}$.

Proof. Suppose false. Now $\mathfrak{R}=\mathfrak{T} \mathfrak{F}, \mathfrak{F}$ cyclic, $\mathfrak{F} \supset \mathfrak{D}$. Let $\mathfrak{Z}=Z(\mathfrak{I})^{\mathfrak{R}}$ be the normal closure of $Z(\mathfrak{I})$ in \mathfrak{N}. Since $Z(\mathfrak{I}) \cong Z\left(O_{2}(\mathfrak{N})\right)$, \mathfrak{A} is abelian. Also $Z \in Z(\mathfrak{Z}) \subseteq \mathfrak{Q}$, where Z is the unique central involution of \mathfrak{R}. Since $p\left|\left|C_{\mathfrak{m}}(Z)\right|\right.$, we have $C(Z) \subseteq \mathfrak{M}$. But $O_{2}(\mathfrak{R}) \cap C(\mathfrak{D})$ contains no four-group and so Z is the only involution in $C_{\mathfrak{r}}(\mathfrak{D})$. Since \mathfrak{F} normalizes \mathfrak{N} and centralizes \mathfrak{D}, we get $\mathfrak{F} \subseteq C(Z) \subseteq \mathfrak{M}, \mathfrak{N} \subseteq \mathfrak{M}$. The proof is complete.

Since $\mathfrak{I} \triangleleft \mathfrak{N}$, we have $f\left(\mathfrak{I X}_{p}\right)=3$. Hence, $N\left(\mathfrak{Z}_{i}\right) \cong \mathfrak{M}, i=0,1,2$, by Lemma 17.2.

Lemma 17.11. $r>3$ and $|\mathfrak{R}: \mathfrak{N} \cap \mathfrak{M}|=3$.

Proof. The assertion $|\mathfrak{R}: \mathfrak{R} \cap \mathfrak{M}|=3$ is a consequence of Lemmas 5.53 and 5.54 , together with $N\left(\mathfrak{B}_{i}\right) \subseteq \mathfrak{M}, i=0,1,2$. If $r=3$, then \mathfrak{F} is a cyclic group of order 3^{2}, and $\mathfrak{D}=\Omega_{1}(\mathfrak{F})$. Since $\mathfrak{I} \triangleleft \mathfrak{I} \mathfrak{D}$, we get $\mathfrak{I} \triangleleft \mathfrak{N}$, so $\mathfrak{N} \subseteq N(\mathfrak{T}) \subseteq \mathfrak{M}$, which is false. The proof is complete.

Since $\mathfrak{N}=\mathfrak{I} \cdot \mathfrak{F}$, and $|\mathfrak{F}: \mathfrak{D}|=3$, we have $\mathfrak{F}=\mathfrak{D} \times \mathfrak{X}$, where $|\mathfrak{A}|=3,|\mathfrak{D}|=r>3$. Let $\mathbb{R}_{1}=\mathfrak{I} \mathfrak{A}, \mathfrak{R}_{2}=\boldsymbol{O}_{2}\left(\mathbb{R}_{1}\right)$. Since $\mathbb{R}_{1} \nsubseteq \mathfrak{M}$, while $N(\mathfrak{T}) \subseteq \mathfrak{M}$, we have $\mathfrak{I} \nrightarrow \mathfrak{R}_{1}$, and so $\Omega_{1} / \mathbb{R}_{2} \cong \Sigma_{3}$.
 does not centralize $Z(\mathfrak{T})$. Hence, $\mathfrak{W}=\left[\Omega_{1}(\mathfrak{B}), \mathfrak{X}\right] \neq 1$, and \mathfrak{W} admits \mathfrak{D}.

Let $d=\max \left\{m(\mathfrak{B}) \mid \mathfrak{B} \subseteq \mathfrak{I}, \mathfrak{B}^{\prime}=1\right\}$. Since $J(\mathfrak{I}) \notin \mathfrak{R}_{1}$, there is $\mathfrak{B} \subseteq \mathfrak{I}, \mathfrak{B}^{\prime}=1$, $m(\mathfrak{B})=d$, such that $\mathfrak{B} \nsubseteq \mathfrak{R}_{2}$. Let $\mathfrak{B}_{2}=\mathfrak{B} \cap \mathfrak{R}_{2}$, so that $\left|\mathfrak{B}: \mathfrak{B}_{2}\right|=2$. Let $\mathfrak{C}=\mathfrak{B} \cap \mathfrak{R}$. Thus, $\mathfrak{B} / \mathfrak{C}$ acts faithfully on $\mathfrak{F} \Re / \mathfrak{R}$, and $\mathfrak{B} / \mathbb{C}$ does not centralize $\mathfrak{N} / \mathfrak{R}$. Since \mathfrak{F} contains a four-group, it follows that $[\mathfrak{F}, \mathfrak{D}]=\mathfrak{W}_{1} \neq 1$, and $\mathfrak{W}_{1} \triangleleft \mathfrak{R}$. Since $m(\mathfrak{B} / \mathfrak{C}) \leqq 2$, and since $m\left(\left\langle\mathfrak{C}, \mathfrak{W}_{1}\right\rangle\right)=m(\mathfrak{C})+m\left(\mathfrak{W}_{1} / \mathfrak{W}_{1} \cap \mathfrak{C}\right)$, it follows that $\mathfrak{W}_{1} \cap \mathfrak{C}$ is of index at most 4 in \mathfrak{W}_{1}. Since \mathfrak{F}_{1} is a Frobenius group with kernel \mathfrak{W}_{1}, it follows that $\left|\mathfrak{W}_{1}\right|=2^{4}, r=5$. But this forces $m(\mathfrak{B} / \mathfrak{C})=2$, and so $\mathfrak{B} / \mathbb{C}$ has an involution which inverts $\mathfrak{\Re} \mathfrak{F} / \Re$. This is false, since the elements of $\operatorname{GL}(4,2)$ of order 15 are not real. So we have shown that $\mathscr{P}=\varnothing$, that is

$$
\begin{equation*}
\mathfrak{M} \cap \mathfrak{R}=\mathfrak{I} \text { if } \mathfrak{M}, \mathfrak{N} \in \mathscr{M}(\mathfrak{I}), \mathfrak{M} \neq \mathfrak{N} \tag{17.1}
\end{equation*}
$$

Hypothesis 17.2. $\mathfrak{I} \subset N(\mathfrak{V})$.
Suppose Hypothesis 17.2 is satisfied. Let $\mathfrak{M}=M(N(\mathfrak{I}))$, and
 $|\mathfrak{R}|=3|\mathfrak{T}|$.

Since $\mathfrak{I} \subset N(\mathfrak{T}), \mathfrak{R}$ has an orbit of size 3 on the cosets of \mathfrak{R} in $\mathbb{C S}$. By the Main Theorem of Wong already used, we conclude that \mathfrak{N} is not a maximal subgroup of (5).

Let $\mathfrak{R} \subset \mathfrak{R} \subset \mathfrak{F}$, with \mathfrak{R} a maximal subgroup of \mathfrak{R}. Since \mathbb{F}_{3} is a minimal counterexample, \mathfrak{R} satisfies the conclusion of the (augmented) Main Theorem of this paper. Let \Re_{0} be the simple normal subgroup of \Re, and let $\Re_{1}=\Re_{0} \mathfrak{I}$.

It is straightforward to verify that if \mathfrak{T}^{*} is a S_{2}-subgroup of ${ }^{2} F_{4}(2)$ or of its simple subgroup of index 2, then Aut (\mathfrak{T}^{*}) is a 2-group. Since Aut ($\mathfrak{2}$) is not a 2 -group, we have $\Re_{0} \not{ }^{2} F_{4}(2)^{\prime}$. Similarly, we see that \Re_{0} is none of $U_{3}(3), L_{3}(3), A_{7}, M_{11}$. Since $\mathfrak{\Re}$ is not 2 -closed, $\Re_{0} \not \equiv S z(q)$, and since Aut (\mathfrak{T}) is not a 2 -group, while $\mathscr{S} \mathscr{C} \mathscr{N}_{3}(\mathfrak{T}) \neq \varnothing$, \Re_{0} is not isomorphic to $L_{2}(q)$ for any odd q. Since \mathfrak{R} is not 2-closed, \Re_{0} is not isomorphic to $L_{2}\left(2^{n}\right)$ for any n. This contradiction shows that

$$
\begin{equation*}
\mathfrak{I}=N(\mathfrak{T}) . \tag{17.2}
\end{equation*}
$$

18. An exceptional case.

Hypothesis 18.1. $|\mathfrak{M}|=3|\mathfrak{I}|$ for all $\mathfrak{M} \in \mathscr{M}(\mathfrak{I})$.
All the results in this section are proved under Hypothesis 18.1.
Lemma 18.1. If \mathfrak{X} is a 2-local subgroup of \mathfrak{A}, then $|\mathfrak{X}|_{2^{\prime}}=1$ or 3 .
Proof. This lemma is an easy consequence of Lemmas 5.53, 5.54, and Hypothesis 18.1.

Hypothesis 18.2. There is $\mathfrak{M}=\mathfrak{D} \mathfrak{P} \in \mathscr{M}(\mathfrak{N})$ such that $\mathfrak{P}=\boldsymbol{C}_{\mathfrak{M}}(\mathfrak{P})$ is of order 3 .

Lemmas 18.2 through 18.5 are proved under Hypothesis 18.2.
Set $\mathscr{S}_{2}=\boldsymbol{O}_{2}(\mathfrak{M})$, so that $\mathfrak{M} / \mathfrak{S} \cong \Sigma_{3}$.
Lemma 18.2. $\mathfrak{S} \mathfrak{F} \in \mathscr{N}^{*}$ ((\mathbb{G}).
Proof. If $\mathfrak{N} \mathscr{B} \subseteq \subseteq \subseteq$, and \mathfrak{S} is a solvable subgroup of \mathfrak{A}, then by Lemma 18.1, together with $\mathfrak{M}=N(\mathfrak{F})$, we conclude that $\mathfrak{F}=O_{2}(\mathfrak{S})$, whence $\mathfrak{S} \subseteq \mathfrak{M}$. The proof is complete.

Set $3=\boldsymbol{Z}(\mathfrak{s})$.
Lemma 18.3. $|\mathcal{Z}| \leqq 2^{4}$.
Proof. If false, then since $3 \mathscr{F}$ is a Frobenius group, we have $|3| \geqq 2^{6}$. If \mathfrak{Y} is of index at most 4 in \mathcal{B}, and if $\mathfrak{P}=\langle P\rangle$, then $\mathfrak{Y} \cap \mathfrak{Y}^{P} \neq 1$, and $\mathfrak{Y} \cap \mathfrak{Y}^{P}$ admits \mathfrak{P}. Hence, $C(\mathfrak{Y}) \subseteq C\left(\mathfrak{Y} \cap \mathfrak{Y}^{P}\right) \subseteq N\left(\mathfrak{Y} \cap \mathfrak{Y}^{P}\right)$, and since $\mathfrak{S} \mathfrak{F} \cong N\left(\mathfrak{Y} \cap \mathfrak{Y}^{P}\right)$, we conclude that $C(\mathfrak{Y}) \cong \mathfrak{M}$.

Set

$$
\left.\mathfrak{N}_{0}=Z(\mathfrak{T}), \mathfrak{N}_{1}=V\left(\operatorname{ccl}_{\bullet}(\mathfrak{B}) ; \mathfrak{T}\right), \mathfrak{N}_{2}=\left\langle V\left(\operatorname{ccl}_{\odot}\left(\mathfrak{Z}_{1}\right) ; \mathfrak{T}\right)\right|\left|\mathfrak{B}: \mathfrak{Z}_{1}\right|=2\right\rangle .
$$

We argue that if $\mathfrak{X} \in \mathscr{M}(\mathfrak{T})$, and σ is a permutation of $\{0,1,2\}$, then $\mathfrak{X} \subseteq\left(\mathfrak{X} \cap N\left(\mathfrak{X}_{\sigma(0)}\right)\right)\left(\mathfrak{X} \cap N\left(\mathfrak{Z}_{\sigma(1)}\right)\right)$. Namely, if \mathfrak{Y} is a subgroup of 3 of index at most 4 , then $C(\mathfrak{Y})=\mathfrak{F}=C(\mathbb{3})$. The desired factorizations are straightforward consequences of these equalities. But then $N\left(\mathfrak{R}_{0}\right) \cdot N\left(\mathfrak{Z}_{1}\right)$ is the only member of $\mathscr{I}(\mathfrak{T})$. This contradiction completes the proof.

Lemma 18.4. $|3|=4$.
Proof. Suppose false, so that $|3|=2^{4}$. If \mathfrak{Y} is of index 2 in 3 ,
then $C(\mathfrak{Y}) \subseteq C\left(\mathfrak{Y} \cap \mathfrak{Y}^{P}\right) \subseteq N\left(\mathfrak{Y} \cap \mathfrak{Y}^{P}\right)$, and since $\mathfrak{S} \mathfrak{Y} \subseteq N\left(\mathfrak{Y} \cap \mathfrak{Y}^{P}\right)$, we conclude that $C(\mathfrak{Y})=\mathfrak{F}$. Set $\mathfrak{Y}=V\left(\operatorname{ccl}_{\Theta}(\mathfrak{Z}) ; \mathfrak{I}\right)$. Since $C(\mathfrak{Y})=C(3)$ for every subgroup \mathfrak{Y} of index 2 in \mathfrak{B}, it follows that $\mathfrak{N} \subseteq \mathscr{S}$, whence $\mathfrak{Z} \triangleleft \mathfrak{M}=\mathfrak{I} \mathfrak{F}$.

Choose $\mathfrak{X} \in \mathscr{M}(\mathfrak{Z}), \mathfrak{X} \neq \mathfrak{M}$, and let $\mathscr{\Re}=\boldsymbol{O}_{2}(\mathfrak{X})$, so that $\mathfrak{X} / \mathfrak{R} \cong \Sigma_{3}$. Since $\mathfrak{M}=N(\mathfrak{R l})$, there is G in \mathfrak{M} such that $\mathfrak{3}^{G} \cong \mathfrak{I}, \mathfrak{B}^{G} \nsubseteq \mathfrak{R}$. Set $\mathfrak{B}^{*}=\mathfrak{B}^{G}, \mathfrak{B}_{1}^{*}=\mathfrak{R} \cap \mathfrak{3}^{*}$. Thus, \mathfrak{B}_{1}^{*} is of index 2 in \mathfrak{B}^{*}. Let $\mathfrak{X}=\mathfrak{R} \Omega$, where $\langle Q\rangle=\mathfrak{\Omega}$ is of order 3 . We see that $\mathfrak{M} \cap \mathfrak{B}^{* Q}=\mathfrak{B}_{1}^{* Q}$ is of order 8. If $\mathfrak{B}_{1}^{* Q} \subseteq \mathfrak{S c}$, we get $\mathfrak{B} \subseteq C\left(\mathfrak{B}_{1}^{* Q}\right)=\boldsymbol{C}\left(3^{* Q}\right)$, and so $3^{* Q} \subseteq C(\mathbb{Z})=\mathfrak{K}$, which is false. So $\mathfrak{B}_{1}^{* Q} \nsubseteq \mathfrak{S}$, and $\mathcal{X}_{1}^{* Q} \cap \mathfrak{S}=\mathcal{B}_{2}^{* Q}$, where $\mathfrak{S}_{2}^{* Q}$ has index 4 in $\mathbb{3}^{* Q}$. Set $\mathbb{C}=\boldsymbol{C}\left(\mathcal{S}_{2}^{* Q}\right)$. We argue that $\mathfrak{M}^{G Q} \cap \mathbb{C}$ contains a full S_{2}-subgroup of \mathfrak{c}. In fact, if \mathfrak{u} is any non identity subgroup of 3 then since $\mathfrak{S} \subseteq C(\mathfrak{U}),|\mathfrak{I}: \mathfrak{S}|=2$, and $N(\mathfrak{F})=\mathfrak{M}$, it follows that $\mathfrak{M} \cap C(\mathfrak{U})$ contains a full S_{2}-subgroup of $\boldsymbol{C}(\mathfrak{U})$. So $\mathfrak{M}^{G Q} \cap \mathbb{C}$ contains a full S_{2}-subgroup of \mathfrak{C}.

Set $\mathfrak{I}_{0}=\mathfrak{M}^{C Q} \cap \mathfrak{C}$, so that \mathfrak{I}_{0} is a S_{2}-subgroup of \mathfrak{C}, and $3 \subseteq \mathfrak{I}_{0}$. Since $\left|\mathfrak{I}_{0}: \boldsymbol{O}_{2}(\mathbb{C})\right| \leqq 2$, it follows that $\mathfrak{B} \cap \boldsymbol{O}_{2}(\mathbb{C})=\mathfrak{B}_{0}$ is of index at most 2 in 3.

Next, $\mathcal{B}_{1}^{* Q} \cong \mathfrak{M}$ and $3 \triangleleft \mathfrak{M}$, so $\left[\mathcal{B}_{1}^{* Q}, \mathcal{B}_{0}\right] \subseteq 3$. Also, $\boldsymbol{O}_{2}(\mathbb{C})$ normalizes $3^{* Q}$, so $\left[3_{1}^{* Q}, 3_{0}\right] \subseteq 3^{* Q}$. Hence,

$$
\left[3_{1}^{* Q}, 3_{0}\right] \subseteq 3 \cap 3^{* Q} .
$$

Now, $\mathfrak{Z}_{1}^{* Q} \nsubseteq \mathscr{S}=C\left(\mathcal{B}^{2}\right)=\boldsymbol{C}\left(\mathcal{B}_{0}\right)$, so $\left[\mathcal{3}_{1}^{* Q}, \mathcal{B}_{0}\right] \neq 1$. Choose an involution U in $\left[\mathcal{B}_{1}^{* Q}, \mathcal{B}_{0}\right]$.

Let $\mathfrak{D}=C(U) \supseteqq\left\langle\mathfrak{B}, \mathfrak{B}^{* Q}\right\rangle$. Thus, $\mathfrak{D} \cap \mathfrak{M}^{G Q}$ contains a S_{2}-subgroup of \mathfrak{D}. On the other hand, $\mathfrak{S} \subseteq \mathfrak{D}$, since $U \in \mathfrak{3}$. Thus, $\mathfrak{S}_{0}=\mathfrak{S} \cap \mathfrak{M}^{G Q} \triangleleft$ $\boldsymbol{O}_{2}(\mathfrak{D}) \cap \mathcal{S}_{\text {. }}$. Since $\boldsymbol{O}_{2}(\mathfrak{D})$ has index at most 2 in every S_{2}-subgroup of \mathfrak{D}, we get $\left|\mathscr{S}_{\mathrm{C}}: \mathfrak{S}_{\mathrm{C}}\right| \leqq 2$. Also, $\left[\mathfrak{X}_{1}^{* Q}, \mathfrak{S}_{2}\right] \subseteq \mathfrak{3}^{* Q} \cap \mathfrak{F}=\mathfrak{B}_{2}^{* Q}$, a group of order 4.

Choose Z in $\mathfrak{B}_{1}^{* Q}-\mathfrak{S}$. Let $\mathfrak{S}_{1}=\mathfrak{S}_{0} \cap \mathfrak{S}_{0}^{P}$. Thus, \mathfrak{S}_{1} has index at most 4 in \mathfrak{S} and \mathfrak{S}_{1} admits \mathfrak{P}. Now $\left[\mathfrak{S}_{1}, \mathcal{B}\right] \subseteq\left[\mathfrak{S}_{0}, \mathfrak{B}_{1}^{* Q}\right] \subseteq \mathcal{3}_{2}^{* Q} \cong$ $\mathfrak{S} \cap \mathfrak{M}^{G Q}=\mathfrak{S}_{0}$, that is, Z normalizes \mathfrak{S}_{1}. We claim that $\left|\mathscr{S}_{1}\right| \leqq 2^{4}$. Since $\left|\left[\mathfrak{F}_{1}, Z\right]\right| \leqq 2^{2}, C_{\mathfrak{F}_{1}}(Z)$ has index at most 2^{2} in \mathscr{K}_{1}. Since $\mathscr{S}_{1} \mathfrak{F}_{3}$ is a Frobenius group, and since Z inverts some element of $\mathfrak{M} / \mathscr{S}_{1}$ of order 3 , our assertion follows. Since $\left|\mathfrak{S}_{1}\right| \leqq 2^{4}$, we get $\left|\mathcal{S}_{\mathrm{L}}\right| \leqq 2^{6}$, and so $\left|\mathcal{S}_{\mathrm{C}}\right|=2^{4}$ or 2^{6}. There are no groups of order 2^{6} which has a fixed point free automorphism of order 3 and whose center is of index 4. Hence, $\left|\mathscr{S}_{2}\right|=2^{4}$, and so $\mathfrak{S}=3$ is abelian. Since $\mathscr{S}_{\mathscr{C}} \mathscr{N}_{3}(\mathfrak{T}) \neq \varnothing$, it follows that $\mathfrak{S}_{\mathfrak{L}}$ is elementary abelian. So $\mathfrak{T}^{\prime}=Z(\mathfrak{I})$ is a four-group, and $\mathfrak{I}^{\prime}=\boldsymbol{D}(\mathfrak{T})$. Hence, $\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{T})) / \boldsymbol{Z}(\mathfrak{T})$ has abelian S_{2}-subgroups, and so $\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{I}))=\mathfrak{I}$. On the other hand, $\mathfrak{B}_{2}^{* Q} \subseteq \mathfrak{S}=\mathfrak{3}$, and $\mathfrak{I}=\mathfrak{S}_{\varepsilon} \cdot \mathfrak{B}_{1}^{* Q}$, whence $3_{2}^{* Q}=\boldsymbol{Z}(\mathfrak{I})$. This implies that $3^{* Q}=3$, the unique elementary subgroup of $C\left(Z(\mathfrak{I})\right.$) of order 2^{4}. This contradiction completes the proof.

Set $\mathcal{Z}_{0}=Z(\mathfrak{F})$, so that $\left|\mathcal{B}_{0}\right|=2$. Since $\mathfrak{S} \mathfrak{B}$ is a Frobenius group, it follows that if J is any involution of $\mathfrak{S}-\mathcal{B}$, then $[\mathfrak{K}, J]=\mathfrak{3}$. This then implies that 3 is the only normal four-subgroup of \mathfrak{I}, an important fact.

Lemma 18.5. Let $\mathfrak{R}=\boldsymbol{C}\left(\mathfrak{B}_{0}\right)$. Then $\mathscr{M}(\mathfrak{F})=\{\mathfrak{M}, \mathfrak{R}\}$.
Proof. Choose $\mathfrak{X} \in \mathscr{M}(\mathfrak{R}), \mathfrak{X} \neq \mathfrak{M}$, and let \mathfrak{U} be a minimal normal subgroup of \mathfrak{X}. Since $|\mathfrak{X}|=3|\mathfrak{I}|$, we have $|\mathfrak{U}| \leqq 2^{2}$. If \mathfrak{U} is a fourgroup, we have $\mathfrak{U}=\mathfrak{B}, \mathfrak{X}=\mathfrak{M}$. This is false, and so $\mathfrak{U}=\mathcal{B}_{0}, \mathfrak{X}=\mathfrak{N}$. The proof is complete.

Since $\mathscr{S} \mathscr{C} \mathscr{N}_{3}(\mathfrak{T}) \neq \varnothing$, it follows that $\mathfrak{K} \supset \mathfrak{3}$, and so $\mathfrak{K}^{\prime}=3$. Let $\mathfrak{N}=\mathfrak{I} \Omega,\langle Q\rangle=\mathfrak{Q}, Q^{3}=1$. Since \mathfrak{B} centralizes $\mathfrak{I} / \mathfrak{Z}_{0}$, we get $3 \subseteq$ $\boldsymbol{O}_{2}(\mathfrak{R})=\mathfrak{R}$. Also $\mathfrak{3}^{Q} \neq 3$. Since $3 \subseteq \Re$, so also $\mathfrak{3}^{Q} \cong \mathfrak{R}$. Let $\mathfrak{F}=$ $\left\langle\mathfrak{B}, \mathfrak{B}^{e}\right\rangle$. Since $\mathfrak{Z} \cap \mathfrak{B}^{Q}=\mathfrak{Z}_{0}$, we have $|\mathfrak{G}|=2^{3}$. If $\mathfrak{F}^{\prime} \neq 1$, let $\mathfrak{S}_{0}=\mathfrak{F}_{\mathrm{I}} \cap \mathfrak{R}$ so that $\left|\mathfrak{S}: \mathfrak{K}_{0}\right|=2$, and $\left[\mathfrak{B}^{Q}, \mathfrak{S}_{0}\right] \cong\left[\mathfrak{B}^{Q}, \mathfrak{R}\right]=\mathfrak{B}_{0}^{Q}=\mathfrak{B}_{0}$, and so \mathfrak{B}^{2} centralizes $\mathfrak{S}_{0} / \mathfrak{Z}_{0}$, whence centralizes $\mathfrak{S}_{0} / \mathbb{B}$. Since $\mathfrak{B}^{Q} \nsubseteq \mathfrak{S}_{\mathrm{S}}$, it follows that if $Y \in \mathbb{B}^{Q}-\mathscr{S}$, then Y centralizes a hyperplane of $\mathfrak{S} / \mathbb{B}$. This forces $|\mathfrak{S c} / 3|=2^{2}$, against $\mathfrak{S e}^{\prime}=3$. So $\mathfrak{F}^{\prime}=1$.

Set $\mathfrak{C}=C(\mathfrak{F})$. Then $\mathfrak{C} \subseteq C(3)=\mathfrak{F}$, and $\mathfrak{C} \subseteq C\left(\mathfrak{B}^{Q}\right)=\mathfrak{S}^{Q}$. . Since $\mathfrak{C}=\boldsymbol{C}_{\mathfrak{F}}\left(\mathbb{3}^{Q}\right)$ admits \mathfrak{P}, and $\mathfrak{C}=\boldsymbol{C}_{\mathfrak{N} Q}(3)$ admits \mathfrak{F}^{Q}, and since $\mathfrak{C} \cong \mathfrak{F}$, we get $N(\mathbb{C}) \supseteqq\left\langle\mathfrak{C}, \mathfrak{F}, \mathfrak{P}^{Q}\right\rangle$. This forces $\mathfrak{F}^{2} \cong \mathfrak{M}$. But $\mathfrak{S}^{2} \subseteq N(\mathbb{C})$, and so $\mathfrak{K} \mathfrak{F}=(\mathfrak{P} \mathfrak{K})^{2}$, which gives $Q \in \mathfrak{M}$, which is false. This contradiction gives us
(18.1) Every element of $\mathscr{M}(\mathfrak{I})$ contains an element of order 6.

Lemma 18.6. S_{3}-subgroups of (5) are not cyclic.
Proof. Suppose false. Choose $\mathfrak{X}_{1} \in \mathscr{M}(\mathfrak{T}), \mathfrak{X}_{i}=\mathfrak{T} \mathfrak{F}_{i},\left|\mathfrak{F}_{i}\right|=3, i=1,2$. Let $\mathfrak{K}_{i}=\boldsymbol{O}_{2}\left(\mathfrak{X}_{i}\right)$. Then \mathfrak{S}_{i} is a maximal element of $N\left(\mathfrak{F}_{i} ; 2\right)$. Since \mathfrak{F}_{1} and \mathfrak{P}_{2} are conjugate, the transitivity theorem (or rather its proof) implies that \mathscr{S}_{1} and \mathfrak{S}_{2} are conjugate. Since \mathfrak{I} is self normalizing in (S), this gives $\mathfrak{K}_{1}=\mathfrak{K}_{2}$, which is false if we take $\mathfrak{X}_{1} \neq \mathfrak{X}_{2}$ (as we may). The proof is complete.

Lemma 18.7. If $\mathfrak{X}=\mathfrak{Z} \mathfrak{F} \in \mathscr{M}(\mathfrak{T}),|\mathfrak{F}|=3$, then $C_{x}(\mathfrak{F})$ does not contain a four-group.

Proof. This lemma is a consequence of the preceding lemma.
Lemma 18.8. $\boldsymbol{C}(\mathfrak{B})$ is a 2-group for every four-subgroup \mathfrak{B} of $\mathfrak{E S}$.
Proof. This lemma is also a consequence of Lemma 18.6.
We introduce the following notation: $\mathscr{M}(\mathfrak{T})=\left\{\mathfrak{M}_{1}, \cdots, \mathfrak{M}_{n}\right\}$,
$\mathfrak{S}_{i}=\boldsymbol{O}_{2}\left(\mathfrak{M}_{i}\right), \mathfrak{B}_{i}=\Omega_{1}\left(\boldsymbol{Z}\left(\mathfrak{H}_{c}\right)\right), \mathfrak{P}_{i}$ of order 3 in $\mathfrak{M}_{i}, \mathfrak{F}_{i}=\left\langle P_{i}\right\rangle$.
Lemma 18.9. Suppose $\boldsymbol{Z}(\mathfrak{T})$ is not cyclic. Then for $i=1, \cdots, n$, $\mathfrak{3}_{i}$ contains a hyperplane \mathfrak{Y}_{i} with $\boldsymbol{C}\left(\mathfrak{Y}_{i}\right) \supset \boldsymbol{C}\left(\mathfrak{ß}_{i}\right)$.

Proof. Suppose false for i. Let \mathfrak{W} be the weak closure of 3_{i} in \mathfrak{T} with respect to \mathfrak{C}. We will show that \mathfrak{W} centralizes \mathcal{S}_{j} for every j. Choose X in (S) with $\mathcal{B}_{i}^{Y} \subseteq \mathfrak{I}$. Then $\mathcal{B}_{i}^{X} \cap \mathfrak{N}_{j}$ is of index at most 2 in \mathcal{B}_{i}^{X}, and $\mathcal{X}_{i}^{X} \cap \mathscr{S}_{j}$ centralizes \mathcal{B}_{j}. Hence, \mathcal{X}_{i}^{Y} also centralizes \mathcal{Z}_{j}, since this lemma is assumed false for i. Thus, \mathfrak{F} centralizes \mathcal{Z}_{j} for all j, and so $\mathfrak{M} \subseteq \mathfrak{F}_{2}$, whence $\mathfrak{F} \triangleleft \mathfrak{M}_{j}$, all j. This is false, since $n \geqq 2$. The proof is complete.

Lemma 18.10. If $\boldsymbol{Z}(\mathfrak{T})$ is not cyclic, then $\left|\mathcal{Z}_{i}\right|=2^{3}$ for all i.
Proof. $\boldsymbol{Z}(\mathfrak{I}) \subseteq \boldsymbol{Z}\left(\mathfrak{S}_{i}\right)$ and so $3_{i} \supseteqq \Omega_{1}(\boldsymbol{Z}(\mathfrak{T}))$. By Lemma 18.8, $\boldsymbol{C}\left(3_{i}\right)$ is a 2 -group, and so $\mathfrak{S}_{i}=\boldsymbol{C}\left(\mathfrak{ß}_{i}\right)$. And since $\boldsymbol{Z}(\mathfrak{2})$ is non cyclic, it follows that $\left|乃_{i}\right| \geqq 2^{3}$.

Suppose $\left|\mathfrak{Z}_{i}\right| \geqq 2^{4}$. Set $\mathfrak{U}_{i}=\left[\mathfrak{Z}_{i}, \mathfrak{B}_{i}\right]$. Since $\left|C_{B_{i}}\left(\mathfrak{F}_{i}\right)\right| \leqq 2$, we have $|\mathfrak{U}| \geqq 2^{3}$, and so $\left|\mathfrak{U}_{i}\right| \geqq 2^{4}$. Let ϑ_{i} be a hyperplane of \mathcal{B}_{i}. Set $\mathfrak{X}=$ $\left(\mathfrak{U}_{i} \cap \mathfrak{Y}\right) \cap\left(\mathfrak{U}_{i} \cap \mathfrak{Y}_{i}\right)^{P_{i}}$. Then \mathfrak{X} admits \mathfrak{F}_{i} and $\mathfrak{X} \neq 1$. Since \mathfrak{X} contains a four-group, it follows that $\boldsymbol{C}(\mathfrak{X})=\mathscr{S}_{i}$. This then implies that $\boldsymbol{C}\left(\mathfrak{Y}_{i}\right)=\mathscr{S}_{i}$, against Lemma 18.9. The proof is complete.

We continue to treat the case where $\boldsymbol{Z}(\mathfrak{T})$ is not cyclic. We have $\mathfrak{B}_{i}=\left[\mathfrak{B}_{i}, \mathfrak{F}_{i}\right] \times \mathfrak{F}_{i}$, where $\mathfrak{F}_{i}=\boldsymbol{C}_{\mathfrak{B}_{i}}\left(\mathfrak{F}_{i}\right)$ is of order 2, and $\left[\mathfrak{B}_{i}, \mathfrak{F}_{i}\right]$ is a four-group.

Lemma 18.11. Suppose $\boldsymbol{Z}(\mathfrak{T})$ is not cyclic and Z is an involution in 3_{i}. Let \mathfrak{I}_{0} be a S_{2}-subgroup of $\boldsymbol{C}(Z)$. Then the following hold:
(a) $\mathfrak{I}_{0} \cap \mathfrak{M}_{i}$ has index at most 2 in \mathfrak{I}_{0}.
(b) $\boldsymbol{C}(\mathfrak{Y}) \subseteq \mathfrak{M}_{i}$ for all hyperplanes \mathfrak{V} of \bigcap_{i}.

Proof. Let $\mathbb{C}=C(Z) . \quad \mathfrak{M}_{i}$ has $3 S_{2}$-subgroups, each with a distinct centralizer in $ß_{i}$, so each involution of \bigotimes_{i} centralizes one of these S_{2}-subgroups of \mathfrak{M}_{i}. Thus, $|\mathfrak{C}|=d|\mathfrak{I}|$, where $d=1$ or 3 . Thus, $\left|\mathfrak{C}: \boldsymbol{O}_{2}(\mathfrak{C})\right|_{2} \leqq 2$, so if \mathfrak{I}_{0} is a S_{2}-subgroup of \mathfrak{C}, then $\left|\mathfrak{I}_{0}: \mathfrak{I}_{0} \cap \mathfrak{M}_{i}\right| \leqq$ $\left|\boldsymbol{T}_{0}, \boldsymbol{M}_{v}, \boldsymbol{T}^{*}\right| \leqq 2$, where \mathfrak{T}^{*} is a suitable S_{2}-subgroup of $\mathfrak{M}_{i} \cap \mathbb{C}$. This is (a). As for (b), observe that $\boldsymbol{C}(\mathfrak{Y})$ is a 2 -group containing \mathfrak{S}_{2}. Thus, $\left|C(\mathfrak{Y}): \mathfrak{S}_{i}\right| \leqq 2$, and so $C(\mathfrak{Y}) \cong N\left(\mathfrak{S}_{i}\right)=\mathfrak{M}_{i}$.

Lemma 18.12. $\boldsymbol{Z}(\mathfrak{T})$ is cyclic.
Proof. Suppose false. Set $3=3_{1}$, and let \mathfrak{F} be the weak closure
of 3 in \mathfrak{I} with respect to \mathbb{B}. Now 3 is elementary of order 8 and $\boldsymbol{C}(\mathfrak{Y}) \subseteq \mathfrak{M}=\mathfrak{M}_{1}$ for all hyperplanes \mathfrak{Y} of 3 . Choose i such that $\mathfrak{M} \nrightarrow \mathfrak{M}_{i}$, and then choose G in $\mathfrak{F s}$ such that $\mathfrak{3}^{G} \subseteq \mathfrak{I}, 3^{G} \nsubseteq \mathfrak{S}_{i}$. Set $3^{*}=3^{G}$, and let $\mathfrak{Y}^{*}=3^{*} \cap \mathfrak{S}_{i}$, so that \mathfrak{Y}^{*} is a hyperplane of $\mathfrak{3}^{*}$. So $\mathfrak{B}_{i} \cong C\left(\mathfrak{Y}^{*}\right) \cong$ $\mathfrak{M}^{*}=\mathfrak{M}^{\epsilon}$. Since $\mathfrak{3}^{*} \not \equiv \mathfrak{S}_{i}=C\left(\mathfrak{B}_{i}\right)$, we get that $\mathfrak{X}^{*}=\left[\mathfrak{B}_{i}, \mathfrak{B}^{*}\right] \neq 1$. Also, $\mathfrak{X}^{*} \subseteq 3 \cap \mathfrak{3}^{*}$. So $\quad \boldsymbol{C}\left(\mathfrak{X}^{*}\right) \supseteq\left\langle\mathfrak{S}^{*}, \mathfrak{S}_{i}\right\rangle$, where $\quad \mathfrak{S}^{*}=\boldsymbol{O}_{2}\left(\mathfrak{M}^{G}\right)$. \quad Since $\left|\mathfrak{Z}_{i}\right|=8$, we get that $\left|\mathfrak{X}^{*}\right|=2$. By Lemma 18.11 , we conclude that $\left|\mathfrak{S}_{\mathrm{c}}: \mathfrak{F}_{\mathrm{C}} \cap \mathfrak{M}^{*}\right| \leqq 2$.

Choose $Z^{*} \in 3^{*}-\mathfrak{Y}^{*}$. Then Z^{*} is an involution of $\mathfrak{M}_{i}-\mathfrak{S}_{i}$, and so we may assume that Z^{*} inverts \mathfrak{S}_{i}. Since $\left|\mathfrak{S}_{i}: \mathfrak{S}_{i} \cap \mathfrak{M}^{*}\right| \leqq 2$, it follows that $\mid \mathfrak{S}_{i}: C_{\mathfrak{s}_{i}}\left(Z^{*}\right) \| 2^{2}$. On the other hand, $\mathfrak{B}_{i}=\mathfrak{U}_{i} \times \mathfrak{F}_{i}$, where $\mathfrak{u}_{i}=\left[\mathfrak{ß}_{i}, \mathfrak{F}_{i}\right]$, and $\mathfrak{F}_{i}=\boldsymbol{C}_{3_{i}}\left(\mathfrak{P}_{i}\right)$, and Z^{*} does not centralize \mathfrak{u}_{i}. Hence, $\left|\mathfrak{F}_{i}: \mathfrak{U}_{i} \cdot C_{\mathfrak{F}_{i}}\left(Z^{*}\right)\right| \leqq 2$.

Write $\overline{\mathfrak{F}}_{i}=\mathfrak{S}_{i} / \mathfrak{U}_{i}$. The dihedral group $\left\langle Z^{*}, \mathfrak{F}_{i}\right\rangle$ acts on $\overline{\mathscr{F}}_{i}$, and Z^{*} centralizes a subgroup of $\overline{\mathcal{S}}_{i}$ of index 2.

Case 1. \mathfrak{F}_{i} centralizes $\overline{\mathfrak{N}}_{i}$.
In this case, we have $\mathfrak{N}_{i}=\boldsymbol{C}_{\mathfrak{s}_{i}}\left(\mathfrak{F}_{i}\right) \times \mathfrak{U}_{i} . \quad$ By Lemma 18.8, $\boldsymbol{C}_{\mathfrak{F}_{i}}\left(\mathfrak{F}_{i}\right)$ contains no four-group. Hence, every involution of \mathscr{S}_{i} is central in \mathfrak{S}_{i}, and in particular, $\mathfrak{Y}^{*} \subseteq \boldsymbol{Z}\left(\mathfrak{S}_{i}\right)$. Since $\mathfrak{S}_{i} \subseteq \mathfrak{M}^{*}$, it follows that Z^{*} centralizes a subgroup of \mathfrak{S}_{i} of index 2. Hence, Z^{*} centralizes $\boldsymbol{C}_{\mathfrak{פ}_{i}}\left(\mathfrak{P}_{i}\right)$. Let $\mathscr{F}=\left\langle 3^{*}, C_{\mathfrak{F}_{i}}\left(\mathfrak{F}_{i}\right)\right\rangle$. Then $\mathscr{F} \subseteq N\left(\mathfrak{F}_{i}\right)=\mathfrak{N}$, say. Enlarge $\mathscr{F}_{\mathfrak{F}_{i}}$ to a $S_{2,3}$ subgroup of \mathfrak{N}, say \mathfrak{Z}. Since a S_{3}-subgroup of \mathfrak{F} is not cyclic, a S_{3}-subgroup of \mathbb{R} is not cyclic, and so $O_{2}(\mathbb{Z})=1$.

Now $\mathfrak{F}_{i} \times\left\langle Z^{*}\right\rangle$ normalizes $\boldsymbol{O}_{3}(\Omega)$, and since $|\boldsymbol{C}(J)|_{2^{\prime}} \leqq 3$ for every involution J of \mathbb{C}, we get that $\left|\boldsymbol{O}_{3}(\mathbb{Z})\right| \leqq 3^{3}$. If $\boldsymbol{C}_{\mathfrak{F}_{i}}\left(\mathfrak{F}_{i}\right)$ contains a cyclic subgroup \mathfrak{Z} of order 4 , then since $\mathfrak{Z} \times\left\langle Z^{*}\right\rangle$ acts faithfully on $O_{3}(\mathbb{Z})$, we get $|C(J)|_{3} \geqq 3^{2}$ for some involution J of $\mathbb{C S}$. As this is false, we conclude that $\boldsymbol{C}_{\mathfrak{F}_{i}}\left(\mathfrak{S}_{i}\right)=\mathfrak{F}_{i}$ is of order 2 , and $|\mathfrak{T}|=2^{4}$. Thus, $\mathfrak{I} \cong Z_{2} \times D_{8}$, and so $\mathfrak{I} \nsubseteq \mathbb{C S}^{\prime}$, by a standard transfer argument. This contradiction shows that this case does not arise.

Case 2. \mathfrak{S}_{i} does not centralize $\overline{\mathfrak{F}}_{i}$.
Let $\left[\overline{\mathfrak{F}}_{i}, \mathfrak{P}_{i}\right]=\Re_{i} / \mathfrak{H}_{i}$. Since Z^{*} centralizes a subgroup of $\overline{\mathfrak{N}}_{i}$ of index $2, \Re_{i} / \mathfrak{U}_{i}$ is a four-group so $\left|\Re_{i}\right|=2^{4}$. Since $\mathfrak{S}_{i} \Re_{i}$ is a Frobenius group, \Re_{i} is abelian. Also, setting $\mathfrak{S}_{i}=\boldsymbol{C}_{\mathfrak{s}_{i}}\left(\mathfrak{F}_{i}\right)$, we have $\mathfrak{S}_{i}=\mathfrak{S}_{i} \Re_{i}$, $\mathfrak{S}_{i} \cap \Re_{i}=1$. Suppose $\left[\mathfrak{S}_{i}, \Re_{i}\right]=1$, so that $\mathfrak{S}_{i}=\mathfrak{S}_{i} \times \Re_{i}$. In this case, since \mathfrak{S}_{i} contains no four-group, we conclude that every involution of \mathfrak{S}_{i} is in $\boldsymbol{Z}\left(\mathfrak{S}_{i}\right)$, and so $\mathfrak{Y}^{*} \subseteq \boldsymbol{Z}\left(\mathfrak{S}_{i}\right)$. But then Z^{*} centralizes a subgroup of index 2 in \mathfrak{S}_{i}, as $\mathfrak{S}_{i} \subseteq C\left(\mathfrak{Y}^{*}\right) \subseteq \mathfrak{M}^{*}$. This is false, since $\boldsymbol{C}_{\Re_{i}}\left(Z^{*}\right)$ has index 4 in \Re_{i}. So, $\left[\Im_{i}, \Re_{i}\right] \neq 1$.

Since $\left|\mathscr{S}_{i}: C_{\mathfrak{s}_{i}}\left(Z^{*}\right)\right| \leqq 2^{2}$, we conclude that Z^{*} centralizes \mathscr{S}_{i}. Thus,
$\left|\mathfrak{S}_{i}\right|=2$, since otherwise \mathfrak{S}_{i} has a cyclic subgroup \mathfrak{Z} of order 4 , and since $\mathfrak{\Re} \times\left\langle Z^{*}\right\rangle$ acts faithfully on some 3 -subgroup of \mathbb{E}, we would get $|C(J)|_{3} \geqq 3^{2}$ for some involution J or (8). So \mathbb{S}_{i} is of order 2. Thus, $\mathfrak{S}_{i}=\mathfrak{F}_{i} \subseteq Z(\mathfrak{I})$, against $\left[\mathfrak{R}_{i}, \mathfrak{S}_{i}\right] \neq 1$. The proof is complete.

Let Z be the central involution of \mathfrak{I}, and set $\mathfrak{M}=C(Z)$.
Lemma 18.13. $\mathfrak{M} \in \mathscr{M}(\mathfrak{T})$.
Proof. The only other possibility is that $\mathfrak{M}=\mathfrak{I}$. Let $\mathfrak{B}_{1}=$ $\Omega_{1}\left(Z\left(\mathscr{S}_{2}\right)\right) \supseteqq 3 . \quad$ Since \mathfrak{S}_{1} has index 2 in \mathfrak{I}, it follows that \mathcal{B}_{1} is a fourgroup. Choose $U \in \mathfrak{B}_{1}, U \neq Z$. Then U and Z are fused in \mathfrak{M}_{1}, since $\mathfrak{M}=\mathfrak{I}$. Let \mathfrak{W} be the weak closure of \mathcal{B}_{1} in \mathfrak{I} with respect to \mathfrak{F}. Now \mathfrak{F} is not normal in every $\mathfrak{M}_{j} \in \mathscr{M}(\mathfrak{Z})$, so choose \mathfrak{M}_{j} such that $\mathfrak{F} \nexists \mathfrak{M}_{j}$. So there is G in $\mathbb{S K}$ such that $\mathcal{Z}_{1}^{G} \nsubseteq \mathfrak{S}_{j}, \mathcal{X}_{1}^{G} \subseteq \mathfrak{I}$. Since \mathcal{B}_{j} is a four-group with $C\left(\mathfrak{B}_{j}\right)=\mathfrak{S}_{2}$, we have $\left[\mathcal{B}_{j}, \mathfrak{Z}_{1}^{G}\right] \neq 1$. Since \mathcal{B}_{1}^{G} normalizes $\mathcal{B}_{j}, \tilde{\mathfrak{u}}=\left[\mathfrak{B}_{j}, \mathfrak{B}_{1}^{G}\right]=\langle\tilde{U}\rangle \subset 3_{j}$. Now \mathcal{Z}_{1}^{G} does not act faithfully on \mathcal{B}_{j} and so $\mathcal{B}_{j} \subseteq \mathfrak{M}^{G}$. Hence, $\widetilde{U} \in \mathfrak{B}_{1}^{G}$. But now $\mathfrak{S}_{j} \subseteq C(\widetilde{U}) \subseteq \mathfrak{M}_{1}^{G}$, and so \mathfrak{S}_{j} normalizes \mathcal{Z}_{1}^{G}. This implies that $\mathfrak{S}_{j}=\mathcal{Z}_{j} \times \boldsymbol{C}_{\mathfrak{S}_{j}}\left(\mathfrak{F}_{j}\right)$, which contradicts $3_{j}=\Omega_{1}\left(Z\left(\mathcal{S}_{\mathrm{C}}\right)\right)$. The proof is complete.

Choose $\mathfrak{l} \in \mathscr{M}(\mathfrak{I}), \mathfrak{N} \neq \mathfrak{M}$, and let \mathfrak{U} be the minimal normal subgroup of \mathfrak{N}, so that $\mathfrak{U} \supseteq\langle Z\rangle$. Since $Z \notin \boldsymbol{Z}(\mathfrak{R})$, it follows that \mathfrak{U} is a 4 -group. Hence, $\mathfrak{U}=\Omega_{1}\left(\boldsymbol{Z}\left(O_{2}(\mathfrak{R})\right)\right)$, and $\boldsymbol{A}_{\odot}(\mathfrak{U})=$ Aut (\mathfrak{l}). Since $[\mathfrak{T}, \mathfrak{u}]=\langle Z\rangle$, it follows that $\mathfrak{U} \subseteq \boldsymbol{O}_{2}(\mathfrak{M})$. Let $\mathfrak{W}=\mathfrak{u}^{\mathfrak{M}}=\mathfrak{u}^{\mathfrak{2 P}}=\mathfrak{u}^{\mathfrak{B}}$ (where $\mathfrak{\beta}=\langle P\rangle$ is of order 3).

Lemma 18.14. \mathfrak{W} is elementary of order 8.
Proof. Suppose false. Then $\mathfrak{U}=\mathfrak{U}_{0} \times\langle Z\rangle, \mathfrak{U}_{0}=\langle U\rangle$, so $\mathfrak{F}=$ $\left\langle Z, U, U^{P}, U^{P^{2}}\right\rangle$. Since $\mathfrak{U} \triangleleft \mathfrak{I}$, so also $\mathfrak{U} \triangleleft \mathfrak{N}=\boldsymbol{O}_{2}(\mathfrak{M})$, and so $\mathfrak{U}^{P^{i}} \triangleleft \mathfrak{M}$, whence $|\mathfrak{W}| \leqq 2^{4}$. Let $\mathfrak{W}_{1}=[\mathfrak{W}, \mathfrak{P}]$. Since $\mathfrak{F} \nsubseteq \mathfrak{R}=N(\mathfrak{U})$, it follows that $\mathfrak{B}_{1} \neq 1$.

Since \mathfrak{M} does not normalize \mathfrak{U}, we have $|\mathfrak{M}|=8$ or 16 . If $|\mathfrak{W}|=8$, then since \mathfrak{W} is generated by involutions, and since a dihedral group of order 8 has no automorphism of order 3 , it follows that \mathfrak{W} is elementary. So we conclude that $|\mathfrak{W}|=16$.

If \mathfrak{F} is elementary abelian, then since $\mathfrak{Z} \subset \mathfrak{W}$ and \mathfrak{F} centralizes \mathfrak{Z}, it follows that $C_{s p}(\mathfrak{P})$ is a four-group. This violates Lemma 18.8. Hence, \mathfrak{F} is not elementary, and since \mathfrak{W} is generated by involutions, we conclude that $\mathfrak{W}^{\prime} \neq 1$. Since $\mathfrak{W} / \mathbb{B}$ is elementary, it follows that $Z(\mathfrak{W}) \supset \mathfrak{3}$. Since $\mathfrak{W} \neq 1,|\mathfrak{W}: Z(\mathfrak{W})| \geqq 2^{2}$, and so $Z(\mathfrak{W})$ is of order 4 . Since $C_{\mathbb{P}}(\mathfrak{P})$ contains no four-group, it follows that $Z(\mathfrak{W})$ is cyclic. Thus, \mathfrak{W} is the central product of $Z(\mathfrak{W})$ and \mathfrak{W}_{1}, and \mathfrak{W}_{1} is a quaternion group. Since $\mathfrak{W}_{1} Z(\mathfrak{W})=\mathfrak{W}$ has just one quaternion subgroup, we
conclude that $\mathfrak{M}_{1} \triangleleft \mathfrak{M}$.
Set $\mathfrak{R}=N(\mathfrak{U})=\mathfrak{I} \Omega, \mathfrak{Q}=\langle Q\rangle, Q^{3}=1, \mathfrak{R}=O_{2}(\mathfrak{R})=C(\mathfrak{U})$. \quad since $\boldsymbol{C}_{\mathfrak{W}}\left(\mathfrak{B}_{1}\right)=\boldsymbol{Z}(\mathfrak{W})$ is cyclic, we have $\mathfrak{W}_{1} \nsubseteq \Omega$. Let $\Re_{1}=[\Omega, \Omega]$. Then $\mathfrak{U}=[\mathfrak{U}, \mathfrak{Q}] \subseteq \mathfrak{R}_{1}$.

If $\Re_{1}=\mathfrak{U}$, then $\mathfrak{R}=\mathfrak{U} \times \boldsymbol{C}_{\mathscr{\Omega}}(\mathfrak{Q})$, and $C_{\mathfrak{R}}(\mathfrak{Q}) \triangleleft \mathfrak{R}$. This is false, since \mathfrak{U} is the only minimal normal subgroup of \mathfrak{N}. So $\Re_{1} \supset \mathfrak{U}$.

Suppose \Re_{1} is non abelian. Then $\Re_{1}^{\prime} \triangleleft \mathfrak{N}$, and so $\mathfrak{U} \subseteq \Re_{1}^{\prime}$. Hence, $\mathfrak{C}=\left[\Re_{1}, \mathfrak{W}_{1}\right] \Re_{1}^{\prime} / \Re_{1}^{\prime}$ has order precisely 2 . Choose $W \in \mathfrak{W}_{1}-\mathfrak{\Re}$. Then W centralizes a hyperplane of $\Omega_{1} / \Omega_{1}^{\prime}$, and so $\Re_{1}^{\prime}=2$. This is impossible since $\Re_{1} \Omega$ is a Frobenius group. We conclude that \Re_{1} is abelian. Since $\left[\Re_{1}, \mathfrak{W}_{1}\right] \subseteq \mathfrak{W}_{1}$, it follows that $\left[\Re_{1}, \mathfrak{W}_{1}\right]$ is cyclic of order 4 , and so \Re_{1} is the direct product of two cyclic groups of order 4.

Let $\Re_{2}=C_{\Omega}(\mathfrak{Q})$, so that $\Re=\Re_{1} \cdot \Re_{2} . \quad$ Since \mathfrak{U} is the only minimal normal subgroup of $\mathfrak{N}, \mathscr{R}_{2}$ acts faithfully on \Re_{1}. Furthermore, by Lemma 18.8, \mathscr{R}_{2} contains no four-group. Since $\mathscr{S} \mathscr{C} \mathscr{N}_{3}(\mathfrak{T}) \neq \varnothing$, it follows that $\Re_{2} \neq 1$. Since \Re_{2} stabilizes the chain $\Re_{1} \supset \mathfrak{U} \supset 1$, it follows that \AA_{2} is elementary abelian, and so $\AA_{2}=\langle K\rangle$ is of order 2 , which gives $|\mathfrak{I}|=2^{6}$. The isomorphism type of \mathfrak{I} is uniquely determined by the preceding data, and we see that \mathscr{S}_{S} is the central product of 2 quaternion groups. Furthermore, \mathfrak{T} has an element of order 8 which is fused in (5) to all of its odd powers. Since $\langle Z\rangle=3$ char $C_{z}(K)$, it follows that K is not fused to Z in © ${ }^{(8)}$. By a theorem of Brauer and Fong [11] we have $\mathbb{B} \cong M_{12}$. Since M_{12} is not an N-group, the proof of this lemma is complete.

We use the following notation: $\mathfrak{M}=\mathfrak{F} \mathfrak{P}, \mathfrak{F}=\langle P\rangle, \mathfrak{N}=\mathfrak{N} \mathfrak{M}$, $\mathfrak{Q}=\langle Q\rangle, \mathfrak{B}=\langle Z\rangle, \mathfrak{U}=\mathfrak{B}^{\mathfrak{n}}, \mathfrak{W}=\mathfrak{u}^{\mathfrak{m}}, P^{3}=1, Q^{3}=1$. And we set $\mathfrak{X}=\mathfrak{W}^{\mathfrak{n}}$.

Lemma 18.15. \mathfrak{X} is abelian.
Proof. We have $\mathfrak{B}=\mathfrak{U} \times\langle X\rangle$, and $\mathfrak{W}^{n}=\mathfrak{W}^{\mathfrak{R o}}=\left\langle\mathfrak{U}, X, X^{Q}, X^{Q^{2}}\right\rangle$. Also, $\mathfrak{M} \subseteq C(\mathfrak{U})=\Re=O_{2}(\mathfrak{R})$, so $\mathfrak{M} \triangleleft \mathfrak{R}$, and $\mathfrak{B}^{Q^{i}} \triangleleft \Re$. Hence, $|\mathfrak{X}| \leqq 2^{5}$. Since $\mathfrak{M} \nexists \mathfrak{N}, 2^{4} \leqq|\mathfrak{X}|$.

Suppose $\mathfrak{X}^{\prime} \neq 1$. Since \mathfrak{U} is a minimal normal subgroup of \mathfrak{N}, we have $\mathfrak{X}^{\prime}=\mathfrak{U}$. If $|\mathfrak{X}|=2^{4}$, then \mathfrak{X} is of maximal class, so does not have an automorphism of order 3 . Hence, $|\mathfrak{X}|=2^{5}$. Since $\mathfrak{X} / \mathfrak{U}$ is elementary, and since $C(\mathfrak{Q})$ contains no four-group, it follows that $\mathfrak{X} / \mathfrak{U}=\mathfrak{X}_{0} / \mathfrak{U} \times$ $\mathfrak{X}_{1} / \mathfrak{U}$, where $\mathfrak{X}_{0} / \mathfrak{U}=\boldsymbol{C}_{\mathfrak{x} / \mathfrak{u}(\mathfrak{N})}$ is of order 2 , and $\mathfrak{X}_{1} / \mathfrak{U}=[\mathfrak{X}, \mathfrak{N}] \mathfrak{U} / \mathfrak{U}$ is a four-group. Since $\mathfrak{X}_{1} \bumpeq$ is a Frobenius group, \mathfrak{X}_{1} is abelian. Also, \mathfrak{X}_{0} is elementary of order 8 , and $\mathfrak{X}_{0} \neq \mathfrak{F}$, since $\mathfrak{\Omega}$ does not normalize \mathfrak{W}. Let $\mathfrak{X}^{0}=C_{\mathfrak{X}}(Q)$, so that \mathfrak{X}^{0} is of order 2. Since $\mathfrak{X}^{\prime} \neq 1$, it follows that $\boldsymbol{C}_{\mathfrak{x}_{1}}\left(\mathfrak{X}^{0}\right)=\mathfrak{U}$, and so $\boldsymbol{Z}(\mathfrak{X})=\mathfrak{U}$. Since \mathfrak{X}_{1} is the unique abelian subgroup of index 2 in \mathfrak{X}, we conclude that $\mathfrak{X}_{1} \triangleleft \mathfrak{R}$, and so $\mathfrak{W} \nsubseteq \mathfrak{X}_{1}$. Choose $W \in \mathfrak{F}-\mathfrak{X}_{1}$. Then $W=X^{0} X_{1}$, where X^{0} generates \mathfrak{X}^{0}, and $X_{1} \in \mathfrak{X}_{1}$.

Since $W^{2}=1, X^{0}$ inverts X_{1}. Since $\mathfrak{X}_{0} \neq \mathfrak{M}$, we have $X_{1} \notin \mathfrak{M}$. Hence X^{0} does not centralize X_{1}, and so X_{1} is not an involution. Thus, X_{1} is the direct product of two cyclic groups of order 4, and X^{0} inverts \mathfrak{x}_{1}.

Since X^{0} inverts \mathfrak{X}_{1}, it follows that \mathfrak{X} has precisely 4 elementary abelian subgroups of order 2^{3}, one of which is \mathfrak{M}. Thus, \mathfrak{R} permutes these 4 subgroups, and the orbit which contains \mathfrak{W} has cardinal 3. This implies that $\mathfrak{X}_{0} \triangleleft \mathfrak{M}$. Hence, $\left[\mathfrak{Z}, \mathfrak{X}_{0}\right] \cong \mathfrak{U}$. This then implies that $[\mathfrak{Z}, \mathfrak{X}] \subset \mathfrak{X}_{1}$, and $[\mathfrak{Z}, \mathfrak{X}] \supseteq \mathfrak{U}$. Since $\mathfrak{X}-\mathfrak{X}_{1}$ is a set of involutions, we can choose an involution I in $\mathfrak{X}-\mathfrak{X}_{1}$ such that $[I, \mathfrak{M}] \nsubseteq \mathfrak{Z}$. Since $\mathfrak{W} / \mathcal{B} \subseteq Z(\mathfrak{F} / \mathcal{B})$, we have $I \notin \mathfrak{K}$. Since $[I, \mathfrak{F}] \mathfrak{M} \subset \mathfrak{X}_{1}$, it follows that $|[I, \mathfrak{S}] \mathfrak{K} / \mathfrak{W}| \leqq 2$. If I centralizes $\mathfrak{F} / \mathfrak{W}$, then $[\mathfrak{K}, \mathfrak{P}] \subseteq \mathfrak{N}$, which gives $[\mathfrak{F}, \mathfrak{F}]=[\mathfrak{K}, \mathfrak{F}] \triangleleft \mathfrak{F}$. This is false, since $Z(\mathfrak{V})$ is cyclic, and $Z(\mathfrak{Z}) \cap$ $[\mathfrak{M}, \mathfrak{F}]=1$. We conclude that $[\mathfrak{F} / \mathfrak{F}, I]$ is of order 2. Set $\mathfrak{K}_{1}=[\mathfrak{F}, \mathfrak{F}]$. Then $\mathfrak{F}_{1} \supset \mathfrak{M}$ and $\left|\mathfrak{M}_{1}\right| \leqq 2^{5}$. Since $\mathfrak{F}_{1} / \mathfrak{F}$ admits \mathfrak{F}, we have $\left|\mathfrak{E}_{1}\right|=2^{5}$. If $\mathfrak{M} \cong Z\left(\mathfrak{F}_{2}\right)$, then S_{3}-subgroups of $\mathfrak{M} / C(\mathfrak{F})$ are normal, and so $[\mathfrak{M}, \mathfrak{P}] \triangleleft \mathfrak{M}$. This is false, as we have already seen, and so $\mathfrak{M} \nsubseteq \boldsymbol{Z}\left(\mathfrak{Y}_{2}\right)$. Thus, as \mathfrak{P} acts without fixed points on $\mathfrak{K}_{1} / \mathfrak{B}$, we get that $\mathfrak{K}_{1}^{\prime}=3$. If $Z\left(\mathfrak{K}_{1}\right) \supset 3$, then $\mathfrak{K}_{1}=\mathfrak{W} \cdot Z\left(\mathfrak{F}_{1}\right)$ is abelian. This is false, and so $Z\left(\mathfrak{F}_{1}\right)=3$, whence \mathfrak{F}_{1} is extra special. Since \mathfrak{F} exists, \mathfrak{F}_{1} is the central product of two quaternion groups.

Since $[I, \mathfrak{F}] \subset \mathfrak{X}_{1}$, it follows that $[I, \mathfrak{F}]$ contains no elementary subgroup of order 8, and so I fixes both the quaternion subgroups of \mathfrak{F}_{1}. We assume without loss of generality that I inverts \mathfrak{F}. This then implies that $\left[\mathfrak{F}_{1}, I\right]$ is abelian of type (2,4), and so $\left[\mathfrak{F}_{1}, I\right]=[\mathfrak{Z}, \mathfrak{X}]$. Let $\mathfrak{F}_{2}=C_{\mathfrak{s}}(\mathfrak{F})$, so that $\mathfrak{I}_{2}=\mathfrak{K}_{1} \mathfrak{F}_{2}$, and \mathfrak{F}_{2} admits I, while $\mathfrak{g}_{1} \cap \mathfrak{F}_{2}=3$. As we saw in a previous argument, $N(\mathfrak{F})$ contains no non cyclic abelian subgroup of order 8 , and since $\left[\mathfrak{F}_{2}, I\right] \subseteq[\mathfrak{Z}, \mathfrak{x}] \subseteq \mathfrak{F}_{1}$, it follows that $\left[\mathfrak{K}_{2}, I\right] \subseteq 3$. Since \mathfrak{F}_{2} is either cyclic or generalized quaternion, it follows that $\left\langle\mathfrak{H}_{2}, I\right\rangle$ contains a non cyclic abelian subgroup of order 8 unless \mathfrak{K}_{2} is cyclic of order at most 4 . So \mathfrak{K}_{2} is cyclic, and $\left|\mathfrak{K}_{2}\right| \leqq 4$.

Suppose $\left|\mathfrak{K}_{2}\right|=4$. Then $|\mathfrak{I}|=2^{6},|\mathfrak{I}|=2^{7},|\mathfrak{R}|=2^{6} . \quad$ Thus, \mathfrak{Q}
 centralizes $\mathfrak{\Re} / \mathfrak{X}_{1}$, whence $[\Omega, \mathfrak{N}]=\mathfrak{X}_{1}$. Let $\mathfrak{X}_{2}=C_{\mathfrak{R}}(\mathfrak{n})$, so that $\left|\mathfrak{X}_{2}\right|=4$, $\mathfrak{X}_{1} \cap \mathfrak{X}_{2}=1$, whence \mathfrak{X}_{2} is cyclic of order 4. But \mathfrak{X}_{2} stablizes the chain $\mathfrak{X}_{1} \supset \mathfrak{U} \supset 1$, and so \mathfrak{X}^{0} is forced to centralize \mathfrak{X}_{1}. This is false, since $\mathfrak{X}^{\prime} \neq 1$. So $\left|\mathfrak{F}_{2}\right|=2$. Since $\mathfrak{S}_{2} \supseteq 3$, we conclude that $\mathfrak{K}_{2}=3$, and so $\mathfrak{Y}_{1}=\mathfrak{K}=\mathfrak{N}_{1} \circ \mathfrak{N}_{2}$, where \mathfrak{N}_{i} is a quaternion group of order 8, $i=1,2$. Also, $\mathfrak{I}=\mathfrak{E}\langle I\rangle$. Since $|\mathfrak{I}|=2^{\boldsymbol{6}}$, it follows that $\mathfrak{X}=\mathfrak{R}$, and since X^{0} inverts $\mathfrak{X}_{\mathfrak{1}}$, the isomorphism type of \mathfrak{X} is uniquely determined. It is straightforward to check that \mathbb{C} has more than 1 class of involutions, and so the theorem of Brauer-Fong [11] implies that $\mathbb{C} \cong \cong M_{12}$, which is false. The proof is complete.

Since $\mathfrak{X}^{\prime}=1$, we see that \mathfrak{X} is elementary of order 2^{4} or 2^{5}.

For each conjugate \mathfrak{W}^{*} of \mathfrak{F}, define $Z^{*}\left(\mathfrak{W}^{*}\right)$ to be the unique central involution in $N\left(\mathfrak{W}^{*}\right)$. Thus, $Z^{*}(\mathfrak{W})=Z$.

Now \mathfrak{M} acts on \mathscr{F}, the set of involutions of \mathfrak{F}, and on \mathscr{H}, the set of hyperplanes of \mathfrak{M}. In its action on $\mathscr{F}, \mathfrak{M}$ has two orbits, of sizes 1 and 6 ; and in its action on $\mathscr{H}, \mathfrak{M}$ has two orbits, of sizes 3 and 4 , and \mathfrak{U} is in an orbit of size 3 . For each conjugate \mathfrak{W}^{*} of \mathfrak{N}, let $\mathscr{U}\left(\mathfrak{W}^{*}\right)$ be the orbit of size 3 of $N\left(\mathfrak{W}^{*}\right)$ on the hyperplanes of \mathfrak{W}^{*}.

Lemma 18.16. If \mathfrak{Z} is a hyperplane of \mathfrak{M}, and $\mathfrak{B} \nsubseteq \mathfrak{V}$, then $N(\mathfrak{Z}) \subseteq \mathfrak{M}$.

Proof. Let $\mathbb{R}=N(\mathfrak{l}), \mathbb{R}_{1}=\boldsymbol{N}_{\mathfrak{M}}(\mathfrak{l l})$. Since $\boldsymbol{A}_{\mathfrak{M}}(\mathfrak{l l})=$ Aut $(\mathfrak{\Re})$, it suffices to show that $C(\mathfrak{R}) \subseteq \mathfrak{M}$. In any case, $\boldsymbol{C}(\mathfrak{Z})$ is a 2 -group, and $\boldsymbol{C}_{\mathfrak{M}}(\mathfrak{l})=\boldsymbol{C}_{\mathfrak{M}}(\mathfrak{M}) \triangleleft \mathfrak{M}$. Since $N\left(C_{\mathfrak{M}}(\mathfrak{H})\right) \subseteq \mathfrak{M}$, the lemma follows.

Note next that \mathfrak{U} is the unique normal four-subgroup of \mathfrak{N}, and so if \mathfrak{X}^{*} is a conjugate to \mathfrak{X} in $\mathfrak{C b}$, define $\mathfrak{U}^{*}\left(\mathfrak{X}^{*}\right)$ to be the unique normal 4-subgroup of $N\left(\mathfrak{X}^{*}\right)$, so that $\mathfrak{u}^{*}(\mathfrak{X})=\mathfrak{U}$.

If \mathfrak{U}^{*} is a conjugate of \mathfrak{u}, and $U \in \mathfrak{U}^{* \sharp}$, set $\mathfrak{W}_{U}\left(\mathfrak{U}^{*}\right)=\mathfrak{U}^{* C(U)}$, so that $\mathfrak{W}_{U}\left(\mathfrak{H}^{*}\right)$ is conjugate to \mathfrak{W}.

Lemma 18.17. If \mathfrak{W}^{*} is a conjugate of \mathfrak{B} in $\mathfrak{B S}$ and $Z \in \mathfrak{B}^{*}$, then $\left[\mathfrak{W}^{*}, \mathfrak{u}\right]=1$.

Proof. Let $\mathfrak{W}^{*}=\mathfrak{W}^{x}$, so that $Z^{X^{-1}} \in \mathfrak{M}$. If $Z^{x-1}=Z$, then $X^{-1} \in C(Z)=\mathfrak{M}$, so $X \in \mathfrak{M}, \mathfrak{W}^{x}=\mathfrak{W}$, and $[\mathfrak{M}, \mathfrak{M}]=1$. If $Z^{x-1} \neq Z$, then $Z^{x^{-1}}=U^{M}$ for some M in \mathfrak{M}, since \mathfrak{M} is transitive on $\mathfrak{W}-3$. Also, there is N in \mathfrak{N} such that $U=Z^{N}$, so $Z^{X-1}=Z^{N M}$, whence $N M X \in$ $\boldsymbol{C}(Z)=\mathfrak{M}$. Since $N M X=M_{1} \in \mathfrak{M}$, we have $X=M^{-1} N^{-1} M_{1}$, and $\mathfrak{W}^{*}=$ $\mathfrak{W}^{x}=\mathfrak{W}^{N^{-1} M_{1}}$,

$$
\begin{aligned}
{\left[\mathfrak{W}^{*}, \mathfrak{U}\right] } & =\left[\mathfrak{W}^{N^{-1} M_{1}}, \mathfrak{U}\right] \subseteq\left[\mathfrak{W}^{N^{-1} M_{1}}, \mathfrak{W}\right]=\left[\mathfrak{W}^{N^{-1}}, \mathfrak{W}\right]^{M_{1}} \\
& \cong[\mathfrak{X}, \mathfrak{X}]^{M_{1}}=1 .
\end{aligned}
$$

Lemma 18.18. If $\mathfrak{W}^{*} \in \operatorname{ccl}_{\mathscr{B}}(\mathfrak{W})$ and $\mathfrak{W}^{*} \cap \mathfrak{U} \neq 1$, then $\left[\mathfrak{B}^{*}, \mathfrak{N}\right]=1$.
Proof. Choose $Y \in \mathfrak{W}^{*} \cap \mathfrak{U}, Y \neq 1$. Then $Y^{N}=Z$ for some N in \mathfrak{R}, so that $Z \in \mathfrak{W}^{* N}$, and $1=\left[\mathfrak{W}^{* N}, \mathfrak{u}\right]=\left[\mathfrak{W}^{*}, \mathfrak{u}\right]^{N}$, so that $\left[\mathfrak{W}^{*}, \mathfrak{u}\right]=1$, as asserted.

Lemma 18.19. If $\mathfrak{B}^{*} \in \operatorname{ccl}_{\mathscr{E}}(\mathfrak{W}), \mathfrak{U}^{*} \in \operatorname{ccl}_{\mathscr{E}}(\mathfrak{U})$, and $\mathfrak{B}^{*} \cap \mathfrak{U}^{*} \neq 1$, then $\left[\mathfrak{N}^{*}, \mathfrak{U}^{*}\right]=1$.

Proof. This is an immediate consequence of Lemma 18.18.
Lemma 18.20. $\quad V\left(\operatorname{ccl}_{\odot}(\mathfrak{U}) ; \mathfrak{I}\right) \subseteq \boldsymbol{C}(\mathfrak{U})=\mathfrak{R}=\boldsymbol{O}_{2}(\mathfrak{R})$.

Proof. If $\mathfrak{U}^{*} \in \operatorname{ccl}_{\mathscr{E}}(\mathfrak{U})$, and $\mathfrak{U}^{*} \cong \mathfrak{I}$, then \mathfrak{U}^{*} acts on \mathfrak{U}, and is not faithful on \mathfrak{H}. Let $\mathfrak{U}_{0}^{*}=C_{\mathfrak{u}}(\mathfrak{U})$, and suppose by way of contradiction that \mathfrak{l}_{0}^{*} is of order 2 . Since $\mathfrak{U}^{*} \sim \mathfrak{U}$, and since $N(\mathfrak{l})$ is transitive on \mathfrak{U}^{*}, there is G in $\left(\mathbb{S}\right.$ such that $\mathfrak{u}^{* G}=\mathfrak{U}, \mathfrak{U}_{0}^{* G}=3$. Thus, $C\left(\mathfrak{U}_{0}^{*}\right)^{G}=\mathfrak{M}$, so that $C\left(\mathfrak{U}_{0}^{*}\right)=\mathfrak{M}^{G-1}$. And so $\mathfrak{U}^{* C\left(\mathfrak{u}_{0}{ }^{*}\right)}=\mathfrak{W}^{G^{-1}}$.

Now $1 \neq\left[\mathfrak{U}, \mathfrak{U}^{*}\right] \subseteq \mathfrak{W}^{G-1}$, since $\mathfrak{U} \subseteq C\left(\mathfrak{U}_{0}^{*}\right)$. Thus, $\mathfrak{B}^{G^{-1}} \cap \mathfrak{U} \neq 1$, and so $\left[\mathfrak{W}^{G-1}, \mathfrak{U}\right]=1$, against $\mathfrak{U}^{*} \subseteq \mathfrak{W}^{G^{-1}},[\mathfrak{U}, \mathfrak{U}] \neq 1$. The proof is complete.

Lemma 18.21. If \mathfrak{Y} is a four-subgroup of \mathfrak{M}, then $\boldsymbol{C}(\mathfrak{Y}) \subseteq \mathfrak{M}$, and if $Z \notin \mathfrak{Y}$, then $N(\mathfrak{Y}) \subseteq \mathfrak{M}$.

Proof. The lemma is clear if $Z \in \mathfrak{Y}$, and if $Z \notin \mathfrak{Y}$, this is just Lemma 18.16.

Lemma 18.22. $\left[\mathfrak{X}, \mathfrak{X}^{P}\right] \neq 1$, where $\mathfrak{F}=\langle P\rangle, \mathfrak{M}=\mathfrak{Z} \Re, P^{3}=1$.
Proof. Suppose false. Then $\left[\mathfrak{X}^{P}, \mathfrak{X}^{P^{2}}\right]=1=\left[\mathfrak{X}, \mathfrak{X}^{P}\right]$, so that $\mathfrak{Y}=$ $\left\langle\mathfrak{X}, \mathfrak{X}^{P}, \mathfrak{X}^{P^{2}}\right\rangle$ is elementary abelian. Since $\mathfrak{B}=V\left(\operatorname{ccl}_{\mathbb{B}}(\mathfrak{X}) ; \mathfrak{T}\right)\langle\mathfrak{R}$ it follows that \mathfrak{B} is not normal in \mathfrak{M}, and so $\mathfrak{B} \nsubseteq \mathscr{F}=\boldsymbol{O}_{2}(\mathfrak{M})$. There is therefore $\mathfrak{X}^{*} \in \operatorname{ccl}_{\mathscr{E}}(\mathfrak{X})$ such that $\mathfrak{X}^{*} \subseteq \mathfrak{I}, \mathfrak{X}^{*} \nsubseteq \mathfrak{K}$.

Choose X in $\mathfrak{F s}^{3}$ so that $\mathfrak{X}^{*}=\mathfrak{X}^{x}$. Since $\mathfrak{B} \subseteq C(\mathfrak{l l})$, we have $\mathfrak{U} \subseteq C\left(\mathfrak{X}^{X}\right)$. Set $\mathbb{R}^{X}=\mathfrak{X}^{X} \cap \boldsymbol{C}(\mathfrak{W})$, so that $\mathfrak{Z} \subset \mathfrak{X}$. Since \mathfrak{X}^{X} stabilizes the chain $\mathfrak{W} \supset \mathfrak{U} \supset 1$, we have $\left|\mathfrak{X}^{x}: \mathbb{R}^{X}\right| \leqq 4$.

Case 1. $\quad \mathfrak{R}^{X} \cap \mathfrak{U}^{X}=1$.
In this case, $\mathfrak{X}^{x}=\mathfrak{R}^{x} \times \mathfrak{U}^{x}$ so that $\mathfrak{W} \subseteq \boldsymbol{C}\left(\mathfrak{R}^{x}\right)$. Since \mathfrak{R}^{x} contains a four-group, it follows that $C\left(\mathfrak{R}^{X}\right)$ is a 2 -group. Since $C\left(\mathfrak{R}^{X}\right) \cap \mathfrak{N}^{x}$ is a normal subgroup of \mathfrak{R}^{x}, we conclude that $C\left(\mathfrak{R}^{x}\right) \subseteq \mathfrak{R}^{x}$. So $\mathfrak{M} \subseteq \mathfrak{R}^{x}$, and so \mathfrak{F} centralizes \mathfrak{U}^{x}, whence \mathfrak{F} centralizes \mathfrak{X}^{X}, which is false.

Case 2. $\quad \mathfrak{Z}^{X} \cap \mathfrak{U}^{X}=\mathfrak{U}_{0}^{X}$ has order 2.
Now $\mathfrak{B}^{x} \subseteq \mathfrak{R}$, so $\mathfrak{U}^{x} \subseteq \mathfrak{R}$, and if $\mathfrak{U}^{x} \subseteq \mathfrak{S c}$, then $\mathfrak{U}^{X P} \subseteq \mathfrak{N} \subseteq \mathfrak{I}$, so that $\mathfrak{U}^{X P} \subseteq \mathscr{R}$, by Lemma 18.20. But \mathfrak{U}_{0}^{X} has order 2 , so that \mathfrak{U}^{X} does not centralize $\mathfrak{M}=\left\langle\mathfrak{U}, \mathfrak{u}^{P^{-1}}\right\rangle$. Hence, \mathfrak{U}^{X} does not centralize $\mathfrak{u}^{P^{-1}}$, and so $\left[\mathfrak{U}^{X}, \mathfrak{u}^{P-1}\right] \neq 1$, which gives $\left[\mathfrak{U}^{X P}, \mathfrak{l}\right] \neq 1$. We conclude from this that $\mathfrak{l}^{X} \neq \mathfrak{N}$.

Set $\tilde{\mathfrak{W}}^{x}=\left(\mathfrak{U l}^{X}\right)^{C\left(U_{0}^{X}\right)}$, so that $\tilde{\mathfrak{B}} \in\left\{\mathfrak{M}, \mathfrak{W}^{2}, \mathfrak{W}^{Q^{-1}}\right\}$. Since $\mathfrak{W} \subseteq C\left(\mathfrak{H}_{0}^{X}\right)$, \mathfrak{W} normalizes $\tilde{\mathfrak{W}}^{x}$. Also, $\mathfrak{W} \cong\left\langle\mathfrak{W}, \mathfrak{W}, \mathfrak{W}^{2}{ }^{2}\right\rangle=\mathfrak{X}$, so $\tilde{\mathfrak{W}}^{x} \subseteq \mathfrak{X}^{x} \subseteq \mathfrak{N}$, and $\tilde{\mathfrak{W}}^{x}$ normalizes \mathfrak{F} so that $\left[\tilde{\mathfrak{W}}^{x}, \mathfrak{W}\right] \subseteq \tilde{\mathfrak{W}}^{x} \cap \mathfrak{M}$. Now $\mathfrak{N}^{x} \subseteq \tilde{\mathfrak{W}}^{x}$, and $\left[\mathfrak{U}{ }^{x}, \mathfrak{M}\right] \neq 1$, since $\mathfrak{U}{ }^{x} \nsubseteq \mathbb{R}^{x}$. Thus, $1 \neq\left[\tilde{\mathfrak{W}}^{x}, \mathfrak{M}\right] \subseteq \tilde{\mathfrak{W}}^{x} \cap \mathfrak{M}$, and we argue that $\left[\tilde{\mathfrak{B}}^{x}, \mathfrak{W}\right] \not \equiv \mathfrak{3}$. For if $\left[\tilde{\mathfrak{W}}^{x}, \mathfrak{W}\right]=3$, we get $\left[\mathfrak{U}{ }^{x}, \mathfrak{W}\right]=3$,
so that $\mathfrak{l}^{x} \subseteq \boldsymbol{C}_{\mathfrak{N}}(\mathfrak{W} / \mathfrak{B})=\mathfrak{S}$, which is false. Choose $A \in\left[\mathfrak{M}, \mathfrak{U}^{x}\right]-\mathfrak{Z}$. Since $\mathfrak{U}^{X} \subseteq \mathfrak{X}^{x} \subseteq \mathfrak{I}$, and since \mathfrak{I} stabilizes $\mathfrak{B} \supset \mathfrak{U} \supset 3 \supset 1$, we have $\left[\mathfrak{F}, \mathfrak{U}^{x}\right] \subseteq \mathfrak{U}$, so that $A \in \mathfrak{U}$.

Now $\tilde{\mathfrak{S}}^{x} \in\left\{\mathfrak{W}^{x}, \mathfrak{W}^{\varrho x}, \mathfrak{W}^{Q^{2} x}\right\}$. Choose i such that $\tilde{\mathfrak{W}}^{x}=\mathfrak{W}^{Q^{i x}}$.
Since $A \in \mathfrak{U}-3$, we have $A=Z^{Q^{j}}$ for some generator Q^{j} of $\mathfrak{\Omega}$. And $A \in \mathfrak{W}^{X}=\mathfrak{W}^{Q^{i X}}$, whence $Z^{Q^{j}} \in \mathfrak{B}^{Q^{i X}}$ and so $Z^{Q^{j} X^{-1} Q^{-i}} \in \mathfrak{W}$.

If $Z^{Q^{j} X^{-1} Q^{-i}}=Z$, then $Q^{j} X^{-1} Q^{-i} \in \mathfrak{M}$, so that $X \in \mathfrak{M M} \mathfrak{R}, X=N_{1} M_{1} N_{2}$, where $N_{1}, N_{2} \in \mathfrak{R}, M_{1} \in \mathfrak{M}$, and we find that

$$
\begin{aligned}
1 \neq\left[\mathfrak{W}^{x}, \widetilde{\mathfrak{M}}\right] & \cong\left[\mathfrak{X}^{N_{1} M_{1} N_{2}}, \mathfrak{W}\right]=\left[\mathfrak{X}^{M_{1} N_{2}}, \mathfrak{W}\right] \subseteq\left[\mathfrak{X}^{M_{1}, V_{2}}, \mathfrak{X}\right] \\
& =\left[\mathfrak{X}^{M_{1}}, \mathfrak{X}\right]^{N_{2}}=1 .
\end{aligned}
$$

So suppose then that $Z^{Q_{X}-1, l_{Q-i}}=U^{M}, U \in \mathfrak{l}, M \in \mathfrak{M}$. Now $U=Z^{N}$ for some N in \mathfrak{R}, so $Z^{Q^{j} X^{-1} Q^{-i}}=Z^{N M}$, and thus $\bar{M}=Q^{j} X^{-1} Q^{-i} M^{-1} N^{-1} \in C(Z)=\mathfrak{M}$, and so $Q^{i} X=M^{-1} N^{-1} \bar{M}^{-1} Q^{j}$, and

$$
\begin{aligned}
{\left[\tilde{\mathfrak{W}}^{X}, \mathfrak{W}\right] } & =\left[\mathfrak{W}^{Q^{i} X}, \mathfrak{W}\right]=\left[\mathfrak{W}^{M^{-1} N^{-1} \bar{M}^{-1} Q^{j}}, \mathfrak{W}\right] \\
& =\left[\mathfrak{W}^{N-1 \bar{M}^{-1} Q^{j}}, \mathfrak{W}\right] \\
& \cong\left[\mathfrak{X}^{\bar{M}^{-1}}, \mathfrak{W}^{Q^{-j}}\right]^{Q^{j}} \cong\left[\mathfrak{X}^{\bar{M}-1}, \mathfrak{X}\right]^{Q^{j}}=1 .
\end{aligned}
$$

Case 3. $\mathfrak{U}^{X} \subseteq \mathbb{B}^{X}$.
Here we have $\mathfrak{F} \subseteq C\left(\mathfrak{U}^{X}\right)=\mathfrak{R}^{X} \triangleleft N\left(\mathfrak{X}^{X}\right)$, so $\left[\mathfrak{X}^{X}, \mathfrak{M}\right] \subseteq \mathfrak{U}^{X}$, the containment holding since Ω stablizes $\mathfrak{X} \supset \mathfrak{l} \supset 1$. (And Ω stabilizes $\mathfrak{X} \supset \mathfrak{U} \supset 1$, since \mathfrak{K} stabilizes each of the chains $\mathfrak{W}^{Q^{i}} \supset \mathfrak{U} \supset 1$.) On the other hand, $\mathfrak{X}^{x} \subseteq \mathfrak{R}$ stabilizes $\mathfrak{W} \supset \mathfrak{H} \supset 1$, and so $\left[\mathfrak{X}^{x}, \mathfrak{W}\right] \subseteq \mathfrak{H}$.

Thus, $1 \neq\left[\mathfrak{X}^{X}, \mathfrak{W}\right] \subseteq \mathfrak{U}^{X} \cap \mathfrak{U}$. Choose $A \in \mathfrak{l}^{X} \cap \mathfrak{U}$, $A \neq 1$. Then $A^{X^{-1}} \in \mathfrak{I l}$ so that $A^{X^{-1}}=Z^{N}, N \in \mathfrak{R}$. Also, $A=Z^{N^{\prime}}, N^{\prime} \in \mathfrak{N}$, so $Z^{N^{\prime} X^{-1}}=Z^{N}$, and $N^{\prime} X^{-1} N^{-1}=M \in \mathfrak{M}$, so that $X^{-1}=N^{\prime-1} M N, X=N^{-1} M^{-1} N^{\prime}$, whence

$$
\left[\mathfrak{X}^{X}, \mathfrak{W}\right]=\left[\mathfrak{X}^{N^{-1} M_{M}-1_{N}}, \mathfrak{W}\right] \subseteq\left[\mathfrak{X}^{M C^{-1} N^{\prime}}, \mathfrak{X}\right] \subseteq\left[\mathfrak{X}^{M^{-1}}, \mathfrak{X}\right]^{N^{\prime}}=1,
$$

the desired contradiction.
Lemma 18.23. $\left[\mathfrak{X}, \mathfrak{X}^{P}\right]=3$.
Proof. It suffices to show that $\left[\mathfrak{X}, \mathfrak{X}^{P}\right] \subseteq \mathcal{B}$. Now $\mathfrak{F} \subset \mathfrak{X}$, and $\mathfrak{X}^{\prime}=1$, so $[\mathfrak{W}, \mathfrak{X}]=1$, and since $\mathfrak{W}=\mathfrak{W}^{P}$, we also have $\left[\mathfrak{W}, \mathfrak{X}^{P}\right]=1$. We claim that $\left[\mathfrak{X}^{P}, \mathfrak{X}\right] \subseteq \mathfrak{F}^{Q^{j}}$ for all j. Namely, $\mathfrak{X}^{P} \subseteq \mathscr{N}=C(\mathfrak{U})$, and $[\mathfrak{R}, \mathfrak{W}] \subseteq \mathfrak{U}$, since $\mathfrak{F} \triangleleft \mathfrak{R}$, and $|\mathfrak{W}: \mathfrak{U}|=2$. Since $\mathfrak{\mathfrak { O }}$ normalizes both \mathfrak{R} and \mathfrak{U}, we have $\left[\mathfrak{R}, \mathfrak{W}^{q^{i}}\right] \subseteq \mathfrak{U}$ for all i. Since \mathfrak{X} is generated by its subgroups $\mathfrak{B}^{Q^{i}}$, we conclude that $[\mathfrak{R}, \mathfrak{X}] \subseteq \mathfrak{H}$. Since $\mathfrak{X}^{P} \subseteq \Re$, we get $\left[\mathfrak{X}^{P}, \mathfrak{X}\right] \subseteq \mathfrak{U} \subseteq \mathfrak{W}^{Q^{j}}$ for all j. Since $\mathfrak{W} \cap \mathfrak{W}^{Q}=\mathfrak{U}$, we have in fact shown that $\left[\mathfrak{X}^{P}, \mathfrak{X}\right] \subseteq \mathfrak{U}$. Since $\mathfrak{X}^{P^{2}} \subseteq \mathfrak{N}$, symmetry gives $\left[\mathfrak{X}^{P^{2}}, \mathfrak{X}\right] \subseteq \mathfrak{l}$, and conjugation by P gives $\left[\mathfrak{X}, \mathfrak{X}^{P}\right] \subseteq \mathfrak{l}^{P}$, whence $\left[\mathfrak{X}^{P}, \mathfrak{X}\right] \subseteq \mathfrak{l} \cap \mathfrak{U}^{P}=\mathfrak{3}$, and we are done.

Lemma 18.24. If $r, s, t \in\{1,-1\}$, then $\mathfrak{M} Q^{r} P^{s} Q^{t} \mathfrak{M}=\mathfrak{M} Q P Q \mathbb{M}$.
Proof. Let $\mathfrak{K}_{0}=C(\mathfrak{W})$. Then $\mathfrak{S}_{\mathcal{L}} / \mathfrak{S}_{0}$ is a four-group which maps isomorphically onto the stability group of the chain $\mathfrak{W} \supset \Omega \supset 1$. Thus, \mathfrak{Y} acts non trivially on $\mathfrak{S}_{0} / \mathscr{S}_{0}$. Now $\mathfrak{K}_{0} \subseteq C(\mathfrak{l l})=\Omega$, and $\mathfrak{S} \cap \mathfrak{R} / \mathscr{S}_{0}$ is of order 2. Hence, there are elements T_{1}, T_{2} in $\mathfrak{K}-\mathfrak{K} \cap \Omega$ such that

$$
T_{1}^{P^{-1}} \in \mathscr{S} \cap \Re, \quad T_{2}^{P-1} \notin \mathscr{I} \cap \mathfrak{R}, \quad T_{2}^{P} \in \mathfrak{K} \cap \mathfrak{R}
$$

Since $T_{1} \notin$, we have $Q T_{1}=T_{1} Q^{-1} K_{1}^{\prime}$, where $K_{1}^{\prime} \in \Re$, whence $Q^{r} P Q^{t} T_{1}=$ $Q^{r} P T_{1} Q^{-t} K_{1}=Q^{r} T_{1}^{P^{-1}} P Q^{-t} K_{1}=K^{*} Q^{r} P Q^{-t} K_{1}$, where $K_{1}, K^{*} \in \Re$. So $\mathfrak{I} Q^{r} P Q^{t} \mathfrak{I}=T Q^{r} P Q^{-t} \mathfrak{I}$. Similarly, $T_{2} Q^{r} P Q^{t}=K_{2} Q^{-r} P Q^{t} K_{3}$, where K_{2}, $K_{3} \in \mathfrak{R}$, so that $\mathfrak{I} Q^{r} P Q^{t} \mathfrak{I}=\mathfrak{I} Q^{-r} P Q^{t} \mathfrak{I}$. Since $\mathfrak{I} \subseteq \mathbb{M}$, it suffices to show that $\mathfrak{M Q P Q M}=\mathfrak{M Q} P^{-1} Q \mathfrak{M}$. Now $\mathfrak{K}=\mathfrak{R}^{Q^{-1}} \neq \mathfrak{N}$, so we can choose $T \in \Re$ such that $Q T Q^{-1} \notin \mathscr{K}$. Set $U=Q T Q^{-1}$. Then $Q P Q T=Q P U Q$. Now $P U=H U P^{-1}$, where $H \in \mathscr{S}$, and so $Q P Q T=Q H U P^{-1} Q$. Now $H U \in \mathfrak{I}$, and so $\mathfrak{I} Q(H U)=\mathfrak{I} Q$ or $\mathfrak{I} Q^{-1}$, according as $H U \in \mathfrak{R}$ or $H U \in$ $\mathfrak{I}-\Re$. Thus, $\mathfrak{I} Q P Q \mathfrak{I}=\mathfrak{T} Q^{f} P^{-1} Q \mathfrak{I}, f \in\{1,-1\}$. By the first part of the argument, the lemma follows.

Lemma 18.25. For all $Q_{1}, Q_{2} \in \mathfrak{Q}^{\sharp}, P_{1} \in \mathfrak{S}^{\sharp},\left[\mathfrak{W}, \mathfrak{W}^{Q_{1} P_{1} Q_{2}}\right]=3^{Q_{2}}$.
Proof. $\left[\mathfrak{W}, \mathfrak{W}_{Q_{1} P_{1} Q_{2}}\right] \subseteq\left[\mathfrak{X}, \mathfrak{X}^{Q_{1} P_{1} Q_{2}}\right]=\left[\mathfrak{X}, \mathfrak{X}^{P_{1}}\right]^{Q_{2}} \subseteq \mathfrak{B}^{Q_{2}}$, and so it suffices to show that $\left[\mathfrak{W}, \mathfrak{W}^{Q_{1} P_{1} Q_{2}}\right] \neq 1$.

If $\left[\mathfrak{M}, \mathfrak{W}_{Q_{1} P_{1} Q_{2}}\right]=1$, then for all $M, M^{\prime} \in \mathfrak{M}$, we have $\left[\mathfrak{W}, \mathfrak{W}^{M Q_{1} P_{1} Q_{2} M^{\prime}}\right]=1$, whence by the preceding lemma, $\left[\mathfrak{W}, \mathfrak{W}^{Q^{i} Q^{-j}}\right]=1$, if $i, j \in\{1,-1\}$. Hence, conjugation by Q^{j} gives $\left[\mathfrak{W}^{Q^{j}}, \mathfrak{M}^{\ell^{i} P}\right]=1$.

On the other hand, $\mathfrak{X}=\left\langle\mathfrak{W}, \mathfrak{W}^{Q}, \mathfrak{W}^{Q}\right\rangle, \mathfrak{X}^{P}=\left\langle\mathfrak{F}, \mathfrak{W}^{Q P}, \mathfrak{W}^{Q^{2} P}\right\rangle$. since $\mathfrak{X}^{\prime}=1$, we have $\left[\mathfrak{W}^{\varrho}, \mathfrak{W}\right]=1$ for all j. By the preceding paragraph, we conclude that if $j \in\{1,-1\}$, then $\mathfrak{W}^{Q^{j}}$ centralizes \mathfrak{X}^{P}. Since $\left[\mathfrak{X}, \mathfrak{X}^{P}\right] \neq 1$, we conclude that $\left[\mathfrak{W}, \mathfrak{X}^{P}\right] \neq 1$. Since $\mathfrak{W}^{\prime}=1$, this forces $\left[\mathfrak{W}, \mathfrak{W}^{e^{i P}}\right] \neq 1$ for some i. Since \mathfrak{F} normalizes \mathfrak{M}, we get $\left[\mathfrak{F}, \mathfrak{B}^{e^{i}}\right] \neq 1$, against $\left\langle\mathfrak{W}, \mathfrak{W}^{Q^{i}}\right\rangle \subseteq \mathfrak{X}$, and $\mathfrak{X}^{\prime}=1$. The proof is complete.

We now begin the construction of the final configuration of this section. Set $\mathfrak{F}=[\mathfrak{F}, \mathfrak{F}]$, so that $\mathfrak{F}=\mathfrak{F} \times 3$. Since $\mathfrak{l l}$ and \mathfrak{F} are distinct hyperplanes of \mathfrak{M}, it follows that $\mathfrak{U} \cap \mathfrak{F}=\langle U\rangle$ is of order 2 . Thus, there is a unique generator Q of Ω such that $Z^{Q}=U$.

Set $\mathbb{R}=\left\langle\mathfrak{W}, \mathfrak{W}^{Q}, \mathfrak{W}^{Q P}, \mathfrak{W}^{Q P^{2}}\right\rangle$. Since \mathfrak{P} normalizes \mathfrak{W}, we have $\left\langle\mathfrak{W}, \mathfrak{W}^{Q P^{i}}\right\rangle \subseteq \mathfrak{X}^{P^{i}}$, and so $\mathfrak{W} \subseteq Z(\Re)$, so that $\mathbb{Z} \subseteq C(\mathfrak{W}) \subseteq \mathfrak{F}, \mathbb{R}$ admits \mathfrak{F}, and if $\mathfrak{S}_{0}=C(\mathfrak{W})$, we have $\left[\mathfrak{W}^{Q}, \mathfrak{S}_{0}\right] \subseteq\left[\mathfrak{X}, \mathfrak{K}_{0}\right] \subseteq[\mathfrak{X}, \mathfrak{N}] \subseteq \mathfrak{U} \subseteq \mathfrak{W}$. Thus, $\mathfrak{K}_{0} \subseteq N(\mathbb{Z})$. If $W \in \mathfrak{W}-\mathfrak{l}$, then $\mathbb{R}=\left\langle\mathfrak{F}, W^{Q}, W^{Q P}, W^{Q P^{2}}\right\rangle$, and $\left[W^{Q}, W^{Q P}\right],\left[W^{Q}, W^{Q P^{2}}\right],\left[W^{Q P}, W^{Q P^{2}}\right] \in \mathfrak{3}$. Hence, $|\mathfrak{R}| \leqq 2^{6}$, and $\mathfrak{Z}^{\prime}=3$. Thus, \mathfrak{F} is a direct factor of \mathbb{R}, so $\mathbb{R}=\mathfrak{F} \times \mathbb{R}_{0}$, where \mathfrak{R}_{0} admits \mathfrak{F}. If $\left|\Omega_{0}\right|=8$, then $\Omega_{0} \cong D_{8}$, and so \mathfrak{F} centralizes Ω_{0}. This is false, since $C(\mathfrak{P})$ contains no four-group. So $\left|\mathbb{R}_{0}\right|=16$. Since Ω_{0} is generated by
involutions, we have $\boldsymbol{C}_{\mathfrak{R}_{0}}(\mathfrak{F})=\mathfrak{B}^{1} \supset \mathfrak{B}$, so that \mathfrak{B}^{1} is cyclic of order 4 . Let $\Omega_{1}=\left[\Omega_{0}, \mathfrak{F}\right]$, so that $\Omega_{1}^{\prime}=\mathfrak{\Omega}$, and \mathfrak{F} acts faithfully on Ω_{1}. Hence, Ω_{1} is a quaternion group. Also, Ω_{0} is a central product of Ω_{1} and Ω^{1}.

Now $\left[\mathfrak{M}, \mathfrak{W}^{Q P Q}\right]=\mathfrak{3}^{Q} \neq \mathfrak{B}$, and so $\mathfrak{W}^{Q P Q} \not \equiv \mathfrak{F}$, as \mathfrak{S} stabilizes $\mathfrak{W} \supset$ $3 \supset 1$. Since $\mathfrak{W}^{2 P} \subseteq \mathbb{Z} \subseteq \mathfrak{K} \triangleleft \mathfrak{L}$, we have $\mathfrak{W}^{Q P} \subseteq \Re$, and so $\mathfrak{W}^{P P Q} \subseteq \mathfrak{R}$.

The crucial step is to show that $\mathfrak{W}^{Q^{P Q}}$ normalizes \mathbb{R}. Recall that $\mathfrak{B}=\mathfrak{F} \times \mathfrak{B}$, where $\mathfrak{F}=[\mathfrak{M}, \mathfrak{P}]$. Let $\mathfrak{M}_{1}=\boldsymbol{N}_{\mathfrak{M}}(\mathfrak{F})$. The number of conjugates of \mathfrak{F} in \mathfrak{M} is 4 , and so $\left|\mathfrak{M}: \mathfrak{M}_{1}\right|=4$. Also $\mathfrak{S}_{0}=C(\mathfrak{W}) \subseteq \mathfrak{M}_{1}$, and $\mathfrak{F} \subseteq \mathfrak{M}_{1}$, and so $\left|\mathfrak{M}_{1}: \mathfrak{F} \mathfrak{S}_{0}\right|=2$.

Now $\left[\mathfrak{F}, \mathfrak{W}^{Q P Q}\right] \subseteq\left[\mathfrak{M}, \mathfrak{W}^{Q P Q}\right]=\mathfrak{3}^{Q} \cong \mathfrak{F}$, by our choice of Q, and so $\mathfrak{B}^{Q P Q} \subseteq \boldsymbol{N}_{\mathfrak{m}}(\mathbb{F})$. Since $\mathfrak{W}^{Q P Q} \nsubseteq \mathfrak{S}$, we conclude that $\mathfrak{M}_{1}=\mathfrak{S}_{2} \mathfrak{W}^{Q P Q} \mathfrak{B}$. Since $\mathfrak{W}^{Q P Q} \subseteq \mathscr{R}$, it follows that $\mathfrak{W}^{Q P Q}$ normalizes both \mathfrak{F} and \mathfrak{W}^{2}. Thus, $\left\langle\mathfrak{W}, \mathfrak{W}^{Q}\right\rangle^{\mathfrak{M}_{1}}=\left\langle\mathfrak{W}, \mathfrak{W}^{Q}\right\rangle^{\mathfrak{B}_{0} \mathfrak{B}}=\left\langle\mathfrak{W}, \mathfrak{W}^{Q}\right\rangle^{\mathfrak{B}}=\mathbb{R} . \quad$ So $\quad \mathbb{Z} \triangleleft \mathfrak{M}_{1}, \quad$ and $\quad \mathfrak{W}^{Q P Q}$ normalizes \mathfrak{R}.

Choose $I \in \mathfrak{F}^{Q P Q}-\mathfrak{U}^{Q P Q}$. Now $\mathfrak{U}^{Q P Q}=\mathfrak{H}^{P Q} \subseteq \mathfrak{B}^{Q} \subseteq \mathfrak{S c}$, and so $\mathfrak{l}^{Q P Q}=$ $\mathfrak{B}^{Q P Q} \cap \mathfrak{F}$, and $I \in \mathfrak{I}-\mathscr{F}$. Since $\mathfrak{F} \subseteq N(Z(\mathbb{R}))$, it follows that $O_{2}(N(Z(\Omega)))=\mathscr{S}_{\mathcal{C}} \cap N(\boldsymbol{Z}(\Omega))$. Hence, I inverts some S_{3}-subgroup \mathfrak{P}^{*} of $N(Z(\mathfrak{R}))$. Set $\mathfrak{D}=\left\langle\mathfrak{P}^{*}, I\right\rangle$. Thus, \mathfrak{D} acts on $Z(\mathbb{Z})$, and $Z(\mathfrak{R})$ is of type $(2,2,4)$. Since $C_{8}(\mathfrak{P})=\mathfrak{R}^{1}$ is cyclic of order 4, it follows that $C_{\&}\left(\mathfrak{P}^{*}\right)=$ $\left\langle L^{*}\right\rangle$, where L^{*} is of order 4. Also, as I inverts \mathfrak{P}^{*}, I normalizes $\left\langle L^{*}\right\rangle$. Since $N(\mathfrak{F})$ has no non cyclic abelian subgroup of order 8 , it follows that I inverts L^{*}. Since $L^{* 2}=Z$, we have $\left[I, L^{*}\right]=Z$. On the other hand, $\mathfrak{u}^{Q P Q} \cong \mathfrak{W}^{Q} \cong \mathfrak{R}$, so $\boldsymbol{Z}(\mathfrak{Z}) \subseteq \boldsymbol{C}\left(\mathfrak{U}^{Q P Q}\right)=\mathfrak{\Re}^{Q^{P Q}}$. . Since Ω stabilizes $\mathfrak{W} \supset \mathfrak{U} \supset 1$, we conclude that $\left[\boldsymbol{Z}(\mathbb{Z}), \mathfrak{W}^{Q P Q}\right] \subseteq \mathfrak{U}^{Q P Q}$. Hence, $Z \in \mathfrak{l}^{Q P Q}=\mathfrak{u}^{P Q}$. Also, of course, $Z^{P Q}=Z^{Q} \in \mathfrak{U}^{P Q}$, and so $\mathfrak{u}^{P Q}=\left\langle Z, Z^{Q}\right\rangle=\mathfrak{U}$. Hence, $\mathfrak{l}=\mathfrak{l}^{P}$, which is false. This completes a proof that

$$
\begin{equation*}
\mathscr{M}(\mathfrak{I}) \text { contains an element of order }>|\mathfrak{I}| \cdot 3 . \tag{18.1}
\end{equation*}
$$

19. Another exceptional case.

Hypothesis 19.1. If \mathbb{Z} is a solvable subgroup of (\mathbb{S}) which contains \mathfrak{Z} properly, then $f(\mathfrak{R}) \leqq 1$.

All results of this section are proved under Hypothesis 19.1.
Lemma 19.1. (a) If \mathbb{Z} is a 2-local subgroup of G, then $|\mathbb{R}|_{2^{\prime}}$ divides 15.
(b) There is precisely one element of $\mathscr{M}(\mathfrak{I})$ of order divisible by 5.

Proof. Lemmas 5.53, 5.54, and Hypothesis 19.1 imply that (a) holds. By (a) and the results of $\S 18$, there is at least one element of $\mathscr{M}(\mathfrak{2})$ of order divisible by 5 .

Suppose \mathfrak{F} is a subgroup of \mathbb{C} of order 5 and $\mathbb{B}=\mathfrak{I} \mathfrak{P}$ is a group.

By Lemma 5.53 and its proof, we have

$$
\mathfrak{R}=(\mathfrak{R} \cap C(Z(\mathfrak{Z}))) \cdot(\mathbb{Z} \cap N(J(\mathfrak{I})))=\left(\left\{\cap C\left(Z\left(J_{1}(\mathfrak{I})\right)\right)\right) \cdot(\mathbb{R} \cap N(J(\mathfrak{Z}))) .\right.
$$

Thus, if $J(\mathfrak{T}) \nexists \mathbb{S}$, then $f(\mathbb{R}) \geqq 2$. By Hypothesis 19.1, we conclude that $J(\mathfrak{T}) \triangleleft \mathbb{R}$. So $M(N(J(\mathfrak{T}))$) is the unique element of $\mathscr{M}(\mathfrak{V})$ of order divisible by 5.

From now on, let \mathfrak{M} be the unique element of $\mathscr{M}(\mathfrak{T})$ of order divisible by 5 , and let $\mathfrak{S}=\boldsymbol{O}_{2}(\mathfrak{M})$. Let \mathfrak{D} be a S_{2}-subgroup of \mathfrak{M}, so that $|\mathfrak{D}|=5$ or 15 . Let $\mathfrak{C}=\Omega_{1}\left(\boldsymbol{R}_{2}(\mathfrak{M})\right)$. Let \mathfrak{F} be the subgroup of \mathfrak{D} of order 5 , and let $\mathfrak{F}_{0}=[\mathfrak{F}, \mathfrak{F}]$.

Lemma 19.2. (a) $\mathfrak{F} \cong N(Z(J(\mathfrak{T})))$.
(b) $\mathfrak{B} \nsubseteq N(Z(\mathfrak{T})), \mathfrak{F} \nsubseteq N\left(Z\left(J_{1}(\mathfrak{T})\right)\right)$.
(c) $\left|\mathfrak{F}_{0}\right|=2^{4}$.

Proof. (a) and (b) follow from the proof of Lemma 19.1 (b). Since (b) holds, we have $\mathfrak{F}_{0} \neq 1$. Since $\mathfrak{E} \mathfrak{F} \triangleleft \mathfrak{M}$, (b) also implies that $J_{1}(\mathfrak{I}) \not \equiv \boldsymbol{O}_{2}(\mathfrak{T} \mathfrak{P})$, which then implies that (c) holds.

Lemma 19.3. If $\mathfrak{R} \in \mathscr{M}(\mathfrak{T})$, and $\mathfrak{N} \neq \mathfrak{M}$, then \mathfrak{N} has an element of order 6.

Proof. Let \mathfrak{Q} be a $S_{2^{\prime}}$-subgroup of $\mathfrak{\Re}$. Then $|\mathfrak{Q}|=3$, by Lemma 19.1. Let $\mathfrak{\Omega}=\boldsymbol{O}_{2}(\mathfrak{R})$. Suppose by way of contradiction that $\boldsymbol{C}_{\mathfrak{R}}(\mathfrak{Q})=\mathfrak{\Omega}$.

Since $N(J(\mathfrak{I})) \subseteq \mathfrak{M}$, we have $J(\mathfrak{T}) \nsubseteq \Re$. Hence, $Z(\Re)$ is a fourgroup, and so \Re is special. Hence, $\mathfrak{I} / \mathfrak{N}^{\prime}$ is elementary abelian. This implies that $\boldsymbol{C}_{\boldsymbol{\varkappa}}\left(\mathfrak{F}_{0}\right)$ has index 2 in \mathfrak{I}. Hence, $\mathfrak{F}_{0} \subseteq \Re$. But \Re is special, $Z(\Omega)$ is a four-group, and Ω acts without fixed points on Ω, so that $\left|\Re: C_{\Omega}(U)\right|=4$ for every non central involution U of Ω. This contradiction completes the proof.

Lemma 19.4. One of the following holds:
(a) $\mathfrak{P}=\mathfrak{D}$ is of order 5 .
(b) $\mathscr{M}(\mathfrak{T})=\{\mathfrak{M}, \mathfrak{R}\}$, where $\mathfrak{N}=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{T})), \boldsymbol{Z}(\mathfrak{T})$ is cyclic, and $\boldsymbol{C}(\mathfrak{B})$ is a 2-group for every four-subgroup \mathfrak{B} of (S).

Proof. Suppose $\mathfrak{P} \subset \mathfrak{D}$, so that $\mathfrak{D}=\mathfrak{S} \times \mathfrak{\Omega}$, where $|\mathfrak{Q}|=3$. We argue that \mathfrak{M} has an element of order 6. Suppose false. Then $\mathfrak{M} / \mathfrak{K}$ is a dihedral group of order 30 which acts faithfully on ξ_{0}. This is false, since elements of GL(4,2) of order 15 are not real. So \mathfrak{M} has an element of order 6.

Choose $\mathfrak{R} \in \mathscr{M}(\mathfrak{I}), \mathfrak{R} \neq \mathfrak{M}$, so that $\mathfrak{R}=\mathfrak{T} \mathfrak{R},|\mathfrak{R}|=3$. Let $\mathfrak{R}=$ $O_{2}(\mathfrak{R})$, and let $\mathfrak{K}_{0}=O_{2}(\mathfrak{R} \mathfrak{Q})$. Thus, $\mathfrak{S}_{0} \in N^{*}(\mathfrak{Q} ; 2), \mathfrak{R} \in N^{*}(\mathfrak{R} ; 2), C_{\mathfrak{S}_{0}}(\mathfrak{N}) \neq 1$, $C_{\Omega}(\Re) \neq 1$. Since \mathfrak{K}_{c} and \mathfrak{R} are not (S)-conjugate, we conclude that
S_{3}-subgroups of (GS are not cyclic. Hence, $\boldsymbol{C}(\mathfrak{B})$ is a 2-group for every four-subgroup \mathfrak{B} of $\mathfrak{C S}$. In particular, if $\left|\mathfrak{F}_{0}: \mathfrak{F}_{1}\right|=2$, then $C\left(\mathfrak{F}_{1}\right)$ is a 2-group. Since $\boldsymbol{C}_{\mathfrak{m}}\left(\mathscr{F}_{1}\right)=\boldsymbol{C}\left(\mathfrak{F}_{0}\right)=\mathfrak{S}$, and $N(\mathfrak{S})=\mathfrak{M}$, we conclude that $\boldsymbol{C}\left(\mathfrak{F}_{1}\right)=\boldsymbol{C}_{\mathfrak{m}}(\mathfrak{F})=\mathfrak{F}$.

Let $\mathfrak{F}=\boldsymbol{V}\left(\operatorname{ccl}_{\mathscr{E}}\left(\mathfrak{F}_{0}\right) ; \mathfrak{I}\right)$. Since $\boldsymbol{C}\left(\mathfrak{F}_{0}\right)=\boldsymbol{C}\left(\mathfrak{F}_{1}\right)$ for every hyperplane \mathfrak{F}_{1} of \mathfrak{F}_{0}, we get $\mathfrak{W} \triangleleft \mathfrak{M}$. Hence, $\mathfrak{F} \nexists \mathfrak{R}$, and so \mathfrak{N} centralizes $\boldsymbol{R}_{2}(\mathfrak{R})$, whence $\mathfrak{N}=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{T})$). Since $\boldsymbol{C}(\mathfrak{B})$ is a 2 -group for every four-subgroup \mathfrak{B} of $\mathbb{B}, Z(\mathfrak{I})$ is cyclic. The proof is complete.

Lemma 19.5. $\mathfrak{F}=\mathfrak{D}$.
Proof. Suppose false. Then $\mathfrak{D}=\mathfrak{P} \times \mathfrak{\Omega}$, where $|\mathfrak{Q}|=3$, and $\left(\mathfrak{D}\right.$ acts faithfully on \mathfrak{F}_{0}. Hence, $\mathfrak{S}=\boldsymbol{C}\left(\mathfrak{F}_{0}\right)$, and since $\boldsymbol{Z}(\mathfrak{V})$ is cyclic, $\left|\mathfrak{I} / \mathscr{S}_{2}\right|>2$. Since element of $G L(4,2)$ of order 15 are not real, it follows that $\mathfrak{I} / \mathfrak{N}$ is cyclic of order 4 . Thus, there is $T \in \mathfrak{I}$ such that

$$
P^{T}=P^{2}, \quad Q^{T}=Q^{-1}, \quad \mathfrak{F}=\langle P\rangle, \quad \mathfrak{\Omega}=\langle Q\rangle .
$$

Let $\mathfrak{R}=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{I}))=\mathfrak{I} \mathfrak{R}, \mathfrak{R}=\langle R\rangle, R^{3}=1$. Let $\mathfrak{H} \in \mathscr{K}(\mathfrak{I}), \mathfrak{U} \subset \mathfrak{F}_{0}$, and let $\mathfrak{W}=\mathfrak{U}^{N}=\mathfrak{u}^{\mathfrak{M}}=\left\langle\mathfrak{U}, \mathfrak{u}^{R}, \mathfrak{u}^{R^{2}}\right\rangle$. Also, let

$$
\mathfrak{R}=O_{2}(\mathfrak{R}), \quad \mathfrak{B}=V\left(\operatorname{ccl}_{\Phi}\left(\mathfrak{F}_{0}\right) ; \mathfrak{T}\right) .
$$

We argue that \mathfrak{W} is elementary of order 2^{3}. In any case, since $\mathfrak{3}=\Omega_{1}(\boldsymbol{Z}(\mathfrak{I})) \cap \mathfrak{U} \subseteq \boldsymbol{C}(\mathfrak{R})$, and since $\boldsymbol{C}(\mathfrak{l})$ is a 2 -group, we have $\mathfrak{U} \subset \mathfrak{W}$, $|\mathfrak{W}| \leqq 2^{4}$. If \mathfrak{W} is abelian, then since $C_{2 \mathcal{R}}(\mathfrak{R})$ contains no four-group, we have $|\mathfrak{W}|=2^{3}$. Suppose $\mathfrak{W}^{\prime} \neq 1$. Thus, $\left[\mathfrak{l}, \mathfrak{u}^{R}\right] \neq 1$. Since $[\mathfrak{\Re}, \mathfrak{U}]=3$, so also $\left[\Re, \mathfrak{u}^{R}\right]=3$. Choose $U \in \mathfrak{U}^{R}-3$. Then $\left|\Re: C_{\Omega}(U)\right|=2$, so $\left|\mathfrak{I}: C_{\mathfrak{z}}(U)\right| \leqq 2^{2}$, as $|\mathfrak{I}: \mathfrak{R}|=2$. But $U^{2}=1$, and so $U \in\left\langle\mathfrak{K}, T^{2}\right\rangle$, whence $U \in C(\mathfrak{U})$. This contradiction shows that $\mathfrak{W}=1,|\mathfrak{W}|=2^{3}$.

The crucial step is to show that $\boldsymbol{C}(\mathfrak{F}) \subseteq \mathfrak{M}$ for every 4 -subgroup \mathfrak{F} of \mathfrak{F}_{0}. In any case, $\boldsymbol{C}(\mathfrak{F}) \supseteq \mathfrak{F}, \boldsymbol{C}(\mathfrak{F})$ is a 2 -group, and $\boldsymbol{C}(\mathfrak{F})$ is not a S_{2}-subgroup of $\mathfrak{G S}$, as $Z(\mathfrak{I})$ is cyclic. So $\mathfrak{S} \triangleleft C(\mathfrak{F})$. Since $N(\mathfrak{K})=\mathfrak{M}$, we have $\boldsymbol{C}(\mathfrak{F}) \subseteq \mathfrak{M}$.

Since $\boldsymbol{C}\left(\mathfrak{F}_{1}\right)=\boldsymbol{C}\left(\mathfrak{F}_{0}\right)$ for every hyperplane \mathfrak{F}_{1} of \mathfrak{F}_{0}, we have $\mathfrak{B} \triangleleft \mathfrak{M}$. Hence, $\mathfrak{B} \nexists \mathfrak{R}$, so there is G in $\mathscr{F s}^{3}$ such that $\mathfrak{F}_{0}^{G} \subseteq \mathfrak{F}^{*} \subseteq \mathfrak{I}, \mathfrak{F}^{*} \nsubseteq \mathfrak{R}$.

Let $\Re_{0}=C(\mathfrak{B})$. Thus, $\mathscr{\Re} / \Omega_{0}$ is a four-group, and $\Re / \Re_{0} \cong \Sigma_{4}$, since \Re / \AA_{0} maps isomorphically onto the stability group of the chain $\mathfrak{W} \supset$ $3 \supset 1$. Let $\Re_{1} / \Re_{0}=Z\left(\mathfrak{T} / \Re_{0}\right)$. Since $\mathfrak{I}=\Re \cdot \mathfrak{F}^{*}$, it follows that $\mathscr{F}^{*} \cap$ $\Re \subseteq \Re_{1}$. Hence, $\mathfrak{F}^{*}=\mathfrak{F}^{*} \cap \Re_{0}$ contains a four-group. Since $\boldsymbol{C}\left(\mathfrak{F}^{*}\right) \supseteqq \mathfrak{M}$, and $C\left(\mathfrak{C}^{*}\right) \not \equiv \mathfrak{W}, \mathfrak{F}^{*}$ is a four-group. Let $\mathbb{R}^{*}=\mathfrak{F}^{*} \cap \Re$, so that $\mathfrak{F}^{*} \supset \mathfrak{R}^{*} \supset \mathfrak{F}^{*}$. Hence, $\left[\mathfrak{W}, \mathfrak{R}^{*}\right]=\mathfrak{Z}$, and $\left[\mathfrak{F}, \mathfrak{F}^{*}\right]=\mathfrak{W}^{*}$ is a four-group. Since $\mathfrak{W} \subseteq C\left(\mathfrak{F}^{*}\right) \subseteq \mathfrak{M}^{G}$, we get $\mathfrak{W}^{*} \subseteq \mathfrak{F}^{*}$, and so $\mathfrak{W}^{*}=\mathfrak{F}^{*}$. Hence $\Omega_{0} \subseteq C\left(\mathfrak{F}^{*}\right) \subseteq \mathfrak{M}^{G}$, and so $\left[\mathfrak{R}_{0}, \mathfrak{F}^{*}\right]=\mathfrak{F}^{*}$. This implies that \mathfrak{F}^{*} centralizes \Re_{0} / \mathfrak{W}, and so $\left[\Re, \Re_{0}\right] \cong \mathfrak{W}$, whence $\left[\Re, \Re_{0}\right]=[\Re, \mathfrak{W}]=\mathfrak{W}_{1}$ is a four-group, and so $\Re_{0}=\Re^{0} \times \mathfrak{W}_{1}$, where $\Re^{0}=C_{\Omega_{0}}(\Re)$. Since \Re^{0} contains no four-
group, it is either cyclic or generalized quaternion. We assume without loss of generality that $E^{*} \in \mathfrak{F}^{*}-\mathbb{R}^{*}$, and that E^{*} inverts \Re. Since [$\left.\mathfrak{\Re}^{0}, E^{*}\right] \cong \mathfrak{R}^{0} \cap \mathfrak{F}^{*}$, we get $\left[\Re^{0}, E^{*}\right] \subseteq 3$. Since $N(\Re)$ contains no non cyclic abelian subgroup of order 8 , it follows that $\left|\mathfrak{R}^{0}\right| \leqq 2^{2}$. Hence, $|\mathfrak{I}|=2 \cdot|\mathfrak{\Re}|=2^{3} \cdot\left|\Re_{0}\right|=2^{5}\left|\mathfrak{R}^{0}\right| \leqq 2^{7}$, and $|\mathfrak{K}| \leqq 2^{5}$. Thus, $\mathfrak{\Omega}$ centralizes $\mathfrak{g} / \mathfrak{E}_{0}$, and so $\mathfrak{g}=\mathfrak{E}_{0} \times \boldsymbol{C}_{\mathfrak{5}}(\mathfrak{Q})$. Since $\boldsymbol{Z}(\mathfrak{X})$ is cyclic, we have $\mathfrak{g}=\mathfrak{E}_{0}$, $|\mathfrak{Z}|=2^{6}$. Hence, $3=\mathscr{R}^{0}$ and $\mathfrak{T} / \mathscr{L}^{\prime}$ is elementary abelian. This is false, since $\mathfrak{Z} / \mathfrak{5} \cong Z_{4}$. The proof is complete.

Lemma 19.6. If \mathfrak{F} is any hyperplane of \mathfrak{F}_{0}, there is $P \in \mathfrak{F}^{*}$ such that $\boldsymbol{C}_{\text {mi }}\left(\mathfrak{F} \cap \mathfrak{F}^{P}\right)=\mathfrak{K}$.
 and if $I \in \mathscr{I}$, then $C_{⿷_{0}}(I)$ is a four-group. Since $C_{⿷_{0}}(\mathfrak{F})=1$, it follows that $\boldsymbol{C}_{\Phi_{0}}(I) \cap \boldsymbol{C}_{\varepsilon_{0}}(J)=1$ if I, J are distinct elements of $\mathscr{\mathscr { F }}$.

Let $\mathfrak{F}=\langle P\rangle$, and set $\mathfrak{F}_{i}=\mathfrak{F} \cap \mathfrak{F}^{p i}, i=1,2,3,4$. Then the \mathfrak{F}_{i} are four-subgroups of \mathfrak{F} and so $\mathfrak{F}_{i} \cap \mathfrak{F}_{j} \neq 1,1 \leqq i, j \leqq 4$. Thus, if $\mathfrak{W}_{i}=C_{\varepsilon_{0}}\left(I_{i}\right)$ where $I_{i} \in \mathscr{F}$, then $\mathfrak{F}_{1}=\mathfrak{F}_{2}=\cdots \mathfrak{F}_{4}$. But then

$$
\bigcap_{j=0} \mathscr{F}^{p j}
$$

is a four-subgroup of \mathfrak{E}_{0} which admits \mathfrak{F}. This is false, since $\boldsymbol{C}_{\varepsilon_{0}}(\mathfrak{F})=1$. The proof is complete.

Lemma 19.7. $\boldsymbol{C}(\mathfrak{F})=\boldsymbol{C}\left(\mathfrak{E}_{0}\right)=\mathfrak{1}$ for every hyperplane \mathfrak{F} of \mathfrak{F}_{0}.
Proof. Since $C_{\mathfrak{m}}(\mathfrak{F})=\mathfrak{F}$ and $N(\mathfrak{F})=\mathfrak{M}$, it follows that \mathfrak{F} is a S_{2}-subgroup of $\mathfrak{C}=\boldsymbol{C}(\mathfrak{F})$. Suppose $\mathfrak{C} \supset \mathfrak{K}$. Since $\mathfrak{M}=\boldsymbol{N}(\mathfrak{X})$ for every non identity characteristic subgroup of \mathfrak{s}, it follows that $\mathfrak{C}=\mathfrak{g} \subseteq$, where $|\mathfrak{S}|=3$. Since \mathfrak{F} contains a four-group, S_{3}-subgroups of $\mathfrak{C S}$ are of order 3 .

Choose $P \in \mathfrak{F}^{*}$ such that $\boldsymbol{C}_{\mathfrak{m}}\left(\mathfrak{F} \cap \mathfrak{F}^{P}\right)=\mathfrak{g}$. It follows that $\boldsymbol{C}(\mathfrak{F})=$ $\boldsymbol{C}\left(\mathfrak{F}^{P}\right)=\boldsymbol{C}\left(\mathfrak{F} \cap \mathfrak{F}^{P}\right)$. Hence, $P \in \boldsymbol{N}(\mathfrak{C})$. Let $\mathfrak{R}=\mathfrak{C} \mathfrak{F}, \mathfrak{Z}_{0}=\boldsymbol{O}_{2}(\mathfrak{R})$. Then $\left[\mathbb{R}_{0}, \mathfrak{F}\right]=[\mathfrak{K}, \mathfrak{P}]$, and $[\mathfrak{G}, \mathfrak{F}] \triangleleft \mathfrak{M},\left[\mathbb{R}_{0}, \mathfrak{F}\right] \triangleleft \mathfrak{R}$. Hence, $\mathfrak{R} \subseteq \mathfrak{M}$, the desired contradiction.

Lemma 19.8. $\mathscr{M}(\mathfrak{Z})=\{\mathfrak{M}, \mathfrak{R}\}$, where $\mathfrak{R}=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{I}))$.
Proof. Let $\mathfrak{B}=V\left(\operatorname{ccl}_{\varepsilon}\left(\mathfrak{E}_{0}\right) ; \mathfrak{T}\right)$. Since $\boldsymbol{C}(\mathfrak{F})=\boldsymbol{C}\left(\mathfrak{E}_{0}\right)$ for every hyperplane \mathfrak{F} of \mathfrak{E}_{0}, we have $\mathfrak{B} \triangleleft \mathfrak{M}$.
 $|\mathfrak{R}|=3|\mathfrak{Z}|$. Choose $G \in \mathbb{C}$ such that $\mathfrak{E}_{0}^{G} \cong \mathfrak{I}, \mathfrak{E}_{0}^{G} \nsubseteq \mathbb{R}=\boldsymbol{O}_{2}(\mathfrak{R})$. Since $|\mathfrak{R}: \mathfrak{R}|=2$, it follows that $Z(\Omega) \cong C\left(\Re \cap \mathfrak{F}_{0}^{\sigma}\right)=C\left(\mathfrak{S}^{G}\right)$. \quad oo $Z(\Re)=Z(\Re)$. The proof is complete.

Lemma 19.9. $\boldsymbol{O}_{2}(\mathfrak{\Re}) \not \equiv \boldsymbol{O}_{2}(\mathfrak{M})$.
Proof. Set $\mathfrak{R}=\boldsymbol{O}_{2}(\mathfrak{R}), \mathfrak{K}=\boldsymbol{O}_{2}(\mathfrak{M})$. Since $|\mathfrak{I}: \mathfrak{R}|=2$, and since $\mathfrak{R} \neq \mathfrak{S}$, we are done if $\left|\mathfrak{T}: \mathfrak{S}_{\mathcal{I}}\right|=2$. Suppose $|\mathfrak{T}: \mathfrak{K}|>2$, so that $\mathfrak{I} / \mathfrak{S c} \cong Z_{4}$. Suppose by way of contradiction that $\mathfrak{R} \supset \mathfrak{S}$. Since $J(\mathfrak{I}) \triangleleft \mathfrak{M}$, we have $J(\mathfrak{I})=J(\mathfrak{N})=J(\mathfrak{R}) \triangleleft\langle\mathfrak{M}, \mathfrak{R}\rangle$, which is false. The proof is complete.

Lemma 19.10. If $\mathfrak{I} \supseteq \mathfrak{R} \supseteq \mathfrak{S}$, then $N(\mathbb{R}) \subseteq \mathfrak{M}$.
Proof. If $\mathbb{Z}=\mathfrak{I}$ or $\mathfrak{Z}=\mathfrak{F}$, the lemma clearly holds. Suppose $\mathfrak{I} \supset \mathbb{R} \supset \mathfrak{K}$. Then $\mathbb{R} \neq \Re$, by Lemma 19.10, and $\mathfrak{I} \subseteq N(\mathbb{Z})$. This lemma now follows from Lemma 19.8.

Lemma 19.11. If $I \in \mathfrak{C}_{0}^{*}$, and \mathfrak{I}_{0} is a 2 -subgroup of $C(I)$, then $\mathfrak{I}_{0} \cap \mathfrak{M}$ is of index at most 2 in \mathfrak{I}_{0}.

Proof. Let \mathfrak{I}_{1} be a S_{2}-subgroup of $\boldsymbol{C}_{\mathfrak{m}}(I)$. By Lemma 19.10, \mathfrak{I}_{1} is a S_{2}-subgroup of $C(I)$. If $C(I) \cong \mathfrak{M}$, the lemma obviously holds. Suppose $C(I) \nsubseteq \mathfrak{M}$. Thus, $\mathfrak{C}=C(I)$ has order $\left|\mathfrak{N}_{1}\right| \cdot d$, where $d=3,5$ or 15.

Case 1. $\quad d=3$.
Since $\left|\mathfrak{I}_{1}: \boldsymbol{O}_{2}(\mathfrak{C})\right| \leqq 2$, and $\boldsymbol{O}_{2}(\mathfrak{C}) \subseteq \mathfrak{M}$, we get $\left|\mathfrak{I}_{0}: \mathfrak{I}_{0} \cap \boldsymbol{O}_{2}(\mathbb{C})\right| \leqq 2$, and the lemma follows.

Case 2. $d=5$ or 15 .
Let \mathfrak{P}_{1} be a subgroup of \mathfrak{C} of order 5 , and let $\mathbb{R}_{1}=\mathfrak{I}_{1} \mathfrak{F}_{1}$. Let \mathfrak{Z} be a maximal 2,5 -subgroup of \mathbb{S} containing \mathbb{R}_{1}. Thus, \mathbb{R} and \mathfrak{M} are (8)-conjugate. By Lemma 19.10, it follows that $\mathbb{B} \cap \mathfrak{M}$ contains a S_{2}-subgroup of \mathfrak{Z} and of \mathfrak{M}. Since $\mathfrak{I}=N(\mathfrak{T})$, we get that $\mathfrak{R}=\mathfrak{M}$.

Since $\mathbb{R}_{1} \subseteq \mathbb{R}=\mathfrak{M}$, and since $\mathfrak{C} \nsubseteq \mathbb{M}$, it follows that $\left|\mathfrak{C}: \mathbb{R}_{1}\right|=3$. Now \mathfrak{T}_{1} is permutable with $N_{\mathfrak{n}}\left(\mathfrak{F}_{1}\right)$, and $\mathfrak{M}=\mathfrak{T}_{1} \cdot N_{\mathfrak{m}}\left(\mathfrak{F}_{1}\right)$, since $\mathfrak{T}_{1} \supseteqq \mathfrak{S}_{2}$. Also, of course, \mathfrak{T}_{1} is permutable with $N_{\mathbb{®}}\left(\mathfrak{F}_{1}\right)$, and $\mathbb{C}=\mathfrak{I}_{1} \cdot N_{\mathbb{区}}\left(\mathfrak{F}_{1}\right)$. Let $\Re=\left\langle N_{\Re}\left(\Re_{1}\right), N_{⿷}\left(\Re_{1}\right)\right\rangle$, so that \Re is a solvable subgroup of \mathbb{C} permutable with \mathfrak{I}_{1}. Hence, $\Omega^{*}=\mathfrak{R}_{1}$ is a group. By a standard argument, Ω^{*} is also solvable, and so $\Omega^{*}=\mathfrak{M} \supseteq \mathfrak{C}$. The proof is complete.

It is now easy to show that Hypothesis 19.1 is not satisfied. We preserve the previous notation. Choose G in $\mathbb{C S}$ such that $\mathscr{F}_{0}^{G} \subseteq \mathfrak{R}$, $\mathfrak{F}_{0}^{G} \not \equiv \mathfrak{R}=\boldsymbol{O}_{2}(\mathfrak{R})$. Let $\mathfrak{F}_{0}^{G}=\mathfrak{F}_{0}^{G} \cap \mathfrak{R}$, a hyperplane of \mathfrak{F}_{0}^{G}. Let $\mathfrak{R}=\mathfrak{I} \Omega$, $\mathfrak{Q}=\langle Q\rangle, Q^{3}=1$, and let $\mathfrak{F}=\mathfrak{F}_{0}^{G Q}$. Thus, $\mathfrak{F} \subset \mathfrak{R} \subset \mathfrak{I}$, and since $\mathfrak{N}=$ $\left\langle\mathfrak{I}, \Im_{0}^{G Q}\right\rangle$, it follows that

$$
\begin{equation*}
\mathfrak{M} \cap \mathfrak{F}_{0}^{G Q}=\mathfrak{F} \tag{19.1}
\end{equation*}
$$

Let $\mathfrak{F}_{1}=\mathfrak{F} \cap \mathfrak{S}$. \quad Since $\mathfrak{I} / \mathscr{S}_{\varepsilon}$ is cyclic, $\left|\mathfrak{F}: \mathfrak{F}_{1}\right| \leqq 2$. If $\mathfrak{F}=\mathfrak{F}_{1}$, then $\mathfrak{F}_{0} \subseteq \boldsymbol{C}(\mathfrak{F})=\boldsymbol{C}\left(\mathfrak{F}_{0}^{G Q}\right)$, so that $\mathfrak{F}_{0}^{G Q} \subseteq \boldsymbol{C}\left(\mathfrak{F}_{0}\right) \subseteq \mathfrak{M}$, against (19.1). So $\left|\mathfrak{F}: \mathfrak{F}_{1}\right|=2$.

Let $\mathfrak{F}_{1} \times\langle F\rangle=\mathfrak{F}$. Thus, $\mathfrak{I}_{0}=\mathfrak{F}_{0} \mathfrak{F}$ is a 2 -subgroup of $C\left(\mathfrak{F}_{1}\right)$. By Lemma 19.11, \mathfrak{F}_{0} has a subgroup \mathfrak{F}_{1} of order 8 such that $\mathfrak{F}_{1} \subseteq N\left(\mathfrak{F}_{0}^{G Q}\right)$. Hence, $\left[\mathfrak{F}, \mathfrak{F}_{1}\right] \subseteq \mathfrak{F}_{0}^{G Q} \cap \mathfrak{F}_{0} \subseteq \mathfrak{F}$. Since $F \notin \mathfrak{S}_{2}$, there is an involution I in [F, \mathscr{F}_{1}]. By Lemma 19.11 applied to I, \mathscr{S}_{2} has a subgroup \mathscr{S}_{0} of index 2 which normalizes \mathfrak{F}_{0}^{G}. Hence, $\left[\mathfrak{S}_{0}, \mathfrak{F}\right] \subseteq \mathfrak{S}_{c} \cap \mathfrak{F} \subseteq \mathfrak{F}_{1}$, and so $|[\mathfrak{F}, \mathfrak{F}]| \leqq 2^{3}$. This implies that $[\mathfrak{F}, \mathfrak{F}]=\mathfrak{F}_{0}$, so $\mathfrak{K}=\mathfrak{K}^{0} \times \mathfrak{F}_{0}$, where $\mathfrak{S}^{\circ}=C_{\mathfrak{F}}(\mathfrak{F})$. \quad Since $\mathfrak{R}=C(Z(\mathfrak{I}))$, and $\mathfrak{S}^{0} \triangleleft \mathfrak{M}$, we conclude that $\mathfrak{S}^{0}=1$. So $|\mathfrak{I}|=2^{4}|\mathfrak{I}: \mathfrak{K}|$.

If $|\mathfrak{I} / \mathfrak{S}|=2$, then $\mathfrak{I} / \boldsymbol{Z}(\mathfrak{I})$ is abelian and so $\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{V}))=\mathfrak{R}$ is 2-closed. This is false, and so $\mathfrak{T} / \mathscr{S}_{2} \cong Z_{4}$.

Let $\mathfrak{F}^{0}=\left[\mathfrak{F}_{0}, \mathfrak{T}\right], \mathfrak{V}_{1}=\boldsymbol{N}_{\mathfrak{\Sigma}}(\mathfrak{P})$. Thus, $\mathfrak{I}_{1} \cong \mathfrak{T} / \mathfrak{F}, \mathfrak{I}=\mathfrak{F}_{0} \mathfrak{I}_{1}$, and $\boldsymbol{D}(T)=$ $\left\langle\mathscr{C}^{0}, T^{2}\right\rangle$, where $\mathfrak{I}_{1}=\langle T\rangle$. Since $|\mathfrak{I}: \mathfrak{\Re}|=2$, we have $\mathfrak{\Omega} \supset \boldsymbol{D}(\mathfrak{I})$, $|\Re: D(\mathfrak{I})|=2$. Hence, Ω is either $\left\langle\mathfrak{F}_{0}, T^{2}\right\rangle,\left\langle\mathfrak{F}^{0}, T\right\rangle$, or $\left\langle\mathfrak{F}^{0}, T^{2}, T E\right\rangle$ for some $E \in \mathfrak{F}_{0}-\mathfrak{F}^{0}$. Since $\mathfrak{F}_{0}=J(\mathfrak{2}) \nexists \mathfrak{R}$, the first possibility is excluded. Each of the remaining two possibilities has the property that the commutator quotient group is of type $(2,4)$, so these two groups do not have automorphisms of order 3. This contradiction shows that
(19.2) (5) contains a solvable subgroup \mathfrak{B} which contains \mathfrak{I} properly, and satisfies $f(\Omega) \geqq 2$.
20. The construction of ${ }^{2} \boldsymbol{F}_{4}(2)$ '. From $\S 19$, there is a solvable subgroup \mathbb{Z} of \mathbb{S} which contains \mathfrak{I} properly and satisfies $f(\mathbb{Z}) \geqq 2$. Set $\mathfrak{M}=M(\mathbb{Z})$.

Lemma 20.1. If $\mathfrak{R} \in \mathscr{M}(\mathfrak{Z})$ and $\mathfrak{R} \neq \mathfrak{M}$, then $|\mathfrak{R}|_{2^{\prime}}$ divides 15 .
Proof. Suppose false for \mathfrak{N}. Then \mathfrak{N} has a subgroup \mathfrak{R}_{1} which contains \mathfrak{I} properly and satisfies $f\left(\Omega_{1}\right) \geqq 2$. Thus, there is $i \in\{0,1,2\}$ such that $\mathfrak{ß}_{i} \triangleleft\left\langle\mathfrak{R}, \mathfrak{R}_{1}\right\rangle=\mathfrak{R}$, say. Hence, $\mathfrak{N}=M(\mathfrak{R})=\mathfrak{M}$. The proof is complete.

Set $3=\Omega_{1}\left(\boldsymbol{R}_{2}(\mathfrak{M})\right)$. The first task is the usual one: to show that $|3| \leqq 2^{2}$.

Lemma 20.2. One of the following holds:
(a) $|3| \leqq 4$.
(b) $\boldsymbol{C}(\mathfrak{Y}) \subseteq \mathfrak{M}$ for every hyperplane \mathfrak{Y} of 3 .

Proof. Suppose $|3| \geqq 8$, and \mathfrak{Y} is a hyperplane of 3 with $\mathfrak{C}=\boldsymbol{C}(\mathfrak{Y}) \nsubseteq \mathfrak{M}$. Set $\mathfrak{C}_{0}=\mathfrak{C} \cap \mathfrak{M}$. Let \mathfrak{F} be a S_{2}-subgroup of \mathfrak{M}.

Case 1. F centralizes 3 .

Since 3 is 2 -reducible in \mathfrak{M}, we conclude that $3 \subseteq Z(\mathfrak{M})$, and the lemma follows.

Case 2. $[\mathfrak{F}, 3] \neq 1$ and $\mathfrak{\Im}_{0}=C(3)$.
Let $\mathfrak{I}_{0}=\mathfrak{I} \cap \mathfrak{C}_{0}$. Then $\mathfrak{C}_{0} \triangleleft \mathfrak{M}$, and $\mathfrak{M} / \mathfrak{C}_{0}$ is not a 2 -group. Thus, $\mathfrak{M}=\mathfrak{S}_{0} \cdot N_{\mathfrak{M}}\left(\mathfrak{I}_{0}\right)$, and $N_{\mathfrak{M}}\left(\mathfrak{I}_{0}\right) \supset \mathfrak{I}$, whence $N_{\mathfrak{n}}\left(\mathfrak{I}_{0}\right) \in \mathscr{M}^{*}$. Hence, $N(\mathfrak{D}) \subseteq \mathfrak{M}$ for all non identity characteristic subgroups \mathfrak{D} of \mathfrak{I}_{0}. In particular, \mathfrak{I}_{0} is a S_{2}-subgroup of \mathfrak{C}. By Lemmas 5.53 and 5.54 , we conclude that $\left|\mathfrak{c}: \mathfrak{®}_{0}\right|=3$.

Let \mathfrak{Z} be a S_{3}-subgroup of \mathbb{C} permutable with \mathfrak{I}_{0} and let $\mathfrak{I}_{1}=\boldsymbol{O}_{2}\left(\mathfrak{I}_{0} \mathfrak{Z}\right)$. Then \mathfrak{I}_{1} is not characteristic in \mathfrak{I}_{0}, and so $\left|\mathfrak{I}_{0}: \mathfrak{I}_{1}\right|=2$. Since $N\left(\mathfrak{I}_{0}\right) \in \mathscr{M}^{*}$, it follows that there is X in $N_{\mathfrak{n}}\left(\mathfrak{I}_{0}\right)$ with $X \notin N\left(\mathfrak{I}_{1}\right)$. Let $\mathfrak{R}=\left\langle\mathfrak{\Im}, \mathfrak{c}^{x}\right\rangle \cong C\left(\mathfrak{Y} \cap \mathfrak{Y}^{X}\right)$. Thus, S_{3}-subgroups of \mathfrak{R} are cyclic. Let $\mathfrak{F}=\Omega_{1}(\mathfrak{l})$. Then $\mathfrak{I}_{1} \in N_{\Omega}(\mathfrak{F})$, $\mathfrak{T}_{1}^{X} \in N_{\Omega}\left(\mathfrak{F}^{X}\right)$. Since S_{3}-subgroups of \Re are cyclic, this implies that $\left\langle\mathfrak{I}_{1}, \mathfrak{T}_{1}^{X}\right\rangle \cong \boldsymbol{O}_{3^{\prime}}(\mathfrak{R})$. But $\left\langle\mathfrak{T}_{1}, \mathfrak{I}_{1}^{X}\right\rangle=\mathfrak{I}_{0}$, and since $\mathfrak{I}_{0} \mathfrak{2 l}$ is not 2 -closed, we have a contradiction.

Case 3. $[\mathfrak{F}, ß] \neq 1$, and $\mathfrak{\Im}_{0} \neq \boldsymbol{C}(3)$.
We regard $\mathfrak{c}_{0} / \boldsymbol{C}(\mathbb{3})$ as a group of automorphisms of 3 which stabilizes the chain $3 \supset \mathfrak{V} \supset 1$. Hence $\mathfrak{S}_{0} / \boldsymbol{C}(\mathbb{B})$ is elementary abelian. Set $\mathfrak{D}=\boldsymbol{C}(3)$, and for each subset \mathfrak{X} of \mathfrak{M}, set $\overline{\mathfrak{X}}=\mathfrak{X D} / \mathfrak{D}$. Then $\boldsymbol{O}_{2}(\overline{\mathfrak{M}})=1$. Since $\overline{\mathscr{F}}$ is cyclic, we have $\overline{\mathfrak{C}}\left\langle\bar{M}, 1 \neq \overline{\mathfrak{C}}\right.$. Choose $\bar{X} \in \bar{C}_{0}^{\#}$. Since \bar{X} centralizes \mathfrak{V} and acts faithfully on $\overline{\mathfrak{C}}$, it follows that $[\overline{\mathscr{E}}, \bar{X}]=\overline{\mathfrak{B}}$ is of order 3, and $3=3^{0} \times 3^{1}$, where $3^{0}=C_{3}(\overline{\mathfrak{S}}), 3^{1}=[3, \mathfrak{B}]$, and 3^{1} is a four-group. Also, $\mathfrak{Y}=\mathfrak{Z}^{0} \times \mathfrak{Y}^{1}$, where $\mathfrak{Y}^{1} \subset \mathfrak{Z}^{1},\left|\mathfrak{Y}^{1}\right|=2$.

Since $\overline{\mathfrak{B}}$ is the only subgroup of $\overline{\mathfrak{F}}$ of order 3 , we conclude that $\left|\mathfrak{C}_{0}: C(3)\right|=2$. Since $\overline{\mathfrak{B}}$ char $\overline{\mathfrak{C}}$, we have $3^{\circ} \triangleleft \mathfrak{M}$. Since $\boldsymbol{C}(\mathfrak{Y}) \subseteq C\left(3^{\circ}\right)$, we get $C(\mathfrak{Y}) \subseteq \mathfrak{M}$. The proof is complete.

Lemma 20.3. Suppose $|3| \geqq 8$, \mathfrak{Y} is a hyperplane of 3 and $\boldsymbol{C}(\mathfrak{Y}) \supset \boldsymbol{C}(\mathbb{3})$. Then :
(a) $|C(\mathfrak{Y}): C(3)|=2$.
(b) If \mathfrak{F} is a S_{2}-subgroup of \mathfrak{M}, then $[\mathfrak{F}, C(\mathfrak{Y})] C(\mathbb{3}) / C(3)=\mathfrak{D}$ has order 3.
(c) $3=3^{0} \times 3^{1}, 3^{0}=C_{3}(\mathfrak{D}), 3^{1}=[3, \mathfrak{D}], 3^{1}$ is a four-group and $\mathfrak{3}^{i} \triangleleft \mathfrak{M}, i=0,1$.
(d) $\mathfrak{Y}=\mathfrak{B}^{0} \times \mathfrak{Y}^{1}$, where $\mathfrak{Y}^{1}=\left[\mathfrak{3}^{1}, C(\mathfrak{Y})\right]$ is of order 2 .

This lemma was proved in the course of the preceding lemma, and is simply recorded here.

Lemma 20.4. Suppose $|\mathfrak{Z}| \geqq 8$, and $\mathfrak{\Re}=\mathfrak{T} \mathfrak{F}$ is a solvable subgroup
of \mathfrak{G}, where \mathfrak{F} is a cyclic p-group. Assume that $\mathrm{Z}(\mathfrak{Z}) \nexists \Omega$. Then $3 \subseteq \Re_{0}=\boldsymbol{O}_{2}(\Omega)$.

Proof. Suppose false. Since \Re / Ω_{0} has a normal cyclic S_{p}-subgroup on which $\mathfrak{I} / \Omega_{0}$ act faithfully, it follows that \mathfrak{I} / \Re_{0} is cyclic. Hence, $\mathfrak{Y}=\mathfrak{\Omega}_{0} \cap \mathfrak{3}$ is a hyperplane of $3 . \quad$ Set $\mathfrak{U}=\Omega_{1}(Z(\mathfrak{2}))^{R}$. \quad Since $Z(\mathfrak{I}) \nexists \mathfrak{R}$, we have $\mathfrak{U} \supset \Omega_{1}(Z(\mathfrak{I}))$, and so $\mathfrak{U}_{0}=[\mathfrak{U}, \mathfrak{F}] \neq 1$, and $\mathfrak{U}_{0} \triangleleft \mathfrak{R}$.

Choose $Z \in 3-\mathfrak{Y}$. Without loss of generality, we assume that Z inverts \mathfrak{F}. Since $\mathfrak{u}_{0} \subseteq C(\mathfrak{Y})$, we conclude that $\left|\mathfrak{l}_{0}: C_{\mathfrak{u}_{0}}(Z)\right|=2$, and so $p=3$, while \mathfrak{u}_{0} is a four-group.

Choose $U \in \mathfrak{H}_{0}-C_{\mathfrak{u}_{0}}(Z)$, so that $\mathfrak{U}_{0}=\langle U\rangle \times\langle[U, Z]\rangle$. We assume that we have chosen Z in $3-\mathfrak{Y}$ such that $\langle Z\rangle^{\mathbb{R}}$ is of minimal order. By what we have just shown, we have $\langle Z\rangle \nexists \mathfrak{M}$.

Now $\mathfrak{H} \subseteq O_{2}(\Re) \subseteq \mathfrak{T} \subseteq \mathfrak{M}$, and \mathfrak{H} centralizes a hyperplane \mathfrak{Y} of $\mathfrak{3}$. By our choice of Z, we conclude that $\langle Z\rangle^{\mathfrak{R}}$ is a four-group. Now $\mathfrak{D}=\langle\mathfrak{F}, Z\rangle$ acts faithfully on \mathscr{R}_{0}, and since $\left[\mathfrak{P}, \mathfrak{\Re}_{0}\right]=\mathfrak{l}_{0}$, it follows that $|\mathfrak{F}|=3$, and that $\Re_{0}=\mathfrak{U}_{0} \times \Re^{0}$, where $\Re^{0}=C_{\Re_{0}}(\mathfrak{F})$.

We now use our element U. Since \mathfrak{l}_{0} is a normal four-subgroup of $\mathfrak{T} \mathfrak{F}$, it follows that U inverts a subgroup \mathfrak{Q} of \mathfrak{M} of order 3 , and that if $\mathfrak{S}_{2}=\boldsymbol{O}_{2}(\mathfrak{M})$, then $[\mathfrak{F}, \mathfrak{D}]=\langle Z\rangle \times\langle[Z, U]\rangle$, whence $\mathfrak{S}_{\mathrm{L}}=[\mathfrak{F}, \mathfrak{Q}] \times \mathfrak{S}_{0}$, where $\mathfrak{N}_{0}=\boldsymbol{C}_{\mathfrak{5}}(\mathfrak{Q})$. Let $\mathfrak{Z}=\mathfrak{Z} \mathfrak{\mathfrak { N }}, \mathfrak{S}=\boldsymbol{O}_{2}(\mathfrak{Z})$. First, suppose that \mathfrak{R}^{0} contains a four-group. In this case, S_{3}-subgroups of (5) are cyclic, and since $\boldsymbol{C}_{\mathfrak{s}}(\mathfrak{D}) \neq 1, C_{\mathfrak{R}_{0}}(\mathfrak{F}) \neq 1$ and since $\mathfrak{T}=N(\mathfrak{T})$, we conclude that $\Re_{0}=\mathfrak{S}$. This is false, since $3 \triangleleft \mathfrak{I} \Omega, 3 \nexists \mathfrak{I} \mathfrak{P}$. So \Re^{0} is either cyclic or generalized quaternion. So \mathfrak{I} is the direct product of a D_{8} and a group which is either cyclic or generalized quaternion. Thus $|N(X)|_{2^{\prime}} \leqq 3$ for every non identity subgroup of \mathfrak{X} of \mathfrak{T}. This violates $\S 18$, and completes the proof.

Lemma 20.5. Suppose $|\mathfrak{Z}| \geqq 8$ and $\mathfrak{R}=\mathfrak{I} \mathfrak{P}$ is a solvable subgroup of \mathbb{A}, where \mathfrak{F} is a p-group. Then one of the following holds:
(a) $Z(\mathfrak{D}) \triangleleft \Re$.
(b) $\mathfrak{W} \triangleleft \mathfrak{R}$, where $\mathfrak{W}=V\left(\operatorname{ccl}_{\oplus}(\mathfrak{B})\right.$; $\left.\mathfrak{T}\right)$.

Proof. Set $\mathfrak{\Re}_{0}=\boldsymbol{O}_{2}(\Re), \mathfrak{U}=\Omega_{1}\left(\boldsymbol{Z}(\mathfrak{X})^{\mathfrak{R}}\right), \mathfrak{U}_{0}=[\mathfrak{U}$, $\mathfrak{\Re}]$. Suppose (a) and (b) fail. Then $\mathfrak{U}_{0} \neq 1$, and $\mathfrak{F} \nsubseteq \mathfrak{R}_{0}$. So there is G in (S) such that $3^{*}=3^{\mathbb{G}} \subseteq \mathfrak{I}, 3^{*} \nsubseteq \mathfrak{R}_{0}$. Let $\mathfrak{3}_{0}^{*}=3^{*} \cap \mathfrak{R}_{0}$, so that $\mathfrak{3}_{0}^{*}$ is a hyperplane of 3^{*}. Since $\mathfrak{u}_{0} \subseteq C\left(\mathfrak{B}_{0}^{*}\right)$, and $\mathfrak{u}_{0} \nsubseteq C\left(\mathbb{B}^{*}\right)$, we conclude that $\boldsymbol{C}_{\mathfrak{u}_{0}}\left(\mathbb{3}^{*}\right)$ is a hyperplane of \mathfrak{u}_{0}, whence $p=3$, and \mathfrak{U}_{0} is a four-group. Set $\mathfrak{M}^{*}=\mathfrak{M}^{G}$. Thus, $\mathfrak{u}_{0} \subseteq \mathfrak{M}^{*}, \mathfrak{U}_{0}=\langle U\rangle \times\langle Z\rangle$, where $\langle Z\rangle=\left[\mathfrak{l}_{0}, \mathfrak{B}^{*}\right] \subset \mathfrak{3}^{*}$. Also, $\left\langle Z^{\mathfrak{n} *}\right\rangle$ is a four-group, since $\langle Z\rangle=\left[\mathfrak{B}^{*}, \mathfrak{n}\right]$.

Case 1. $C(Z) \subseteq \mathfrak{M}^{*}$. In this case, since $\langle Z\rangle \triangleleft \mathfrak{I}$, we find that $\mathfrak{I} \subseteq \mathfrak{M}^{*}$. Since $\mathfrak{I}=\boldsymbol{N}(\mathfrak{I})$, this forces $\mathfrak{M}^{*}=\mathfrak{M}$, which violates Lemma
20.4, as $3^{*} \nsubseteq \mathfrak{R}_{0}$.

Case 2. $C(Z) \nsubseteq \mathfrak{M}^{*}$. Since $\left\langle Z^{\mathfrak{n} *}\right\rangle$ is a four-group, it follows that $\boldsymbol{C}_{\mathfrak{M}}(Z)$ is of index 3 in \mathfrak{M}^{*}, whence $\left|\mathfrak{M}^{*}\right|=3|\mathfrak{I}|$.

Since $Z(\mathfrak{N}) \npreceq \mathfrak{M}$, it follows from the construction of \mathfrak{M} that $Z(J((\mathfrak{V}))$ and $Z\left(J_{1}(\mathfrak{T})\right)$ are normal subgroups of \mathfrak{M}. From $\S 18$, there is a solvable subgroup Ω_{0} of (5) which contains \mathfrak{I} properly and such that $\mathbb{R}_{0}=\mathfrak{L} \Re_{0}$, where \mathfrak{F}_{0} is a p-group of order larger than 3 . If $p \geqq 5$, then Lemmas 5.53 , 5.54 imply that $\Omega_{0} \subseteq \mathfrak{M}$, against $|\mathfrak{M}|=3|\mathfrak{I}|$. So $p=3$, and $\left|\mathfrak{F}_{0}\right| \geqq 3^{2}$. By Lemma 5.54 , we get $\tilde{\sigma}^{1}\left(\mathfrak{F}_{0}\right) \cong \mathfrak{M}$, whence $\mathfrak{M}=\mathfrak{T} O^{1}\left(\mathfrak{R}_{0}\right)$. This is absurd, since $\mathfrak{M} \in \mathscr{K}(\mathfrak{T})$, and $\mathfrak{M} \subset \mathfrak{R}_{0}$, while Ω_{0} is solvable. The proof is complete.

Lemma 20.6. One of the following holds:
(a) $|3| \leqq 4$.
(b) $\mathscr{L}(\mathfrak{T})=\{C(Z(\mathfrak{I})), N(\mathfrak{W})\}$, where $\mathfrak{W}=\boldsymbol{V}\left(\operatorname{ccl}_{\mathbb{G}}(\mathfrak{X}) ; \mathfrak{I}\right)$.

Proof. Since $\mathfrak{I}=N(\mathfrak{T})$, it follows that $N(\boldsymbol{Z}(\mathfrak{T}))=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{T})$). Since $|\mathscr{M}(\mathfrak{T})| \geqq 2$, this lemma is an immediate consequence of Lemma 20.5.

Lemma 20.7. Suppose $|\mathfrak{B}| \geqq 8$. Then the following hold:
(a) $|3|=16$.
(b) $\mathfrak{I} / \boldsymbol{O}_{2}(\mathfrak{M})$ is cyclic.
(c) $|\mathfrak{F}|=3,5$ or 15 , where \mathbb{F} is a S_{2}-subgroup of \mathfrak{M}.
(d) 3®్ is a Frobenius group.

Proof. Suppose $1 \subset \mathfrak{F}_{0} \subseteq \mathfrak{F}$. Let $\mathcal{B}^{0}=\boldsymbol{C}_{3}\left(\mathfrak{F}_{0}\right)$. Thus, $3^{0} \triangleleft \mathfrak{M}$. Suppose $3^{\circ} \neq 1$, and Z is an involution of $3^{\circ} \cap Z(\mathfrak{I})$. Hence, $C(Z) \supseteqq$
 $\mathfrak{M} \supset \mathfrak{I}$, we conclude that $\mathfrak{M}=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{I}))$, and so $3=\Omega_{1}(\boldsymbol{Z}(\mathfrak{R}))$.

Since $\mathfrak{M} \nexists \mathfrak{M}$, there is G in $\mathbb{C S}$ such that $\mathcal{B}^{\mathbb{B}} \subseteq \mathfrak{I}, \mathcal{B}^{\circledR} \nsubseteq O_{2}(\mathfrak{M})$. Hence, \mathfrak{F} has a subgroup \mathfrak{F} of prime order such that \mathfrak{B}^{G} does not centralize $\boldsymbol{O}_{2}(\mathfrak{M}) \mathfrak{F} / \boldsymbol{O}_{2}(\mathfrak{M})$. Let $\mathfrak{V}=\mathfrak{B}^{G} \cap \boldsymbol{C}(\overline{\mathfrak{F}})$, where $\overline{\mathscr{F}}=\boldsymbol{O}_{2}(\mathfrak{M}) \mathscr{F} / \boldsymbol{O}_{2}(\mathfrak{M})$, and let $\mathfrak{F}=\langle F\rangle$. Thus, $\mathfrak{T} \mathfrak{F}=\left\langle\mathfrak{I}, \mathfrak{S}^{G F}\right)$, and so if we set $\mathfrak{N}=N(\mathfrak{W})$, then $\mathfrak{R} \cap 3^{G F}=\mathfrak{Y}^{F}$.

Since $|3| \geqq 8$, we have $\left|\mathfrak{Y}^{F}\right| \geqq 4$. Let \mathfrak{u} be a minimal normal subgroup of \mathfrak{R}. Since $\mathfrak{M}=\boldsymbol{C}\left(\boldsymbol{Z}(\mathfrak{2})\right.$), it follows that $\boldsymbol{C}(\mathfrak{l})=\boldsymbol{O}_{2}(\mathfrak{R})$. If $Y \in \mathfrak{Y}^{F \#}$ centralizes \mathfrak{U}, then since $C(Y)=C\left(\mathfrak{3}^{G F}\right)$, we get $\mathfrak{3}^{G F} \cong C(\mathfrak{l l}) \triangleleft \mathfrak{N}$, which is false. Hence, \mathfrak{Y}^{F} acts faithfully on \mathfrak{l}, and $\boldsymbol{C}_{\mathfrak{u}}\left(\mathfrak{Y}{ }^{F}\right)=\boldsymbol{C}_{\mathfrak{u}}(Y)$ for all $Y \in \mathfrak{Y}^{F^{*}}$. This is impossible since \mathfrak{R} is solvable. We conclude that $\mathfrak{Z} \mathbb{E}$ is a Frobenius group.

Since $\mathbb{3} \mathbb{C}$ is a Frobenius group, it follows that if \mathfrak{X} is any subgroup of $\mathfrak{M} / C(\mathbb{B})$ of order 2 , then 3 is a free $F_{2} \mathfrak{X}$-module. In particular, $|3|=2^{2 z}$ for some integer $z \geqq 2$.

Suppose $z \geqq 3$. Let 3^{1} be a subgroup of 3 of index 4 . We will show that $\boldsymbol{C}\left(3^{1}\right)=\boldsymbol{C}(3)$. In any case, $\boldsymbol{C}_{\mathbb{m}}\left(3^{1}\right)$ is a 2 -group, since $3 \mathfrak{C}$ is a Frobenius group. Furthermore, by the preceding paragraph, we
 identity characteristic subgroup \mathfrak{X} of $\boldsymbol{O}_{2}(\mathfrak{M})$, it follows that $\boldsymbol{O}_{2}(\mathfrak{M})$ is a S_{2}-subgroup of $C\left(3^{1}\right)$, and then Lemmas 5.53 and 5.54 imply that $\left|\boldsymbol{C}\left(\mathfrak{B}^{1}\right): \boldsymbol{O}_{2}(\mathfrak{M})\right|=1$ or 3 . Set $\mathfrak{C}=\boldsymbol{C}\left(\mathfrak{B}^{1}\right), \mathfrak{C}_{1}=\boldsymbol{O}_{2}(\mathfrak{E})$, and suppose that $\mathfrak{C} \supset \boldsymbol{O}_{2}(\mathfrak{M})$. In this case, \mathfrak{E}_{1} has index 2 in $\boldsymbol{O}_{2}(\mathfrak{M})$, and \mathfrak{E}_{1} is not normal in \mathfrak{M}. Choose M in \mathfrak{M} with $M \notin N\left(\mathbb{E}_{1}\right)$. Then $\left\langle\mathbb{C}, \mathbb{C}^{M}\right\rangle \subseteq C\left(\mathcal{B}^{1} \cap \mathcal{B}^{1 M}\right)$, and since $\mathfrak{R}^{1} \cap 3^{1 M} \neq 1$, $\left\langle\mathbb{C}\right.$, $\left.\mathbb{C}^{M}\right\rangle$ is solvable. Let $\mathfrak{l l}$ be a S_{3}-subgroup of \mathfrak{C}, so that $\mathfrak{C}_{1} \in N(\mathfrak{R} ; 2)$, $\mathfrak{C}_{1}^{\mu} \in N\left(\mathfrak{R}^{M} ; 2\right)$. Since S_{3}-subgroups of $\left\langle\mathbb{C}, \mathbb{C}^{m}\right\rangle$ are cyclic, we conclude that $\left\langle\mathbb{C}_{1}, \mathbb{E}_{1}^{M}\right\rangle \subseteq O_{3^{\prime}}\left(\left\langle\mathbb{C}, \mathbb{C}^{m \pi}\right\rangle\right)$, which is false, since \mathbb{C} is not 2 -closed. So $\boldsymbol{C}(3)=\boldsymbol{C}\left(3^{1}\right)$ for every subgroup 3^{1} of 3 of index 4 , provided $z \geqq 3$.

Let $\left.\mathfrak{M}_{1}=\left\langle V\left(\operatorname{ccl}_{s}(\mathfrak{Y}) ; \mathfrak{I}\right)\right||3: \mathfrak{Y}|=2\right\rangle$, and continue to suppose that $z \geqq 3$. By the preceding argument, we conclude that $\mathfrak{B}_{1} \cong C(3)$, and so, if $G \in \mathbb{G}$, and $\left|\mathfrak{S}^{G}: \mathfrak{B}^{G} \cap \mathfrak{M}\right| \leqq 2$, then $\mathcal{B}^{G} \subseteq \mathfrak{M}$.

Set $\mathfrak{R}=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{Z}))$. Since $\mathfrak{M} \nexists \mathfrak{R}$, we can choose G in \mathfrak{F} such that $\mathcal{3}^{G} \subseteq \mathfrak{Z}, \mathcal{B}^{G} \nsubseteq \boldsymbol{O}_{2}(\mathfrak{R})$, and then we can choose N in \mathfrak{R} such that $\mathfrak{I} \cap \mathcal{S}^{G V}$ is of index 2 in $3^{G N}$. By the above argument, we get $3^{G N} \leqq \mathfrak{M}$, and so $\left\langle\mathfrak{Z}, \mathfrak{J}^{G N}\right\rangle \subseteq \mathfrak{M} \cap \mathfrak{R}=\mathfrak{I}$, the desired contradiction. So $z=2$. Since $\mathfrak{M} / \boldsymbol{O}_{2}(\mathfrak{M})$ acts faithfully on 3 , it follows that $\mathfrak{I} / \boldsymbol{O}_{2}(\mathfrak{M})$ is cyclic. The proof is complete.

Lemma 20.8. Suppose $|3| \geqq 8$. Then the following hold:
(a) For some G in $\mathfrak{G},\left|\mathfrak{B}^{G} \cap \mathfrak{M}\right|=8$, and $\left|\mathfrak{B}^{G} \cap \boldsymbol{O}_{2}(\mathfrak{M})\right|=4$.
(b) 3 contains a four-group 3^{1} with $\boldsymbol{C}\left(3^{1}\right) \not \equiv \mathfrak{M}$.
(c) $|\mathfrak{R}|=3|\mathfrak{I}|$, where $\mathfrak{\Re}=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{Z}))$.

Proof. Since $\boldsymbol{C}_{\mathfrak{m}}(\boldsymbol{Z}(\mathfrak{Z}))=\mathfrak{Z}$, the construction of \mathfrak{M} implies that $N(Z(J(\mathfrak{Z}))) \subseteq \mathfrak{M}, N\left(Z\left(J_{1}(\mathfrak{T})\right)\right) \subseteq \mathfrak{M} . \quad$ By Lemmas 5.53 and 5.54 , it follows that (c) holds.

Since $\mathfrak{B} \triangleleft \mathfrak{M}$, it follows that there is X in $\mathfrak{F s}$ such that $3^{x} \cong \mathfrak{R}$, $\mathcal{3}^{X} \nsubseteq \boldsymbol{O}_{2}(\Re)$. By (c), it follows that $\mathfrak{y}=\boldsymbol{O}_{2}(\Re) \cap \mathcal{S}^{X}$ is a hyperplane of \mathcal{S}^{x}, so of order 8. Let P be an element of \mathfrak{R} of order 3, and set $G=X P$. Thus, $\mathfrak{Y}^{p} \subseteq \boldsymbol{O}_{2}(\mathfrak{N}) \subseteq \mathfrak{I}$, and $\mathfrak{R}=\left\langle\mathfrak{Z}, \mathfrak{B}^{G}\right\rangle$. Hence, $\mathfrak{M} \cap \mathfrak{B}^{G}=\mathfrak{Y}{ }^{P}$.

Since $\mathfrak{Z} / \boldsymbol{O}_{2}(\mathfrak{M})$ is cyclic, we get that $\left|\mathfrak{Y}^{P} \cap \boldsymbol{O}_{2}(\mathfrak{M})\right| \geqq 4$. Suppose $\mathfrak{Y}^{P} \subseteq O_{2}(\mathfrak{M})$. But $\boldsymbol{C}\left(\mathfrak{Y}^{P}\right) \subseteq \mathfrak{M}^{G}$, and we find that $3 \subseteq \mathfrak{M}^{G}$, whence $\left[\mathcal{3}, \mathcal{Z}^{G}\right]=1$, against $\mathcal{S}^{G} \not \equiv \mathfrak{M}$. So (a) holds. Let $\mathfrak{l l}=\mathfrak{Y}^{P} \cap \boldsymbol{O}_{2}(\mathfrak{M})$. The argument just given shows that $\boldsymbol{C}(\mathfrak{l}) \nsubseteq \mathfrak{M}^{G}$, and so (b) holds. The proof is complete.

Lemma 20.9. One of the following holds:
(a) $|3| \leqq 4$.
(b) $|\mathfrak{M}|=5|\mathfrak{T}|$.

Proof. Suppose $|\mathfrak{Z}| \geqq 8$. Since $|\mathfrak{N}|=3|\mathfrak{I}|$, it follows that $|\mathfrak{M}|=|\mathfrak{I}| d$, where $d=5$ or 15 . Suppose $d=15$.

Since $\mathfrak{M} / O_{2}(\mathfrak{M})$ acts faithfully on 3 , and $|3|=16$, while $\mathfrak{M} / \mathfrak{M}^{\prime}$ is a 2 -group, it follows that $\mathfrak{T} / \boldsymbol{O}_{2}(\mathfrak{M})$ is cyclic of order 4. Let $\mathfrak{F}=\mathfrak{Z} \times \mathfrak{B}$, where \mathfrak{F} is a $S_{2^{\prime}}$-subgroup of \mathfrak{M}, and $|\mathfrak{R}|=5,|\mathfrak{B}|=3$. Let $\mathfrak{N}=\mathfrak{I} \mathfrak{N}$, where $|\mathfrak{\Omega}|=3$, and let $\Re=\boldsymbol{O}_{2}(\mathfrak{M}), \Re_{0}=\boldsymbol{O}_{2}(\mathfrak{L B})$. Thus, \Re and \Re_{0} are of index 2 in \mathfrak{I}, and are maximal elements of $U(\mathfrak{\Omega} ; 2), И(B ; 2)$, respectively. Since $\mathfrak{R}=\boldsymbol{C}\left(\boldsymbol{Z}(\mathfrak{Z})\right.$), we have $\boldsymbol{C}_{\Omega}(\mathfrak{R}) \neq 1$, and since $\mathfrak{I} / O_{2}(\mathfrak{M})$ is of order 4 , we have $C_{\Omega_{0}}(\mathfrak{B}) \neq 1$. Since \Re and \Re_{0} are not \mathbb{S}-conjugate, it follows that S_{3}-subgroups of $(\mathscr{S}$ are non cyclic. Hence, $C(\mathfrak{l l})$ is a 3^{\prime}-group for every 4 -subgroup \mathfrak{U} of \mathbb{B}. On the other hand, there is a four-subgroup $\mathfrak{l l}$ of 3 such that $\boldsymbol{C}(\mathfrak{U l}) \nsubseteq \mathfrak{M}$. \quad Set $\mathfrak{C}=\boldsymbol{C}(\mathfrak{l}), \mathfrak{E}_{0}=\boldsymbol{C}_{\mathfrak{m}}(\mathfrak{l l})$. Then \mathfrak{C}_{0} is a 2 -group, since $\mathcal{B} \mathscr{F}$ is a Frobenius group. If $\mathfrak{C}_{0}=\boldsymbol{O}_{2}(\mathfrak{M})$, then since \mathfrak{C} is a 3^{\prime}-group, our factorizations imply that $\mathbb{C} \subseteq \mathfrak{M}$. Hence, $\mathfrak{S}_{0} \supset \boldsymbol{O}_{2}(\mathfrak{M})$, and so \mathfrak{E}_{0} is of index 2 in a S_{2}-subgroup of \mathfrak{M}, and so \mathfrak{C}_{0} is the unique subgroup of \mathfrak{I} of index 2 which contains $\boldsymbol{O}_{2}(\mathfrak{M})$ (assuming as we may that $\left.\mathfrak{§}_{0} \subseteq \mathfrak{I}\right)$. But then $\mathfrak{I} \mathfrak{B} \cong N\left(\mathfrak{C}_{0}\right)$, and so $N(\mathfrak{X}) \cong \mathfrak{M}$ for every non identity characteristic subgroup \mathfrak{X} of $\mathfrak{๒}_{0}$. Once again, since \mathfrak{C} is a 3^{\prime}-group, our factorizations complete the proof.

Theorem 20.1. $|3| \leqq 4$.
Proof. Suppose false, so that the preceding results may be applied. Thus, $\mathfrak{M} / \mathrm{O}_{2}(\mathfrak{M})$ is a Frobenius group of order 10 or 20. It follows that

$$
\left(^{*}\right) \quad\left|\mathfrak{M}: C_{\mathbb{M}}(Z)\right|=2^{a} .5, \quad a \leqq 1, \text { for all } Z \in \mathbb{B}^{\#}
$$

We will show that $C_{\mathfrak{m}}(Z)$ is a S_{2}-subgroup of $C(Z)$ for all $Z \in \mathcal{B}^{\ddagger}$. We may assume that $C_{\mathfrak{n}}(Z)=\mathfrak{I}_{0}$ is of index 2 in \mathfrak{I}. This implies that $\mathfrak{T} / \boldsymbol{O}_{2}(\mathfrak{M})$ is of order 4 , since $\boldsymbol{C}_{\mathfrak{M}}(Z)$ properly contains $\boldsymbol{O}_{2}(\mathfrak{M})$ for every Z in 3. Since $O_{2}(\mathfrak{M}) \subset \mathfrak{I}_{0} \subset \mathfrak{I}$, it follows that $Z(\mathfrak{I})$ is cyclic, and that if $\Omega_{1}(Z(\mathfrak{I}))=\left\langle Z_{0}\right\rangle$, then $\left\langle Z, Z_{0}\right\rangle=\Omega_{1}\left(\boldsymbol{Z}\left(\mathfrak{I}_{0}\right)\right)$. Let \mathfrak{I}_{1} be a S_{2}-subgroup of $C(Z)$ which contains \mathfrak{I}_{0}, and suppose by way of contradiction that $\mathfrak{I}_{0} \subset \mathfrak{I}_{1}$. Thus, $\left\langle\mathfrak{I}, \mathfrak{I}_{1}\right\rangle \subseteq N\left(\left\langle Z, Z_{0}\right\rangle\right)$ and $\mathfrak{I}_{1} \nsubseteq \mathfrak{M}$, whence $\left\langle\mathfrak{I}, \mathfrak{I}_{1}\right\rangle=\mathfrak{R}$, against $\mathfrak{R}=\boldsymbol{C}(\boldsymbol{Z}(\mathfrak{I}))$. So
(**) $\quad C_{\mathfrak{m}}(Z)$ is a S_{2}-subgroup of $C(Z)$ for all $Z \in B^{*}$.
Since $Z(\mathfrak{I}) \nexists \mathfrak{M}$, and since \mathfrak{I} is a maximal subgroup of \mathfrak{M}, the construction of \mathfrak{M} implies that $\mathfrak{M}=N(Z(J(\mathfrak{T})))=N\left(Z\left(J_{1}(\mathfrak{T})\right)\right)$. Since $\mathfrak{Z} \mathfrak{F}$ is a Frobenius group, we even get $\mathfrak{M}=N(J(\mathfrak{T}))=N\left(J_{1}(\mathfrak{Z})\right)$. Hence, $J(\mathfrak{2})=J\left(\mathfrak{Z}_{0}\right), J_{1}(\mathfrak{I})=J_{1}\left(\mathfrak{Z}_{0}\right) . \quad$ By $\left({ }^{* *}\right)$, we conclude that

Choose G in © such that $\mathfrak{Z}^{G} \cap \mathfrak{M}=\mathfrak{Y}$ is of order 8 , and such that $\mathfrak{Y}_{0}=\mathfrak{V} \cap \boldsymbol{O}_{2}(\mathfrak{M})$ has order 4, as in Lemma 20.8. Choose $Y \in \mathfrak{Y}_{0}{ }^{\circ}$. Thus, $3 \cong C(Y)$, and $O_{2}\left(C(Y)\right.$) normalizes 3^{a}, by (**). Since $3 \cdot O_{2}(C(Y))$ is a 2-group, it follows that $3 \cap O_{2}(C(Y))$ is of index at most 2 in 3 , by $\left(^{* * *}\right)$. Now choose $X \in \mathfrak{V}-\mathfrak{Y}_{0}$. Then $\left[X, 3 \cap \boldsymbol{O}_{2}(\boldsymbol{C}(Y))\right] \neq 1$, and so we may assume that our element Y has been chosen in $3 \cap \vartheta_{0}$. Hence, $\boldsymbol{O}_{2}(\boldsymbol{C}(Y)) \cap \boldsymbol{O}_{2}(\mathfrak{M})$ is of index at most 2 in $\boldsymbol{O}_{2}(\mathfrak{M})$.

We may assume that X inverts \mathfrak{G}. Set $\mathfrak{X}^{0}=\boldsymbol{O}_{2}(C(Y)) \cap \boldsymbol{O}_{2}(\mathfrak{M})$, so that $\left|\boldsymbol{O}_{2}(\mathfrak{M}): \mathfrak{T}^{0}\right| \leqq 2$, and $\left[\mathfrak{Z}^{0}, X\right] \subseteq \mathfrak{y}_{0}$. This implies that $\mathcal{B}=\left[\boldsymbol{O}_{2}(\mathfrak{M})\right.$, $\left.\mathfrak{E}\right]$, and since $3 \supseteq \Omega_{1}\left(\boldsymbol{Z}(\mathfrak{Z})\right.$), it follows that $\boldsymbol{O}_{2}(\mathfrak{M})=3$. This in turn implies that $3 \cong O_{2}(\mathfrak{R})$, whence $3 \triangleleft \mathfrak{R}$, the desired contradiction. The proof is complete.

Lemma 20.10. $3 \subseteq Z(\mathfrak{R})$.
Proof. If $|3|=2$, the lemma is obvious. Suppose $|3|=4$, and that $\mathcal{B} \nsubseteq Z(\mathfrak{M})$. In this case, $\mathfrak{M} / C(\mathbb{B}) \cong \Sigma_{3}$, and \mathfrak{M} is transitive on \mathcal{B}^{*}. We argue that

$$
\begin{equation*}
C(Z) \subseteq \mathfrak{M} \text { for all } Z \in \mathbb{B}^{\sharp} . \tag{20.1}
\end{equation*}
$$

This is clear if $|\mathfrak{M}| \neq 3|\mathfrak{X}|$, so suppose $|\mathfrak{M}|=3|\mathfrak{X}|$. In this case, $N_{\mathfrak{m}}(Z(\mathfrak{Z}))=\mathfrak{Z}$, and so $J(\mathfrak{Z}) \triangleleft \mathfrak{M}, J_{1}(\mathfrak{Z}) \triangleleft \mathfrak{M}$. Since $\mathscr{M}(\mathfrak{I})$ contains an element \mathfrak{R} with $|\mathfrak{R}|>3|\mathfrak{I}|$, the usual factorizations yield a contradiction. So (20.1) holds.

Let \mathfrak{B} be a subgroup of odd prime power order permutable with \mathfrak{I} and not contained in \mathfrak{M}. Since $\mathfrak{P} \cap \mathfrak{M}=1$, and since $J(\mathfrak{Z}) \triangleleft \mathfrak{M}$, $J_{1}(\mathfrak{I}) \triangleleft \mathfrak{M}$, it follows that $|\mathfrak{B}|=3$. Hence, if \mathfrak{U} is a minimal normal subgroup of $\mathfrak{x} \mathfrak{F}$, then \mathfrak{H} is a four-group. Let $\mathfrak{F}=\boldsymbol{V}\left(\operatorname{ccl}_{g}(\mathfrak{B}) ; \mathfrak{T}\right)$. It
 Since $\mathfrak{M} / C(\mathbb{B}) \cong \Sigma_{3}$, it follows that $N_{\mathfrak{m}}(\mathfrak{Z}) \supset \mathfrak{Z}$, and so $N(\mathfrak{Z}) \cong \mathfrak{M}$. Since $\mathfrak{Z} \mathfrak{B} / \boldsymbol{O}_{2}(\mathfrak{Z} \mathfrak{F}) \cong \Sigma_{3}$, we conclude that $\mathfrak{B} \triangleleft \mathfrak{T} \mathfrak{F}$, whence $\mathfrak{F} \cong \mathfrak{M}$, the desired contradiction. The proof is complete.

Lemma 20.11. If \mathfrak{X} is a normal four-subgroup of \mathfrak{M}, then $\boldsymbol{C}(X) \subseteq \mathfrak{M}$ for all $X \in \mathfrak{X}^{\#}$.

Proof. We may assume that $X \notin \boldsymbol{Z}(\mathfrak{M})$. Hence, if $\mathfrak{X} \cap 3=\mathfrak{u}$, then $\mathfrak{X}=\mathfrak{U} \times\langle X\rangle$, and $\boldsymbol{C}_{\mathfrak{m}}(X)$ is of index 2 in \mathfrak{M}. Let $\mathfrak{X}_{0}=\boldsymbol{C}_{\mathfrak{z}}(X)$, so that $\left|\mathfrak{R}: \mathfrak{I}_{0}\right|=2$, and $\mathfrak{M}=\mathfrak{I}_{0} \cdot N_{\mathfrak{R}}(\mathfrak{E})$, where \mathbb{E} is a S_{2}-subgroup of \mathfrak{M}. Set $\mathfrak{C}=C(Z)$. Then $\mathbb{C}=\mathfrak{I}_{0} \cdot N_{\delta}(\mathfrak{E})$, and so \mathfrak{I}_{0} is permutable with the solvable group $\left\langle N_{\varepsilon}(\mathfrak{E}), N_{\Re \in}(\mathfrak{E})\right\rangle=\Omega$. By a standard argument, $\mathfrak{I}_{0} \mathfrak{A}$ is solvable, and so $\mathfrak{M}=\mathfrak{T}_{0} \mathfrak{R} \supseteq \mathfrak{C}$. The proof is complete.

Set

$$
\begin{aligned}
\mathscr{F}_{0}= & \{\mathfrak{X} \mid \mathfrak{X} \text { is an elementary abelian normal 2-subgroup of } \\
& \mathfrak{M} \text { of order } \geqq 8\} .
\end{aligned}
$$

By Lemma 20.11 and $\S 13$, it follows that $\mathscr{F}_{0} \neq \varnothing$. Let $\mathscr{F}_{1}=$ $\left\{\mathfrak{X} \in \mathscr{F}_{0} \mid \mathcal{Z} \subseteq \mathfrak{X}\right\}$. Since $\mathcal{Z} \subseteq \boldsymbol{Z}\left(\boldsymbol{O}_{2}(\mathfrak{M})\right)$, it follows that $\mathscr{F}_{1} \neq \varnothing$. Next, set
$\mathscr{F}=\left\{\mathfrak{F} \in \mathscr{F}_{1}\right.$, there is a normal subgroup \mathfrak{F} of \mathfrak{M} such that $3 \subseteq \mathfrak{F} \subset \mathfrak{F}$, and such that $|\mathfrak{F}| \leqq 4$, while $\mathfrak{F} / \mathfrak{F}$ is a chief factor of $\mathfrak{M}\}$.

Thus, $\mathscr{F} \neq \varnothing$.
Choose $\mathfrak{F} \in \mathscr{F}$. We subject \mathfrak{F} to the same examination which was built up in $\S 13$.

Lemma 20.12. $\boldsymbol{C}\left(\mathfrak{F}_{0}\right) \subseteq \mathfrak{M}$ for every hyperplane \mathfrak{F}_{0} of \mathfrak{F}.
Proof. If $|\mathfrak{F}|=4$, then $\mathfrak{F}_{0} \cap \mathfrak{F} \neq 1$, so we are done by Lemma 20.11. We may assume that $|\mathfrak{F}|=2$, and that $\mathfrak{F} \nsubseteq \mathfrak{F}_{0}$. Hence, $\boldsymbol{C}_{\mathfrak{m}}\left(\mathfrak{F}_{0}\right)=\boldsymbol{C}(\mathfrak{F})$. Let $\Re=\boldsymbol{C}_{\mathfrak{m}}(\mathfrak{F} / \mathfrak{F}) \supset \mathfrak{R}=\boldsymbol{C}(\mathfrak{F})$. Thus, \Re / \mathfrak{R} and $\mathfrak{F} / 3(3=\mathfrak{F}!)$ are paired into $\mathfrak{3}$, and so are in duality. Hence, Ω permutes transitively the hyperplanes of \mathfrak{F} which do not contain \mathfrak{B}, so that

$$
\mathfrak{M}=\mathfrak{R} \cdot \boldsymbol{N}_{\mathfrak{M}}\left(\mathfrak{F}_{0}\right), \quad\left|\mathfrak{M}: \boldsymbol{N}_{\mathfrak{R}}\left(\mathfrak{F}_{0}\right)\right|=|\mathfrak{F}: \mathfrak{3}| .
$$

Let $\mathfrak{C}=\boldsymbol{C}\left(\mathfrak{F}_{0}\right) \supseteqq \boldsymbol{C}_{\mathfrak{M}}\left(\mathfrak{F}_{0}\right)=\boldsymbol{C}(\mathfrak{F})=\mathfrak{R}$, and let $\mathfrak{I}_{0}=\mathfrak{I} \cap \mathfrak{R}$, so that \mathfrak{I}_{0} is a S_{2}-subgroup of \mathfrak{R}. Since $\mathfrak{F} / \mathfrak{B}$ is a chief factor of \mathfrak{M} of order >2, it follows that $N_{\mathfrak{m}}\left(\mathfrak{I}_{0}\right) \supset \mathfrak{I}$, and so $N_{\mathfrak{M}}\left(\mathfrak{I}_{0}\right) \in \mathscr{M}^{*}$. Hence, \mathfrak{I}_{0} is a S_{2}-subgroup of \mathfrak{C}, and $N(\mathfrak{D}) \subseteq \mathfrak{M}$ for every non identity characteristic subgroup \mathfrak{D} of \mathfrak{I}_{0}.

Let $\mathfrak{\Omega}$ be a $S_{2^{\prime}}$-subgroup of \mathbb{R} and let \Re be a $S_{2^{2}}$-subgroup of \mathbb{C} which contains $\mathfrak{\Omega}$. We may assume that $\mathfrak{R} \supset \mathfrak{\Omega}$. By Lemmas 5.53 and 5.54, we get that $|\mathfrak{C}: \mathbb{R}|=3$. Let \mathfrak{S} be a S_{3}-subgroup of \mathfrak{C} permutable with \mathfrak{I}_{0}, and let $\mathfrak{C}^{*}=\mathfrak{I}_{0} \subseteq$. Set $\mathfrak{I}_{1}=\boldsymbol{O}_{2}\left(\mathfrak{C}^{*}\right)$, so that $\mathfrak{I}_{1} \notin \mathfrak{I}$. Choose $T \in \mathfrak{I}, T \notin \boldsymbol{N}\left(\mathfrak{T}_{1}\right)$. Let $\mathfrak{C}^{* *}=\left\langle\mathfrak{C}^{*}, \mathfrak{C}^{* T}\right\rangle$. Thus, $\mathfrak{C}^{* *}$ normalizes $\mathfrak{F}_{0} \cap \mathfrak{F}_{0}^{T} \neq 1$, and so $\mathfrak{C}^{* *}$ is solvable. Since S_{3}-subgroups of $\mathbb{C}^{* *}$ are cyclic, it follows that $\left\langle\mathfrak{I}_{1}, \mathfrak{T}_{1}^{T}\right\rangle \subseteq \boldsymbol{O}_{3^{\prime}}\left(\mathfrak{C}^{* *}\right)$. This is false, since $\left\langle\mathfrak{I}_{1}, \mathfrak{T}_{1}^{T}\right\rangle=\mathfrak{I}_{0}$, and $\mathfrak{I}_{0} \not \mathbb{C}^{*}$. The proof is complete.

Lemma 20.13. If J is an involution of \mathfrak{M} and $\boldsymbol{C}_{\tilde{f}}(J)=\mathfrak{F}_{0}$ is a hyperplane of \mathfrak{F}, then one of the following holds:
(a) $[\mathfrak{F}, J] \cong ๕$.
(b) $|\mathfrak{F} / \mathfrak{F}|=4$.

This lemma follows from a standard argument, and is in fact an immediate consequence of the following lemma.

Lemma 20.14. If J is an involution of \mathfrak{M} and $[\mathfrak{F}, J] \nsubseteq \mathfrak{F}$, then $\mathfrak{F} / \mathfrak{F}$ is a free $F_{2}\langle J\rangle$-module.

Proof. Let $\mathfrak{D}=\boldsymbol{C}_{\mathfrak{m}}(\mathfrak{F} / \mathfrak{F})$, and for every subset \mathfrak{S} of \mathfrak{M}, let $\overline{\mathfrak{S}}=\mathfrak{S} \mathfrak{D} / \mathfrak{D}$. Thus, $\bar{J} \neq 1$. Since $\mathfrak{F} / \mathfrak{F}$ is a chief factor of \mathfrak{M}, it follows that $O_{2}(\overline{\mathrm{M}})=1$, and so $\boldsymbol{F}(\overline{\mathrm{M}})$ is a cyclic group of odd order. Thus, J inverts a normal subgroup $\overline{\mathfrak{B}}$ of $\overline{\mathfrak{M}}$ of odd prime order. Since $\mathfrak{F} / \mathscr{F}$ is a chief factor of \mathfrak{M}, it follows that $\overline{\mathfrak{B}}$ has no fixed point on $\mathfrak{F} / \mathfrak{F}$, and the lemma follows.

Lemma 20.15. If $|\mathfrak{F}|=4$, then $\mathscr{M}(\mathfrak{T})=\left\{\mathfrak{M}, \mathfrak{N}_{1}\right\}$, where $\mathfrak{N}_{1}=N\left(\mathfrak{B}_{1}\right)$, $\mathfrak{B}_{1}=V\left(\operatorname{ccl}_{\mathbb{S}}(\mathfrak{F}) ; \mathfrak{T}\right)$.

Proof. Let \mathfrak{P} be a p-group permutable with \mathfrak{I}, and set $\mathbb{R}=\mathfrak{I} \mathfrak{F}$. Suppose $\mathfrak{Z} \nsubseteq \mathfrak{M}$, so that $\mathfrak{Z} \cap \mathfrak{M}=\mathfrak{I}$. Let \mathfrak{U} be a minimal normal subgroup of \mathbb{R}, and let $\mathscr{C}^{\sigma}=\mathfrak{F}^{*}$ be a conjugate of \mathfrak{F} which is contained in \mathfrak{I}. Let $\mathscr{F}_{1}^{G}=\mathfrak{F}_{1}^{*}=\mathfrak{F}^{*} \cap \boldsymbol{O}_{2}(\mathbb{R})$. Since $\mathfrak{T} / \boldsymbol{O}_{2}(\mathbb{R})$ is cyclic, we have $\mathfrak{F}_{1}^{*} \neq 1$. Since $\mathfrak{F} \nsubseteq \mathfrak{M}$, it follows that $[\mathfrak{P}, \mathfrak{l}] \neq 1$. Hence, $\mathfrak{l} \subseteq C\left(\mathfrak{F}_{1}^{*}\right) \subseteq$ \mathfrak{M}^{G}. Suppose $\mathfrak{F}_{1}^{*} \subset \mathfrak{C}^{*}$. In this case, $\left[\mathfrak{U}, \mathfrak{C}^{*}\right] \neq 1$, and so $\left[\mathfrak{U}\right.$, $\left.\mathfrak{F}^{*}\right]=$ $\mathfrak{F}_{1}^{*} \subseteq Z(\mathfrak{U})$. This implies that $\left[O_{2}(\mathbb{R}), \mathfrak{F}^{*}\right]=\mathfrak{F}_{1}^{*}$, and so \mathfrak{H} is a fourgroup, $|\mathfrak{F}|=3$, and $O_{2}(\mathfrak{Z})=\mathfrak{l} \times\left(O_{2}(\mathfrak{Z}) \cap C(\mathfrak{P})\right)$. Since $\mathfrak{F} \not \equiv \mathfrak{M}$, it follows that $Z(\mathfrak{I}) \cap C(\mathfrak{P})=1$, and so $\mathfrak{U}=\boldsymbol{O}_{2}(\mathbb{R})$, against $2 \in \pi_{4}$. So $\mathfrak{B}_{1} \subseteq O_{2}(\mathbb{Z})$, whence $\mathfrak{R} \subseteq N\left(\mathfrak{B}_{1}\right)$. The proof is complete.

Lemma 20.16. If $|\mathfrak{F}|=4$, then $|\mathfrak{F}|=8,16$ or 64 .
Proof. Suppose $|\mathfrak{F}|>8$.
Since $\mathscr{M}(\mathfrak{I})=\left\{\mathfrak{M}, \mathfrak{R}_{1}\right\}$, it follows that $N_{\mathfrak{M}}\left(\mathfrak{B}_{1}\right)=\mathfrak{I}$.
Let $\mathfrak{C}=\boldsymbol{C}(\mathfrak{F}), \mathfrak{D} / \mathfrak{C}=\boldsymbol{O}_{2}(\mathfrak{M} / \mathfrak{C})$, and let \mathfrak{B} be a $S_{2^{\prime}}$-subgroup of \mathfrak{M}. Then $\mathfrak{D} \mathfrak{P} \triangleleft \mathfrak{M}$, since \mathfrak{P} is cyclic. Since $|\mathfrak{F}|>8$, it follows that $\mathfrak{F} \nsubseteq \mathbb{C}$. Let $\mathfrak{I}_{0}=\mathfrak{I} \cap \mathfrak{D}$. Thus, $\mathfrak{M}=\mathfrak{D} \cdot \boldsymbol{N}_{\mathfrak{M}}\left(\mathfrak{I}_{0}\right)$, and so $\boldsymbol{N}_{\mathfrak{M}}\left(\mathfrak{I}_{0}\right) \supset \mathfrak{I}$. Hence, $\mathfrak{F}_{1} \nsubseteq \mathfrak{I}_{0}$.

Choose G in (5) such that $\mathfrak{F}^{*}=\mathfrak{F}^{G} \subseteq \mathfrak{I}, \mathfrak{F}^{*} \nsubseteq \mathfrak{I}_{0}$. Let

$$
\mathfrak{F}_{0}^{G}=\mathfrak{F}_{0}^{*}=\mathfrak{F}^{*} \cap \mathfrak{I}_{0} .
$$

Case 1. $\mathfrak{F}^{*} \cap \mathfrak{F}=1$.
If $E \in \mathfrak{F}^{* *}$, then $C_{\S}(E) \subseteq \mathfrak{M}^{\epsilon}$, and so $\left[C_{\mathfrak{F}}(E), \mathfrak{F}^{*}\right] \subseteq \mathfrak{F}^{*} \cap \mathfrak{F}=1$. Hence, $\boldsymbol{C}_{\mathscr{\delta}}(E)=\boldsymbol{C}_{\tilde{f}}\left(\mathfrak{C}^{*}\right)$ for all $E \in \mathfrak{F}^{* \#}$. Since \mathfrak{M} is solvable, we conclude that $\left|\mathfrak{F}_{0}^{*}\right|=2$. Thus, \mathfrak{F}_{0}^{*} stabilizes the chain $\mathfrak{F} \supset \mathfrak{F} \supset 1$, and so $\left|\mathfrak{F}: C_{\S}\left(\mathfrak{F}_{0}^{*}\right)\right| \leqq 4$. Choose $J \in \mathfrak{F}^{*}-\mathfrak{F}_{0}^{*}$. Then $\mathfrak{F} / \mathfrak{F}$ is a free $F_{2}\langle J\rangle$-module, and so $\mid \mathfrak{F}$: $\mathfrak{F} \mid=2^{2 f}, f \leqq 2$.

Case 2. $\quad \mathfrak{F}^{*} \cap \mathfrak{F} \neq 1$.

In this case, we get $\mathfrak{F}^{*} \cap \mathfrak{F}=\mathfrak{F}_{0}^{*}$, and $\mathfrak{F} \subseteq \boldsymbol{C}\left(\mathfrak{C}_{0}^{*}\right) \subseteq \mathfrak{M}^{\epsilon}$. Hence, $\left[\mathfrak{F}, \mathfrak{F}^{*}\right]=\mathfrak{F}_{0}^{*}$, and $|\mathfrak{F}: \mathfrak{F}|=4$.

The proof is complete.
The next lemma is very important, and is a repetition of an earlier argument, with slight alterations.

Lemma 20.17. If \mathfrak{F} is a subgroup of \mathfrak{M} of odd prime order then $\mathfrak{F} \mathfrak{B} \in \mathscr{l}^{*}$.

Proof. Suppose false. Let

$$
\mathscr{S}_{0}=\{\mathfrak{S} \mid \mathfrak{F} \mathfrak{P} \subseteq \subseteq \subseteq \subseteq \subseteq \subseteq \subseteq, \subseteq \subseteq M, S \text { is solvable }\}
$$

Thus, $\mathscr{S}_{0} \neq \varnothing$. For each \mathfrak{S} in \mathscr{S}_{0}, let $t(\mathbb{S})=|\mathfrak{S} \cap \mathfrak{M}|_{2}$, and let $t=\max t(\mathbb{S})$, where \mathfrak{S} ranges over \mathscr{S}_{0}. Set

$$
\mathscr{S}=\left\{\mathscr{S} \in \mathscr{S}_{0} \mid t(\mathbb{S})=t\right\}
$$

Choose \mathfrak{S} in \mathscr{S} of minimal order. Let \mathfrak{I}_{0} be a S_{2}-subgroup of $\mathfrak{S} \cap \mathfrak{M}$, and let \mathfrak{I}_{1} be a S_{2}-subgroup of \mathfrak{S} which contains \mathfrak{I}_{0}. Since S_{2}-subgroups of \mathfrak{S} are cyclic, it follows that $\mathfrak{I}_{1} \mathfrak{F}=\mathfrak{S}_{1}$ is a group.

Case 1. $\mathfrak{S}=\mathfrak{I}_{1}$.
In this case, $\mathfrak{I}_{1} \nsubseteq \mathfrak{M}$, so $\mathfrak{I}_{0} \subset \mathfrak{I}_{1}$. We assume without loss of generality that $\mathfrak{I}_{0} \subset \mathfrak{I}$. Let $\mathbb{B}=\mathfrak{I} \mathfrak{P}, \mathfrak{I}^{0}=\boldsymbol{O}_{2}(\mathbb{Z})$. If $\mathfrak{I}^{0} \not \equiv \mathfrak{I}_{0}$, then set $\mathfrak{I}_{0} \cap \boldsymbol{O}_{2}(\mathbb{S})=\mathfrak{I}_{00}$. We find that $N\left(\mathfrak{I}_{00}\right) \not \equiv \mathfrak{M}$, and $\left|\boldsymbol{N}\left(\mathfrak{I}_{00}\right) \cap \mathfrak{M}\right|_{2}>t$, against the definition of t. So $\mathfrak{T}^{0} \subseteq \mathfrak{I}_{0}$. Since $\mathfrak{T} \mathfrak{P} \subseteq N\left(\mathfrak{S}^{0}\right)$, we have $\boldsymbol{N}\left(\mathfrak{T}^{0}\right) \subseteq \mathfrak{M}$. Since $\mathfrak{T}^{0}=\mathfrak{I}_{0} \cap \boldsymbol{O}_{2}(\mathfrak{S})$, we conclude that $\mathfrak{S} \subseteq \mathfrak{M}$, which is false.

Case 2. $\mathfrak{S} \neq \mathfrak{T} \mathfrak{1}$.
By minimality of \mathfrak{S}, we have $\mathfrak{I}_{1} \subseteq \mathfrak{M}$.
Let \mathfrak{Q} be a S_{p}-subgroup of \mathfrak{S} which contains \mathfrak{P}.
Case 2(a). $\quad \subseteq=\mathfrak{I}_{1} \mathfrak{\Omega}$.
By maximality of t, we have $\boldsymbol{O}_{2}(\Im) \in \boldsymbol{U}_{\sqrt[3]{*}}(\mathfrak{F} ; 2)$, and so $\boldsymbol{N}\left(\boldsymbol{O}_{2}(\mathfrak{S})\right) \subseteq \mathfrak{M}$, which gives $\subseteq \subseteq \subseteq M$, a contradiction.

Case 2(b). $\mathfrak{S}^{\mathfrak{S}} \neq \mathfrak{I} \mathfrak{\mathfrak { N }}$.
By minimality of \mathfrak{S}, we have $\mathfrak{I} \mathfrak{N} \subseteq \mathfrak{M}$. Thus, $\mathfrak{S}=\mathfrak{I}_{1} \mathfrak{\Re}$, where \mathfrak{R} is a cyclic r-group centralizing \mathfrak{D}, and r is an odd prime $\neq p$.

Let $\Re=\boldsymbol{O}_{p^{\prime}}(\Im)$, and let $\Re_{2}=\Omega \cap \mathfrak{I}_{1}$, so that $\Omega=\mathfrak{R}_{0} \Re$. First, suppose $r \neq 3$. In this case, there is \mathfrak{X} char $\Re_{0}, \mathfrak{X} \neq 1$, with $\mathfrak{X} \triangleleft \Re$, whence $\mathfrak{X} \triangleleft \mathfrak{S}$. By maximality of t, we have $\Re_{2} \in \boldsymbol{h}_{\mathscr{M}(\mathfrak{P} ; 2) \text {, and so }}$ $\boldsymbol{N}_{\mathfrak{M}}(\mathfrak{X}) \supseteqq \mathfrak{T} \mathfrak{P}$, whence $\mathfrak{S} \cong \mathfrak{M}$. This is false, and so $r=3$.

Let $\mathbb{Z}=\boldsymbol{O}_{3^{\prime}}(\mathfrak{S}), \mathcal{R}_{2}=\mathfrak{Z} \cap \mathfrak{I}_{1}$, so that $\mathbb{R}=\mathfrak{R}_{2} \mathfrak{N}$. Since $r=3$ we have $p>3$, and so there is \mathfrak{Y} char $\mathfrak{R}_{2}, \mathfrak{Y} \neq 1$, with $\mathfrak{Y} \triangleleft \mathfrak{R}$, whence $\mathfrak{Y} \triangleleft \mathbb{S}$. Let $\mathfrak{S}^{*}=N(\mathfrak{Y})$. Thus, $\mathfrak{S}^{*} \in \mathscr{S}$, so by what we have already shown, it follows that $\mathfrak{S}^{*} \cap \mathfrak{M}$ contains a S_{2}-subgroup of \mathfrak{S}^{*}, whence \mathfrak{T}_{1} is a S_{2}-subgroup of \mathfrak{M}, and so $\subseteq \subseteq \subseteq M$. The proof is complete.

Lemma 20.18. If $|\mathfrak{F}|=4$, then $\mathfrak{I} / \boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$ is cyclic.
Proof. $\mathfrak{I} / \boldsymbol{O}_{2}\left(\Re_{1}\right)$ acts faithfully on $\overline{\mathfrak{D}}=\boldsymbol{O}_{2}\left(\mathfrak{M}_{1}\right) \mathfrak{Q} / \boldsymbol{O}_{2}\left(\mathfrak{N}_{1}\right)$, where $\mathfrak{\Omega}$ is a S_{2},-subgroup of \mathfrak{N}_{1}. Thus, the lemma holds if $|\mathfrak{N}|=3$ or 5 . Suppose $|\mathfrak{Q}|=15$.

Let \mathfrak{U} be a minimal normal subgroup of \mathfrak{R}_{1}. Thus, $C(\mathfrak{U l})=O_{2}\left(\mathfrak{R}_{1}\right)$. Since either $N(Z(J(\mathbb{I}))) \subseteq \mathfrak{M}$ or $N\left(Z\left(J_{1}(\mathfrak{I})\right)\right) \subseteq \mathfrak{M}$, it follows that $J_{1}(\mathfrak{I}) \nsubseteq \boldsymbol{O}_{2}\left(\mathfrak{M}_{1}\right)$. This in turn forces $|\mathfrak{U}|=2^{4}$. Since elements of GL(4, 2) of order 15 are non real, it follows that no element to $\mathfrak{I} / \boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$ inverts $\mathfrak{\Omega}$, whence $\mathfrak{I} / \boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$ is cyclic (of order 4). The proof is complete.

Lemma 20.19. If $|\mathfrak{F}|=4$ and $|\mathfrak{F}|=64$, then $\mathfrak{B}_{2} \triangleleft \mathfrak{N}_{1}$, where $\mathfrak{B}_{2}=V\left(\operatorname{ccl}_{\mathscr{E}}(\mathfrak{F}) ; \mathfrak{T}\right)$.

Proof. Let $\mathfrak{R}=\boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$, and let \mathfrak{U} be a minimal normal subgroup of \Re_{1}, so that $\Omega=C(\mathfrak{U})$.

Suppose $G \in \mathscr{C H}^{5}$ and $\mathfrak{F}^{G}=\mathfrak{F}^{*} \subseteq \mathfrak{I}$. We will show that $\mathfrak{F}^{*} \cong 爪$. Let $\mathfrak{F}_{1}^{G}=\mathfrak{F}_{1}^{*}=\mathfrak{F}^{*} \cap \mathfrak{R}$, and suppose that $\mathfrak{F}_{1}^{*} \subset \mathfrak{F}^{*}$. By Lemma 20.18, we have $\left|\mathfrak{F}^{*}: \mathfrak{F}_{1}^{*}\right|=2$. Hence, $\mathfrak{u} \subseteq C\left(\mathfrak{F}_{1}^{*}\right) \subseteq \mathfrak{M}^{G}$, and so $\left[\mathfrak{u}, \mathfrak{F}^{*}\right] \subseteq \mathfrak{F}^{*}$. Since $\mathfrak{U} \cong C\left(\mathfrak{F}_{1}^{*}\right)$, Lemma 20.13 implies that $1 \subset\left[\mathfrak{U}, \mathfrak{F}^{*}\right] \subseteq \mathfrak{F}^{G}$. Hence, $\mathfrak{c}^{a} \cap$ $Z(\mathfrak{I}) \neq 1$. Since \mathfrak{F} is a T.I. set in \mathscr{E}, and since $\mathfrak{F} \supseteq \Omega_{1}(Z(\mathfrak{T}))=3$, we have $\mathfrak{F}=\mathfrak{F}^{G}$, so that $\mathfrak{F}=\mathfrak{F}^{G}$.

Let $\mathfrak{F}_{0}=\mathfrak{F} \cap \mathfrak{R}$, so that $\mathfrak{F}=\mathfrak{F}_{0} \times\langle F\rangle$, and F inverts a subgroup \mathfrak{S} of \mathfrak{R}_{1} of odd prime order p. Let $\Re_{1}=[\mathfrak{R}, \Omega]$, so that $\Re_{1}=\left[\Re_{1}, F\right] \times$ $\left[\Re_{1}, F\right]^{P}$, where $\mathfrak{F}=\langle P\rangle$, and $\left[\Re_{1}, F\right] \subseteq \mathfrak{F}_{0}$. Let $\Re_{2}=C_{\Omega}(\mathfrak{F})$. A standard argument shows that $\mathfrak{F}_{0}=\mathfrak{F}_{0} \cap \Re_{2} \times \mathfrak{F}_{0} \cap \mathfrak{R}_{1}$, that $\mathfrak{F}_{0} \cap \Re_{1}=\left[\Re_{1}, F\right]$, and that $\mathfrak{F}_{0} \subseteq C\left(\Re_{1}\right)$. Since each element of $\left[\Re_{1}, F\right]^{P}$ centralizes the hyperplane \mathfrak{F}_{0} of \mathfrak{F}, Lemma 20.13 implies that $\left[\Re_{1}, F\right] \subseteq \mathfrak{F}$. Since $2 \in \pi_{4}$, we conclude that $\left[\Re_{1}, F\right]=\mathfrak{F},\left|\Re_{1}\right|=2^{4}$. Since $1 \subset \mathfrak{F}_{0} \cap \Re_{2} \subseteq$ $\boldsymbol{C}_{\mathfrak{R}_{2}}\left(\Re_{1}\right) \triangleleft \mathfrak{T} \mathfrak{P}$, it follows that $\boldsymbol{C}(\mathfrak{F}) \cap \boldsymbol{Z}(\mathfrak{Z}) \neq 1$, the desired contradiction. The proof is complete.

Lemma 20.20. If $|\mathfrak{F}|=4$ and $|\mathfrak{F}|=64$, then the following hold:
(a) \mathfrak{F} is not a T.I. set in (5).
(b) $|\mathfrak{M}|_{2^{\prime}}=5$.
(c) $\left|\mathfrak{R}_{1}\right|_{2^{\prime}}=5$ or 15 .

Proof. Let $\mathfrak{C}=\boldsymbol{C}(\mathfrak{F}), \mathfrak{D} / \mathfrak{F}=\boldsymbol{O}_{2}(\mathfrak{M} / \mathfrak{C}), \mathfrak{I}_{0}=\mathfrak{I} \cap \mathfrak{D}$. Since $\boldsymbol{N}_{\mathfrak{n}}\left(\mathfrak{I}_{0}\right) \supset \mathfrak{I}$, it follows from Lemma 20.19 that $\mathfrak{B}_{2} \nsubseteq \mathfrak{I}_{0}$. Choose G in ${ }^{(5)}$ such that $\mathfrak{F}^{G} \subseteq \mathfrak{I}, \mathfrak{F}^{G} \nsubseteq \mathfrak{I}_{0}$. If (a) is false, then since $\mathfrak{F} \neq \mathfrak{F}^{G}$, we conclude that $\left[C_{\mathfrak{F}}(X), \mathfrak{F}\right] \subseteq \mathfrak{F} \cap \mathfrak{F}^{G}=1$ for all $X \in \mathfrak{F}^{G \sharp}$. Since $|\mathfrak{F}|=\left|\mathfrak{F}^{G}\right|$, this forces $\mathfrak{F} \subseteq C\left(\mathfrak{F}^{G}\right)$, against $\mathfrak{F}^{G} \nsubseteq \mathfrak{D}$. So (a) holds.

Let \mathfrak{F} be a S_{2}-subgroup of \mathfrak{M}, and let $\mathfrak{F}_{0}=\boldsymbol{C}_{\mathfrak{F}}(\mathfrak{F})=\boldsymbol{C}_{\mathfrak{F}}(\mathfrak{F} / \mathfrak{F})$. If $\mathfrak{P}_{0} \neq 1$, then Lemma 20.17 implies that \mathfrak{F} is a T.I. set in \mathfrak{A}, against (a). So $\mathfrak{B}_{0}=1$. Since $\mathfrak{B F} / \mathfrak{F}$ is a Frobenius group, and $\mathfrak{F} / \mathfrak{F}$ is a chief factor of \mathfrak{M}, we have $|\mathfrak{F}|=5$ or 15 . If $|\mathfrak{F}|=15$, then $\mathfrak{I} / O_{2}(\mathfrak{M})$ is cyclic of order 4 . In this case, let \mathfrak{T}^{0} be the unique subgroup of \mathfrak{I} of index 2 which contains $\boldsymbol{O}_{2}(\mathfrak{M})$. Then $\mathfrak{T}^{0} \supseteq \Omega_{1}(\mathfrak{I})$, and so $\mathfrak{B}_{2} \subseteq \mathfrak{I}^{0}$. Hence, $N_{\mathfrak{m}}\left(\mathfrak{B}_{2}\right) \supset \mathfrak{I}$, against Lemma 20.19. So (b) holds.

To prove (c), it suffices to show that a $S_{2^{2}}$-subgroup \mathfrak{Q} of \mathfrak{N}_{1} is not of order 3. Suppose by way of contradiction that $|\mathfrak{Q}|=3$.

Let \mathfrak{U} be minimal normal subgroup of \mathfrak{N}_{1}, so that $|\mathfrak{l}|=4$, and $\mathfrak{U} \cap \boldsymbol{Z}(\mathfrak{Z})=\mathfrak{U}_{0}$ is of order 2. Let $\mathfrak{W}=\mathfrak{l}^{\mathfrak{N}}=\mathfrak{u}^{\mathfrak{\beta}}$. Let $\mathfrak{S e}^{2}=\boldsymbol{O}_{2}(\mathfrak{M})$, $\mathscr{R}=\boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$, so that $\mathfrak{M} / \mathfrak{S}$ is a Frobenius group of order 10 or 20 and $\mathfrak{R}_{1} / \Re \cong \Sigma_{3}$.

We argue that $\mathfrak{W}^{\prime}=1$. Namely, $\mathfrak{U} \triangleleft \mathfrak{F}$, and so if $\mathfrak{F}=\langle P\rangle$, then $\mathfrak{U}^{P^{i}} \triangleleft \mathfrak{N}$ for all i. Suppose $\left[\mathfrak{U}, \mathfrak{u}^{P^{i}}\right] \neq 1$. Then $\mathfrak{H}^{P^{i}}=\mathfrak{U}_{0} \times\langle U\rangle$, and $[\mathfrak{U}, U]=\mathfrak{U}_{0} . \quad$ Hence, $\mathfrak{I}=\Re\langle U\rangle$, and $[U, \mathfrak{R} \cap \mathfrak{S}] \subseteq[\mathfrak{U}, U]=\mathfrak{U}_{0} . \quad$ Since $\Re / \Re \cap \mathfrak{S}$ is cyclic, it follows that $\left[\Re^{\prime}, U\right] \subseteq \mathfrak{H}_{0}$. We assume without loss of generality that U inverts Ω.

Case 1. $\quad \Omega^{\prime}=1$.
Since $J_{1}(\mathfrak{T}) \nsubseteq \Re$, and since $\boldsymbol{Z}(\mathfrak{T}) \cap \boldsymbol{C}(\mathfrak{Q})=1$, it follows that \Re is generated by 4 elements. Hence every abelian subgroup of \mathfrak{I} is generated by 5 elements, against $|\mathfrak{F}|=64$.

Case 2. $\quad \Omega^{\prime} \neq 1$.
Since $\left[\Omega^{\prime}, U\right] \subseteq \mathfrak{U}_{0}$, it follows that $\Omega^{\prime}=\mathfrak{U} \times \boldsymbol{C}_{\Omega^{\prime}}(\mathfrak{Q})$, and U centralizes $\boldsymbol{C}_{\Omega^{\prime}}(\mathfrak{Q})$. Since $\boldsymbol{Z}(\mathfrak{T}) \cap \boldsymbol{C}(\mathfrak{F})=1, \boldsymbol{C}_{\mathbb{R}^{\prime}}(\mathfrak{Q})$ contains no non identity characteristic subgroup of Ω^{\prime}, and so Ω^{\prime} is elementary abelian.

Let $\Re_{0}=C_{\Omega}(\mathfrak{Q}), \mathfrak{R}^{0}=\Re_{0} \mathfrak{U}=\Re_{0} \times \mathfrak{U}$. Since $\Re^{0} \supseteq \Re^{\prime}$, and \Re^{0} admits U, we have $\Re^{0} \triangleleft \mathfrak{I}$. Since \Re_{0} contains no non identity characteristic subgroup of Ω^{0}, it follows that Ω_{0} is elementary abelian.

Let $\bar{\Re}=\Re / \Re^{0}, \bar{R}=(\mathfrak{F} \cap \Re) \Re^{0} / \Re^{0}$. Thus, $\overline{\mathfrak{R}} / \overline{\mathfrak{R}}$ is cyclic of order at most 4 , and $[\bar{\Re}, U]=1$. Since $C_{\bar{\Omega}}(\mathfrak{\Omega})=1$, it follows that one of the
following holds:
(a) $\bar{\Omega}$ is a four-group.
(b) $\bar{\Omega}$ is the direct product of 2 cyclic groups of order 4 .

Since $\mathfrak{R}^{0}=\mathscr{R}_{0} \mathfrak{l}$, it follows that $\left[\mathfrak{R}, \Re^{0}\right] \subseteq \mathfrak{l}$. Hence, if $K \in \Re$, then $C_{\Omega 0}(K)$ is of index at most 4 in \Re^{0}. Since $\Omega=\left\langle\Re^{0}, K_{1}, K_{2}\right\rangle$ for suitable K_{1}, K_{2}, it follows that $\left|\mathfrak{\Re}^{0}\right| \leqq 64$, whence $|\Omega| \leqq 64.4^{2}=2^{10}$. So $|\mathfrak{I}| \leqq 2^{11}$. If $|\mathfrak{I}| \leqq 2^{10}$, then $|\mathfrak{S}| \leqq 2^{9}$, and since $|\mathfrak{F}|=2^{6}$, it follows that $[\mathfrak{F}, \mathfrak{X}]=[\mathfrak{F}, \mathfrak{Y}] \triangleleft \mathfrak{M}$, against $|B| \leqq 4$. So $|\mathfrak{I}|=2^{11}$, and this forces $\left|\Omega_{0}\right|=2^{4}$. Since $\Omega_{0} \cap \boldsymbol{Z}(\Omega)=1$, we may identify Ω_{0} with a subgroup of $\operatorname{Hom}(\bar{\Omega}, \mathfrak{H})$. Since $\operatorname{Hom}(\bar{\Re}, \mathfrak{l}) \cong \operatorname{Hom}(\bar{\Re} / \boldsymbol{D}(\overline{\mathfrak{R}}), \mathfrak{l})$ is of order 2^{4}, we get $\mathfrak{\Omega}_{0} \cong \operatorname{Hom}(\overline{\mathfrak{R}}, \mathfrak{l})$. This is false, since \mathfrak{Q} centralizes Ω_{0} and does not centralize Hom $(\bar{\Omega}, \mathfrak{U})$. We conclude that $\mathfrak{W}^{\prime}=1$.

Since $[\mathfrak{I}, \mathfrak{l}]=\mathfrak{l}_{v}$, we have $[\mathfrak{S}, \mathfrak{M}] \subseteq \mathfrak{l}_{0}$. Since $|\mathcal{Z}|=4$, and since $\mathfrak{W} \supset \mathfrak{U}$, we have $[\mathfrak{F}, \mathfrak{W}]=\mathfrak{H}_{0}$. Thus, $\mathfrak{F}_{1}=[\mathfrak{W}, \mathfrak{F}]$ is of order 2^{4}, and $\mathfrak{W}^{*}=\mathfrak{M}_{1} \mathfrak{u}_{0}=\mathfrak{M}_{1} \times \mathfrak{U}_{0} \triangleleft \mathfrak{M},\left|\mathfrak{B}^{*}\right|=2^{5}$.

Since $\mathfrak{R}_{1}=N\left(\mathfrak{B}_{1}\right)$, we can choose G in (5) such that $\mathscr{C}^{G}=\mathfrak{F}^{*} \cong \mathfrak{I}$, $\mathfrak{F}^{*} \not \equiv \mathfrak{F}$. Thus, $\mathfrak{F}^{*} \cap \mathfrak{F}=\mathfrak{F}_{1}^{F}=\mathfrak{F}_{1}^{*}$ is of order 2, and since $\left[\mathfrak{S}^{*}, \mathfrak{F}_{1}^{*}\right] \subseteq \mathfrak{H}_{0}$, we have $\left|\mathfrak{M}^{*}: C_{\mathfrak{w}}\left(\mathfrak{C}_{1}^{*}\right)\right| \leqq 2$. Let $\mathfrak{B}_{0}^{*}=\boldsymbol{C}_{\mathfrak{m}^{*}}\left(\mathfrak{F}_{1}^{*}\right)$. Choose $\mathfrak{C} \in \mathfrak{C}^{*}-\mathfrak{C}_{1}^{*}$, so that $\mathfrak{W}^{*} / \mathfrak{U}_{0}$ is a free $F_{2}\langle E\rangle$-module. Hence, $\left[\mathfrak{B}_{0}^{*}, E\right] \neq 1$. Since $\mathfrak{W}_{0}^{*} \subseteq \mathfrak{M}^{\prime}$, we conclude that $\left[\mathfrak{B}_{0}^{*}, E\right]=\mathfrak{F}_{1}^{* *}$. Hence, $\mathfrak{W}_{0}^{*}=\mathfrak{W}^{*}$, and so $\left[\mathfrak{W}^{*}, E\right]=\mathfrak{F}_{1}^{*}$. This is false, since $\mathfrak{W}^{*} / \mathfrak{M}_{0}$ is a free $F_{2}\langle E\rangle$-module of order 2^{4}. The proof is complete.

We now complete the analysis of the case $|\mathfrak{F}|=4$ and $|\mathfrak{F}|=64$. Let $\mathscr{S}_{2}=\boldsymbol{O}_{2}(\mathfrak{M}), \mathscr{R}=\boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$, and let $\mathfrak{l l}$ be a minimal normal subgroup of \mathfrak{R}_{1}. Let \mathfrak{P} be a $S_{2^{2}}$-subgroup of $\mathfrak{M}, \mathfrak{Q}$ a $S_{2^{\prime}}$-subgroup of \mathfrak{N}_{1}. Choose $T \in \mathfrak{I}-\Omega, T^{2} \in \mathfrak{R}$, so that $\mathfrak{M}_{1}=\boldsymbol{C}_{\mathfrak{n}}(T)$ is a four-group, and $|\mathfrak{U}|=2^{4}$. It is important to show that

$$
\begin{equation*}
\mathfrak{u}_{1} \triangleleft \mathfrak{M}, \quad \mathfrak{B} \cong \boldsymbol{C}\left(\mathfrak{U}_{1}\right) . \tag{20.2}
\end{equation*}
$$

Suppose (20.2) is false. In this case, $\mathfrak{H}_{1} \not \equiv Z(\mathfrak{I})$, and so \mathfrak{I} / Ω is cyclic of order 4 , and $\mathfrak{l}_{0}=\mathfrak{l}_{1} \cap \boldsymbol{Z}(\mathfrak{T})$ is of order 2. Let $\mathfrak{I}_{0}=\langle T$, $\mathfrak{R}\rangle$. Then $\mathfrak{U}_{1} \sqsubseteq \boldsymbol{Z}\left(\mathfrak{T}_{0}\right)$, and $\mathfrak{I}_{0} \supseteq \Omega_{1}(\mathfrak{T})$. Since $\mathfrak{U}_{1} \triangleleft \mathfrak{I}$, we have $\mathfrak{H}_{1} \triangleleft \mathfrak{F}$, and so $\mathfrak{B}=\mathfrak{u}_{1}^{\mathfrak{M}}=\mathfrak{u}_{1}^{\mathfrak{\beta}} \triangleleft \mathfrak{M} . \quad$ Since $\mathfrak{U}_{1} \subseteq Z\left(\Omega_{1}(\mathfrak{D})\right)$, we see that $\mathfrak{W}=1$.

Let $\mathfrak{W}_{1}=[\mathfrak{W}, \mathfrak{M}]$, so that $\left|\mathfrak{M}_{1}\right|=2^{4}$ and $\mathfrak{W}^{*}=\mathfrak{W}_{1} \mathfrak{l}_{0}=\mathfrak{M}_{1} \times \mathfrak{l}_{0} \triangleleft \mathfrak{M}$, $\left|\mathfrak{W}^{*}\right|=2^{5}$. The argument of Lemma 20.20 can be applied to yield a contradiction. So (20.2) holds.

Let $\mathfrak{u}_{1} \subset \mathfrak{U}^{1} \subset \mathfrak{l}$, with $\mathfrak{u}^{1} \triangleleft \mathfrak{I}$, so that $\left|\mathfrak{u}^{1}\right|=2^{3}$. We argue that $\mathfrak{R}=C\left(\mathfrak{H}^{1}\right)$. In any case, $\mathfrak{R}=C_{\Re_{1}}\left(\mathfrak{H}^{1}\right)$, and since $N(\Re)=\mathfrak{N}_{1}$, it follows that \mathfrak{K} is a S_{2}-subgroup of $C\left(\mathfrak{H}^{1}\right)$. Since $\mathfrak{H}^{1} \supset \mathfrak{U}_{1}$ and $\mathfrak{l}_{1} \triangleleft \mathfrak{M}$, we have $\boldsymbol{C}\left(\mathfrak{U}^{1}\right) \cong \mathfrak{M}$. Thus, if $\boldsymbol{C}\left(\mathfrak{U}^{1}\right) \supset \mathfrak{R}$, then $\boldsymbol{C}\left(\mathfrak{U}^{1}\right) \supseteqq \mathfrak{F}$, so that $\boldsymbol{C}\left(\mathfrak{H}^{1}\right)=\mathfrak{R} \mathfrak{F}$. Since $|\mathfrak{P}|=5$, there is $\mathfrak{X} \in\{Z(\Re), J(\Re)\}$ with $\mathfrak{X} \triangleleft \mathfrak{R}$. Thus, $\mathfrak{P} \subseteq N(\mathfrak{X})=$ \mathfrak{R}_{1}, which is false, since $\mathfrak{M} \cap \mathfrak{R}_{1}=\mathfrak{I}$. So $\left[\mathfrak{P}, \mathfrak{H}^{1}\right] \neq 1$, and $C\left(\mathfrak{H}^{1}\right)=\mathfrak{R}$.

Let $\mathfrak{X}=\mathfrak{U}^{19 n}=\mathfrak{l}^{19}$. Since $\mathfrak{U}^{1} \triangleleft \mathfrak{N}$, we have $\mathfrak{l}^{1}=\langle U\rangle \times \mathfrak{U}_{1}$, and
$\mathfrak{X}=\left\langle\mathfrak{l}_{1}, U^{p^{i}} \mid 0 \leqq i \leqq 4\right\rangle$. Also, $\mathfrak{u}_{1} \subseteq Z(\mathfrak{X})$, since $\mathfrak{X} \subseteq \Omega_{1}(\mathfrak{L})$. We argue that $\mathfrak{X}^{\prime}=1$. Suppose false. Then $\left[\mathfrak{U}^{1}, U^{p \imath}\right] \neq 1$ for some i. Set $V=U^{p^{2}}$. Thus, $V \notin \mathfrak{R}$, and $[\mathfrak{S} \cap \mathfrak{R}, V] \subseteq[\mathfrak{S}, V] \subseteq \mathfrak{H}_{1}$. Since $\mathfrak{l}_{1} \triangleleft \mathfrak{M}$, it follows that $|\mathfrak{Q}|=5$. We may assume that V inverts \mathfrak{R}. Since $\Re / \Re \cap \mathfrak{K}$ is cyclic, it follows that $\mathfrak{\Omega}$ centralizes $\mathfrak{\Omega} / \mathfrak{U}$, and since $\boldsymbol{Z}(\mathfrak{Z}) \cap C(\mathfrak{Q})=1$, we get $\mathfrak{R}=\mathfrak{H}$. This violates $|\mathfrak{F}|=64$. So \mathfrak{X} is abelian.

Let $\mathfrak{M}_{0}=\boldsymbol{C}\left(\mathfrak{H}_{1}\right)$ so that $\left|\mathfrak{M}: \mathfrak{M}_{0}\right| \leqq 2$. Let $\mathscr{F}_{0}=\boldsymbol{O}_{2}\left(\mathfrak{M}_{0}\right)=\mathfrak{M}_{0} \cap \mathfrak{K}_{2}$. Thus, \mathfrak{K}_{0} stabilizes the chain $\mathfrak{U}^{1} \supset \mathfrak{l}_{1} \supset 1$, and so \mathfrak{K}_{0} stabilizes the chain $\mathfrak{W} \supset \mathfrak{l}_{1} \supset 1$, whence $\boldsymbol{D}\left(\mathfrak{S}_{0}\right) \subseteq \boldsymbol{C}(\mathfrak{W})$. Since $\mathfrak{N}_{0} \cap \mathfrak{R}$ centralizes \mathfrak{H}^{1}, and since $\mathfrak{K}_{2} / \mathscr{S}_{0} \cap \mathfrak{R}$ is cyclic, it follows that $; \mathscr{S}_{0}: C_{\mathfrak{5}_{0}}(\mathfrak{l l}) \mid \leqq 2$. Let $\mathfrak{l l}(1)=$ [\mathfrak{U}^{1}, $\left.\mathfrak{S}_{2}\right]$, so that $|\mathfrak{U}(1)|=2, \mathfrak{U}(1) \subset \mathfrak{U}_{1} \subseteq C(\mathfrak{X})$. Since $\mathfrak{M}=\mathfrak{U}^{\mathfrak{1 p}}$, it follows that $\left[\mathfrak{N}, \mathfrak{S}_{2}\right]=\mathfrak{l l}(1)$.

Now choose G in $\mathscr{S}^{(3)}$ such that $\mathfrak{F}^{G} \subseteq \mathfrak{I}, \mathfrak{C}^{a} \nsubseteq \mathfrak{F} ; G$ exists since $\mathfrak{R}_{1}=N\left(\mathfrak{B}_{1}\right)$. Since $\mathfrak{I} / \mathfrak{S}$ is cyclic, $\mathscr{F}^{G} \cap \mathfrak{F} \neq 1$. Since \mathfrak{F} is a T.I. set in \mathfrak{G}, we have $\mathfrak{F}^{a} \subseteq \mathfrak{M}_{0}$, and so $\mathfrak{F}^{G} \cap \mathfrak{F}=\mathfrak{F}^{G} \cap \mathfrak{S}_{0}=\left\langle E_{0}\right\rangle$. Thus, $\left[E_{0}, \mathfrak{M}\right] \cong \mathfrak{U}(1)$, and so $\left|\mathfrak{B}: C_{\mathfrak{R}}\left(E_{0}\right)\right| \leqq 2$. Choose $E \in \mathfrak{\zeta}^{G}-\left\langle E_{0}\right\rangle$. We may assume that E inverts \mathfrak{B}. Since $\mathfrak{H}^{1} \nsubseteq C(\mathfrak{F})$, and \mathfrak{W} is elementary of order at most 2^{7}, it follows that $[\mathfrak{W}, \mathfrak{B}]=\mathfrak{B}_{0}$ is of order 2^{4} and is a free $F_{2}\langle E\rangle$-module. Hence, E does not centralize $\mathfrak{W}_{0} \cap \mathfrak{W}^{*}$ where $\mathfrak{W}^{*}=C_{s}\left(E_{0}\right)$, and so $\left[\mathfrak{W}_{0} \cap \mathfrak{W}^{*}, E\right]=\left\langle E_{0}\right\rangle$. Since $E_{0} \in \mathfrak{W}$, we have $\mathfrak{W}^{*}=\mathfrak{M}$, and so $[\mathfrak{F}, E]=\left\langle E_{0}\right\rangle$. This is false, since \mathfrak{W}_{0} is a free $F_{0}\langle E\rangle-$ module of order 2^{4}. This completes a proof that if $|\mathfrak{F}|=4$, then $|\mathfrak{F}| \neq 64$.

Lemma 20.21. Suppose $|\mathfrak{F}|=4$ and $|\mathfrak{F}|=16$. Then the following hold:
(a) \mathfrak{F} is not a T.I. set in (5).
(b) $\mathfrak{M}_{\left.\right|_{2}}=3$.
(c) $\left|\mathfrak{R}_{1}\right|_{2^{\prime}}=5$.

Proof. Suppose (a) is false. In this case, if $G \in(\mathfrak{b}-\mathfrak{M}$ and $\mathfrak{F}^{G} \subseteq \mathfrak{I}$, then $\left[C_{\mathfrak{F}}(F), \mathfrak{F}^{G}\right] \subseteq \mathfrak{F} \cap \mathfrak{F}^{G}=1$, for all $F \in \mathfrak{F}^{G \neq}$, and so $\left[\mathfrak{F}, \widetilde{F}^{G}\right]=1$. Set $\mathfrak{B}_{2}=V\left(\operatorname{ccl}_{\mathfrak{c}}(\mathfrak{F}) ; \mathfrak{T}\right)$. Thus, $\mathfrak{M}=\boldsymbol{C}(\mathfrak{F}) \cdot \boldsymbol{N}_{2 \mathfrak{N}}\left(\mathfrak{B}_{2}\right)$ and so $\boldsymbol{N}_{\mathfrak{M}}\left(\mathfrak{B}_{2}\right) \supset \mathfrak{N}$, whence $N\left(\mathfrak{B}_{2}\right) \subseteq \mathfrak{M}$.

Let $\mathfrak{l l}$ be a minimal normal subgroup of \mathfrak{R}_{1}, and let $\Re=\boldsymbol{O}_{2}\left(\mathfrak{N}_{1}\right)$. Since $N_{\mathfrak{R}_{1}}\left(\mathfrak{B}_{2}\right)=\mathfrak{I}$, there is G in $\mathscr{S S}^{3}$ such that $\mathfrak{F}^{G}=\mathfrak{F}^{*} \subseteq \mathfrak{I}, \mathfrak{F}^{*} \equiv \mathfrak{K}$.

Since \mathfrak{F} is a T.I. set in \mathfrak{F}, and $|\mathfrak{F}|>2$, if follows that $\mathfrak{F}^{*} \cap \mathfrak{U} \neq 1$. Hence, $\mathfrak{K} \sqsubseteq C\left(\mathfrak{F}^{*} \cap \mathfrak{U}\right) \subseteq N\left(\mathfrak{F}^{*}\right)=\mathfrak{M}^{G}$. This implies that $\mathfrak{F}^{*} \cap \Re=\mathfrak{F}_{1}^{*}$ is of index 2 in \mathfrak{F}^{*}.

Let $\mathfrak{\Omega}$ be a subgroup of \mathfrak{N}_{1} of odd prime order such that $\mathfrak{F}^{*}=$ $\mathfrak{F}_{1}^{*} \times\langle F\rangle$, where F inverts $\mathfrak{\Omega}$. Let $\Re_{1}=[\Omega, \mathfrak{\Re}]$. Thus, $\Re_{1}=\left[\Re_{1} F\right] \times$ $\left[\Re_{1}, F\right]^{Q}$, where $\langle Q\rangle=\mathfrak{\Omega}$. By a standard argument, $\mathfrak{F}^{*}=\mathscr{F}^{*} \cap \Re_{2} \times$ $\mathfrak{F}^{*} \cap \Re_{1}$, where $\Re_{2}=C_{\Omega}(\mathfrak{Q})$. Since $\mathfrak{\Omega} \nsubseteq N\left(\mathfrak{F}^{*}\right)$, we have $\mathfrak{F}^{*} \cap \Re_{2}=1$,
and so $\left|\mathfrak{F}^{*}\right|=\left[\Re_{1}, F\right]$ is of order $2^{3},\left|\Re_{1}\right|=2^{6}$. Hence, $|\mathfrak{Q}|=3$. Since $C(\mathfrak{Q}) \cap \boldsymbol{Z}(\mathfrak{T})=1, \Re_{2}$ acts faithfully on \Re_{1}. Since $\left|\mathfrak{R}_{1}\right|_{2}=3$ or 15 , and since $\boldsymbol{C}\left(\mathfrak{\Omega}_{0}\right) \cap \boldsymbol{Z}(\mathfrak{I})=1$ for every non identity odd order subgroup $\mathfrak{\Omega}_{0}$ of \Re_{1}, it follows that $\left|\Re_{1}\right|_{2^{\prime}}=3$. Since $J_{1}(\mathfrak{T}) \nsubseteq \Re$, it follows that $\Re_{2} \neq 1$. Thus, $\mathfrak{R} \in N^{*}(\mathfrak{N} ; 2)$ and $C_{\Re}(\mathfrak{Q}) \neq 1$. On the other hand, $3||\mathfrak{M}|$, and if \mathfrak{S} is a S_{3}-subgroup of \mathfrak{M}, then $\mathfrak{F} \subseteq C(\mathbb{S})$. This implies that \mathfrak{S} is a S_{3}-subgroup of ©s. Let $\mathfrak{Z}=\mathfrak{Z} \mathfrak{P}$, where $\mathfrak{P}=\Omega_{1}(\mathbb{S})$. Then $\boldsymbol{O}_{2}(\mathbb{Z}) \in$ $\boldsymbol{N}^{*}(\mathfrak{F} ; 2)$ and $O_{2}(\mathbb{R}) \cap C(\mathfrak{P}) \neq 1$. By the transitivity theorem, we get that Ω and $O_{2}(\mathfrak{Z})$ are (S)-conjugate, hence are equal. This is false, since $N\left(O_{2}(\mathfrak{R})\right) \subseteq \mathfrak{M}, N(\Re)=\mathfrak{M}_{1} \nsubseteq \mathfrak{M}$. So (a) holds.

Lemma 20.17 and (a) imply (b).
Since some element of $\mathscr{M}(\mathfrak{T})$ has order $>3 \cdot|\mathfrak{I}|$, it follows that $\left|\mathfrak{M}_{1}\right|_{2^{\prime}}=5$ or 15 . Suppose $\left|\mathfrak{N}_{1}\right|_{2^{\prime}}=15$. Since $J_{1}(\mathfrak{T}) \nsubseteq O_{2}\left(\mathfrak{N}_{1}\right)$, it follows that every minimal normal subgroup of \mathfrak{N}_{1} has order 2^{4}, and so $\mathfrak{I} / \boldsymbol{O}_{2}\left(\mathfrak{N}_{1}\right)$ is cyclic of order 4. Let $\mathfrak{I} \supset \mathfrak{I}_{0} \supset \boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$, and let \mathfrak{D} be a $S_{2^{2}}$-subgroup of \mathfrak{N}_{1}. Then $\mathfrak{Q}=\mathfrak{N}_{3} \times \mathfrak{Q}_{5}$, where $\left|\mathfrak{N}_{p}\right|=p$. Also, \mathfrak{N}_{3} centralizes $\mathfrak{I}_{0} / \boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$, and $\mathfrak{I}_{0} \in \boldsymbol{N}^{*}\left(\mathfrak{\Re}_{3} ; 2\right)$. Let \mathfrak{P} be a S_{3}-subgroup of \mathfrak{M}. Then $\boldsymbol{O}_{2}(\mathfrak{M}) \in \boldsymbol{N}^{*}(\mathfrak{F} ; 2)$, and $\boldsymbol{C}(\mathfrak{P}) \cap \boldsymbol{O}_{2}(\mathfrak{M})$ contains a four-group. So \mathfrak{P} is a S_{3}-subgroup of $\left(\mathscr{S}\right.$, and $\mathfrak{V}_{0}, \boldsymbol{O}_{2}(\mathfrak{M})$ are $(\mathfrak{S}$-conjugate, hence are equal. This is false, and so (c) holds.

Let \mathfrak{U} be a minimal normal subgroup of \mathfrak{N}_{1}. Thus, $|\mathfrak{U}|=2^{4}$, $C(\mathfrak{U})=\Re=\boldsymbol{O}_{2}\left(\Re_{1}\right)$, and \Re_{1} / \Re is a Frobenius group of order 10 or 20. Let \mathfrak{I}_{0} / \Re be the subgroup of $\mathfrak{T} / \mathfrak{\Omega}$ of order 2. Then $\mathfrak{U}_{0}=\boldsymbol{C}_{\mathfrak{n}}\left(\mathfrak{I}_{0}\right)$ is a four-group. Let $\mathfrak{\Omega}$ be a $S_{2^{\prime}}$-subgroup of \mathfrak{N}_{1}, so that $\mathfrak{\Omega}=\langle Q\rangle$ is of order 5 . Then set $\mathfrak{u}_{i}=\mathfrak{u}_{s}^{Q^{i}}$, so that

$$
\mathfrak{U}^{\ddagger}=\bigcup_{i=0}^{4} \mathfrak{U}_{i}^{\#} .
$$

Suppose $I \in \mathfrak{l}^{\sharp}$. Set $\mathfrak{C}=\boldsymbol{C}(I)$. We argue that $\mathscr{C}^{\mathfrak{C}} \cap \mathfrak{R}_{1}$ is a S_{2}-subgroup of \mathfrak{C}. We may assume that $\mathfrak{I}_{0} \subseteq \mathfrak{C} \cap \mathfrak{N}_{1} \subseteq \mathfrak{I}$. If $\mathfrak{C} \cap \mathfrak{N}_{1}=\mathfrak{I}$, we are done, so suppose that $\mathfrak{C} \cap \mathfrak{R}_{1}=\mathfrak{I}_{0} \subset \mathfrak{I}$. Since $J(\mathfrak{T}) \triangleleft \mathfrak{R}$, we have $J(\mathfrak{I})=J\left(\mathfrak{I}_{0}\right)=J(\Re) \triangleleft \mathfrak{N}_{1}$, and so $N\left(\mathfrak{I}_{0}\right) \subseteq \mathfrak{N}_{1}$. So $\mathfrak{F} \cap \mathfrak{N}_{1}$ is a S_{2}-subgroup of \mathfrak{C}.

Let $\mathfrak{C}_{0}=\boldsymbol{O}_{2}(\mathfrak{C}), \mathfrak{T}^{0}=\mathfrak{C} \cap \mathfrak{\Re}_{1}$. We argue that $\mathfrak{T}^{0} / \mathfrak{C}_{0}$ is cyclic. This is obvious if \mathfrak{T}^{0} is a S_{2}-subgroup of \mathfrak{F}, since $\mathfrak{I} / \boldsymbol{O}_{2}(\mathfrak{M})$ and $\mathfrak{I} / \boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$ are cyclic. So suppose $\mathfrak{T}^{0}=\mathfrak{I}_{0} \subset \mathfrak{I}$ and $\mathfrak{C}=\mathfrak{T}^{0} \cdot \mathfrak{R}$, where $|\mathfrak{R}|$ is odd. Thus, $|\Re|$ divides 15 . If $|\Re| \neq 15$, then $\mathfrak{T}^{0} / \boldsymbol{O}_{2}(\mathbb{C})$ is certainly cyclic. So suppose $|\Re|=15, \mathfrak{R}=\Re_{3} \times \Re_{5}$, where $\left|\Re_{p}\right|=p$. Let $\mathfrak{D}=O_{3^{\prime}}(\mathbb{C})$, so that $\mathfrak{D}=\mathfrak{D}_{2} \Re_{5}$, where $\mathfrak{D}_{2}=\mathfrak{D} \cap \mathfrak{I}^{0}$. We can then choose $\mathfrak{X} \in\left\{Z\left(\mathfrak{D}_{2}\right)\right.$, $\left.J\left(\mathfrak{D}_{2}\right)\right\}$ such that $\mathfrak{X} \triangleleft \mathfrak{D}$, whence $\mathfrak{X} \triangleleft \mathfrak{C}$. Let $\mathbb{Z}=N(\mathfrak{X})$. If $\mathfrak{Z}=\mathfrak{C}$, then $\mathfrak{D}_{2} \in И^{*}\left(\Re_{3} ; 2\right)$, and $C_{®_{2}}\left(\Re_{3}\right) \neq 1$. This forces \mathfrak{D}_{2} and $O_{2}(\mathfrak{M})$ to be (3)-conjugate, whence $\mathfrak{D}_{2}=\mathfrak{T}^{0}$. This is false, since $N\left(\mathfrak{T}^{0}\right) \subseteq \mathfrak{N}_{1}$, and $3 \nmid\left|\mathfrak{R}_{1}\right|$. So $\mathbb{C} \subset \mathfrak{R}$, whence $|\mathbb{R}: \mathfrak{C}|=2$. Thus, \mathbb{R} contains a S_{2}-subgroup of $\left(\mathbb{S}\right.$ and so \mathbb{R} is conjugate to a subgroup of \mathfrak{M} or of \mathfrak{R}_{1}. This is
false, since $15||\mathfrak{B}|, 15 \nmid| \mathfrak{M}|, 15 \nmid| \mathfrak{R}_{1} \mid$. So $\mathfrak{T}^{0} / \mathfrak{C}_{0}$ is cyclic. Since \mathfrak{T}^{0} is a S_{2}-subgroup of \mathfrak{C}, it follows that if ϑ is any 2 -subgroup of $C(I)$, then $\mathfrak{V} \cap N(\mathfrak{U}) \triangleleft \mathfrak{V}$, and $\mathfrak{V} / \mathfrak{V} \cap N(\mathfrak{U})$ is cyclic.

Suppose \mathfrak{l}_{1} is a hyperplane of \mathfrak{H}. Then $\boldsymbol{C}_{\mathfrak{n}_{1}}\left(\mathfrak{l}_{1}\right)=\Re$. We argue that $C\left(\mathfrak{U}_{1}\right)=\mathfrak{R}$. Suppose false. We may assume that $Z(\mathfrak{Z}) \cap \mathfrak{U}_{1} \neq 1$, so that $C\left(\mathfrak{U}_{1}\right) \subseteq \mathfrak{M}$. Since $\mathfrak{R}_{1}=N(\Re)$, it follows that $\mathfrak{\Re}$ is a S_{2}-subgroup of $\boldsymbol{C}\left(\mathfrak{U}_{1}\right)$. Hence, $\boldsymbol{C}\left(\mathfrak{U}_{1}\right)=\mathfrak{R} \mathfrak{N}_{\text {, }}$ where $|\mathfrak{N}|=3$. Now $\mathfrak{B}_{1} \cong \Re_{1}$, since $\mathfrak{B}_{1} \triangleleft \mathfrak{R}_{1}$. Let $\Re_{0}=\boldsymbol{O}_{2}\left(\Re_{\mathfrak{N}}\right)$. If $\mathfrak{B}_{1} \subseteq \mathfrak{R}_{0}$, then $\mathfrak{B}_{1} \triangleleft \mathfrak{\Re}^{2}$, whence $\mathfrak{N} \subseteq \mathfrak{N}_{1}$, against $3 \nmid\left|\Re_{1}\right|$. So $\mathfrak{B}_{1} \nsubseteq \Re_{0}$, and $\mathfrak{R}_{2} / \Re_{0} \cong \Sigma_{3}$. Since $\mathfrak{U} \cong Z(\Re)$, it follows that $\mathfrak{u} \subseteq \boldsymbol{Z}\left(\Omega_{0}\right)$. Since $\mathfrak{l} \nsubseteq \mathfrak{R}_{1}$, \mathfrak{N} does not centralize $\boldsymbol{Z}\left(\Re_{0}\right)$.
 Set $\mathfrak{F}^{*}=\mathfrak{F}^{G}, \mathfrak{F}_{1}^{*}=\mathfrak{F}^{a} \cap \mathfrak{R}_{0}$. Then $\mathfrak{X} \subseteq C\left(\mathfrak{F}_{1}^{*}\right) \supseteq \mathfrak{M}^{a}$, and so $\left[\mathfrak{X}, \mathfrak{F}^{*}\right]=\mathfrak{F}_{1}^{*}$, whence $|\mathfrak{X}|=4$ and $\mathfrak{F}^{*} \triangleleft \mathfrak{R}$. This implies that $\mathscr{R}_{0}=\mathfrak{X} \times \mathfrak{Y}$, where $\mathfrak{V}=$ $\boldsymbol{C}_{\Omega_{0}}(\mathfrak{H}) \cong C_{\Omega_{0}}\left(\mathfrak{ङ}^{*}\right)$. Thus, $\left\langle\mathfrak{X}, \mathfrak{ङ}^{*}\right\rangle \cong D_{8}$, and $\mathfrak{R}=\mathfrak{Y} \times\left\langle\mathfrak{X}\right.$, $\left.\mathfrak{F}^{*}\right\rangle$.

Since $J_{1}(\mathfrak{I}) \nsubseteq \Re$, and since $\mathfrak{N}_{1}=\mathfrak{I} \Omega$, where $Z(\Re) \cap C(\mathfrak{\Omega})=1$, it follows that $\mathfrak{U}=\Omega_{1}(Z(\Re))$. Since $C\left(\mathfrak{U}_{1}\right) \not \equiv \mathfrak{N}_{1}$, it follows that $\vartheta_{\text {contains }}$ no non identity characteristic subgroup of \Re. So $\mathfrak{Y}=\mathfrak{Y}_{1} \times \mathfrak{Y}_{2} \times \mathfrak{Y}_{3}$, where each \mathfrak{Y}_{i} is either a dihedral group of order 8 , or it is of order 2. Since $\mathfrak{l}=[\mathfrak{U}, \mathfrak{Q}]$, and $|\mathfrak{Q}|=5$, we have the desired contradiction. So $\boldsymbol{C}\left(\mathfrak{U}_{1}\right)=\mathfrak{R}$ for every hyperplane \mathfrak{U}_{1} of \mathfrak{l}.

We can now copy the final argument of $\S 19$ and conclude that if $|\mathfrak{F}|=4$, then $|\mathfrak{F}| \neq 16$.

Lemma 20.22. Suppose $|\mathfrak{F}|=4$ and $|\mathfrak{F}|=8$. Then the following hold:
(a) \mathfrak{F} is a T.I. set in (5).
(b) $A S_{2}^{2}$-subgroup of \mathfrak{M} centralizes \mathfrak{F}.
(c) $|\mathfrak{M}|_{2^{\prime}}>3$.
(d) $\mathfrak{B}_{2} \triangleleft \mathfrak{N}_{1}$, where $\left.\mathfrak{B}_{2}=\left\langle V\left(\operatorname{ccl}_{\Theta}\left(\mathfrak{F}_{0}\right) ; \mathfrak{I}\right)\right|\left|\mathfrak{F}: \mathfrak{F}_{0}\right|=2\right\rangle$.

Proof. Since $\mathcal{Z} \subseteq Z(\mathfrak{M})$, it follows that a S_{2},-subgroup of \mathfrak{M} centralizes \mathfrak{F}, and so (b) holds, as $|\mathfrak{F}: \mathfrak{F}|=2$. Lemma 20.17 and (b) imply (a).

Let $\mathfrak{l l}$ be a minimal normal subgroup of \mathfrak{R}_{1}, and let $\mathfrak{K}=\boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$, so that $\Re=C(\mathfrak{U})$. Suppose $\mathfrak{B}_{2} \nexists \mathfrak{R}_{1}$. Then $\mathfrak{B}_{2} \nsubseteq \Re$, so there is G in (5) such that $\left|\mathfrak{F}^{G} \cap \mathfrak{I}\right| \geqq 4, \mathfrak{F}^{G} \cap \mathfrak{I} \nsubseteq \mathfrak{\Re}$. By Lemma 20.18, we have $\mathfrak{F}^{G} \cap \Re \neq 1$. Thus, $\mathfrak{U} \subseteq C\left(\mathfrak{F}^{G} \cap \mathfrak{R}\right) \subseteq \mathfrak{M}^{G}, \quad$ and \quad so $1 \subset\left[\mathfrak{U}, \mathfrak{F}^{G} \cap \mathfrak{I}\right] \subseteq$ $\mathfrak{F}^{G} \cap \Re$.

Let $\mathfrak{F}^{G} \cap \mathfrak{I}=\mathfrak{F}^{G} \cap \Re \times\langle F\rangle$. Then \mathfrak{U} is a free $F_{2}\langle F\rangle$-module. This implies that $\left[\mathfrak{u}, \mathfrak{F}^{G} \subset \mathfrak{I}\right]=\boldsymbol{C}_{\mathfrak{u}}\left(\mathfrak{F}^{G} \cap \mathfrak{I}\right)$, and so $\left[\mathfrak{l l}, \mathfrak{F}^{G} \cap \mathfrak{I}\right] \supseteqq \Omega_{1}(\boldsymbol{Z}(\mathfrak{I}))$. Since $\Omega_{1}(Z(\mathfrak{I})) \subseteq \mathfrak{F}$, it follows that $\mathfrak{F}^{G} \cap \mathfrak{F} \supseteq \Omega_{1}\left(Z(\mathfrak{Z})\right.$, whence $\mathfrak{F}=\mathfrak{F}^{G}$.

Let $\mathfrak{\Omega}=\langle Q\rangle$ be a subgroup of \mathfrak{R}_{1} of odd prime order inverted by F. Let $\Re_{1}=[\Re, \Omega]$. Thus, $\Re_{1}=\left[\Re_{1}, F\right] \times\left[\Re_{1}, F\right]^{Q}$, and $\left[\Re_{1}, F\right] \subseteq$ $\mathfrak{F} \cap \Re=\mathfrak{F}_{0}$. Since $\left|\mathfrak{F}_{0}\right| \leqq 4$, we have $\left|\Re_{1}\right|=2^{2 k}$, where $1 \leqq k \leqq 2$. If
$k=1$, then $\mathfrak{\Re}=\Re_{1} \times \boldsymbol{C}_{\Omega}(\mathfrak{Q})$, and so $\boldsymbol{C}_{\Re x}(\mathfrak{Q}) \cap \mathfrak{F} \neq 1$, whence $\mathfrak{Q} \subseteq \mathfrak{M}$. This is false, since $\mathfrak{M} \cap \mathfrak{R}_{1}=\mathfrak{I}$. So $k=2$.

Let $\Omega_{2}=C_{\Omega}(\mathfrak{Q})$. Then since $\boldsymbol{Z}(\mathfrak{I}) \cap C(\mathfrak{Q})=1$, it follows that Ω_{2} acts faithfully on \Re_{1}. Since $\left[\Omega_{2}, F\right] \subseteq \Re_{2} \cap \mathfrak{F}=1$, it follows that Ω_{2} acts faithfully on $\mathfrak{F}_{0}=\left[\Re_{1}, F\right]$, and so $\left|\mathfrak{\Re}_{2}\right| \leqq 2$.

Suppose $\Re_{2}=1$. In this case, $|\mathfrak{I}| \leqq 2^{6}$. Since a $S_{2^{\prime}}$-subgroup of \mathfrak{M} acts faithfully on $\boldsymbol{O}_{2}(\mathfrak{M})$ and centralizes \mathfrak{F}, we get that $\left|\boldsymbol{O}_{2}(\mathfrak{M})\right|=2^{5}$, $|\mathfrak{M}|_{2^{\prime}}=3,|\mathfrak{I}|=2^{6}$. Hence, $\mathfrak{I} / \mathfrak{\Re}$ is of order 4 . This implies that \mathfrak{I} has just one normal elementary subgroup of order 8 , and so $\mathfrak{F} \subseteq \Re_{1}$. Hence, $\boldsymbol{C}_{\mathfrak{\nwarrow}}(\mathfrak{F})=\Omega_{1}$, whence $\Re_{1} \subseteq \boldsymbol{O}_{2}(\mathfrak{M})$, and so $\Omega_{1}=J\left(\boldsymbol{O}_{2}(\mathfrak{M})\right) \triangleleft \mathfrak{M}$, against $\mathfrak{R}_{1} \not \equiv \mathfrak{M}$. So $\left|\mathfrak{R}_{2}\right|=2$.

Since $\left|\Omega_{2}\right|=2$, it follows that $\mathscr{\Re}_{1}$ is not a minimal normal subgroup of \mathfrak{N}_{1}, whence $\left|\mathfrak{R}_{1}\right|=3|\mathfrak{I}|$, and so $|\mathfrak{I}|=2^{6}$. But this forces $|\mathfrak{M}|=$ $3|\mathfrak{I}|$, against § 18. So (d) holds.

Suppose by way of contradiction that $|\mathfrak{M}|_{2^{\prime}}=3$. Thus, $\mid \mathfrak{N}_{1^{\prime}}=5$ or 15 . Let $\Re=\boldsymbol{O}_{2}\left(\mathfrak{R}_{1}\right)$, and let \mathfrak{Z}_{0} / \Re be the subgroup of \mathfrak{I} / \Re of order 2 . Let $\mathfrak{l}=\Omega_{1}(\boldsymbol{Z}(\mathfrak{R}))$ so that $|\mathfrak{U}|=2^{4}$. Suppose \mathfrak{U}_{1} is a hyperplane of \mathfrak{H}. Then $\boldsymbol{C}_{\mathfrak{r}_{1}}\left(\mathfrak{U}_{1}\right)=\mathscr{\Omega}$. We argue that $\mathcal{C}\left(\mathfrak{U}_{1}\right)=\mathscr{\Omega}$. We may assume that $\mathfrak{H}_{1} \cap \boldsymbol{Z}(\mathfrak{T}) \neq 1$. Thus, $\boldsymbol{C}\left(\mathfrak{U}_{1}\right) \subseteq \mathfrak{M}$. We may assume that $C\left(\mathfrak{U}_{1}\right)=\mathfrak{R}^{2}$, where $|\mathfrak{Z}|=3$. Since $\mathfrak{U}=\Omega_{1}(\boldsymbol{Z}(\Omega))$, we have $\mathfrak{U} \subseteq \mathscr{Z}\left(\Re_{0}\right)$, where $\Omega_{0}=$ $\boldsymbol{O}_{2}(\mathfrak{R X})$. By (a), it follows that $\mathfrak{B}_{1} \subseteq \mathfrak{R}_{0}$, and so $\mathfrak{V} \subseteq N\left(\mathfrak{B}_{1}\right)=\mathfrak{N}_{1}$, which is false. So $C\left(\mathfrak{U}_{1}\right)=\Re$.

It follows as in an earlier argument that if I is an involution of $\mathfrak{l l}$, and $C(I)=\mathfrak{C}$, then for each 2 -subgroup \mathfrak{I}_{1} of $\mathfrak{C}, \mathfrak{I}_{1} \cap N(\mathfrak{l}) \triangleleft \mathfrak{I}_{1}$, and $\mathfrak{I}_{1} / \mathfrak{I}_{1} \cap N(\mathfrak{l l})$ is cyclic. The argument of $\S 19$ then yields a contradiction. So (c) holds. The proof is complete.

Let p be an odd prime divisor of $|\mathfrak{M}|$, and let \mathfrak{F} be a S_{p}-subgroup of \mathfrak{M}. Set $\mathfrak{Z}=\mathfrak{T} \mathfrak{P}, \mathfrak{B}=V\left(\operatorname{ccl}_{\circlearrowleft}(\mathfrak{F}) ; \mathfrak{T}\right)$. Since $\mathfrak{B} \subseteq \mathfrak{B}_{2}$, we have $\mathfrak{B} \triangleleft \mathfrak{N}_{1}$, and so $N_{\mathfrak{R}}(\mathfrak{B})=\mathfrak{I}$. Choose G in (5) such that $\mathfrak{F}^{G} \subseteq \mathfrak{I}, \mathfrak{F}^{G} \nsubseteq \mathfrak{F}=\boldsymbol{O}_{2}(\mathfrak{R})$. Let $\mathfrak{F}_{0}^{G}=\mathfrak{F}^{G} \cap \mathfrak{S}$, so that $\mathfrak{F}^{G}=\mathfrak{F}_{0}^{G} \times\langle F\rangle$, and F inverts a S_{p}-subgroup of \mathfrak{R}, which we may assume is \mathfrak{F}. Let \mathfrak{X} be the normal closure of \mathfrak{F}_{0}^{G} in \mathfrak{Z}, and let $\mathfrak{Y}=\boldsymbol{C}_{8}(\mathfrak{X})$. Thus, $\mathfrak{X} \cong \mathscr{F}$, and $\mathfrak{Y} \supseteq \mathfrak{U}$, where $\mathfrak{l}=\Omega_{1}(Z(\mathfrak{X}))$. Thus, \mathfrak{B} acts faithfully on \mathfrak{Y}, as $C(\mathfrak{l}) \cap \mathfrak{F}=1$. Since $\mathfrak{Y} \subseteq C(\mathfrak{X}) \subseteq C\left(\mathfrak{F}_{0}^{G}\right) \subseteq \mathfrak{M}^{G}$, we have $[\mathfrak{Y}, F] \subseteq \mathfrak{F}_{0}^{G}$. Let $\mathfrak{Y}_{1}=[\mathfrak{Y}, \mathfrak{Y}]$, so that $\mathfrak{Y}_{1}=\left[\bigvee_{1}, F\right] \times\left[\mathfrak{Y}_{1}, F\right]^{P}$, where $\mathfrak{F}=\langle P\rangle$. Since $\left[\bigoplus_{1}, F\right] \mid \leqq 4$, we get that $|\mathfrak{P}|=3$ or 5 . Hence, by (c) of the preceding lemma, we see that $|\mathfrak{M}|_{2^{\prime}}=5$ or 15 .

Now we take \mathfrak{F} of order 5 in the preceding discussion. In this case, we see that $\left[\bigvee_{1}, F\right]=\mathfrak{F}_{0}^{G}$ is a four-group and so $\mathfrak{F}_{0}^{G} \subseteq O_{2}(\mathfrak{M})$. Let $\tilde{\mathfrak{X}}$ be the normal closure of $\widetilde{\mathscr{F}}_{0}^{G}$ in \mathfrak{M}, and let $\tilde{\mathfrak{Y}}=C_{\mathbb{M}}(\tilde{\mathfrak{X}}), \tilde{\mathfrak{V}}_{1}=[\tilde{\mathfrak{Y}}, \mathfrak{F}]$. Suppose $|\mathfrak{M}|_{2^{\prime}}=15$, and $\mathfrak{Q} \subseteq C_{\mathfrak{m}}(\mathfrak{P}),|\mathfrak{\Omega}|=3$. Then $\mathfrak{\Omega}$ normalizes $\tilde{\mathscr{Y}}_{1}$. We argue that $\mathfrak{\Omega}$ centralizes $\tilde{\mathfrak{Y}}_{1}$. Suppose false. Then since elements of $\operatorname{GL}(4,2)$ of order 15 are non real, it follows that F centralizes
$\boldsymbol{O}_{2}(\mathfrak{M}) \mathfrak{M} / \boldsymbol{O}_{2}(\mathfrak{M})$. This implies that \mathfrak{M} has a subgroup of order 3 which normalizes but does not centralize $\left[\mathfrak{Y}_{1}, F\right]=\mathfrak{F}_{0}^{G}$. This is false, since $N(\mathfrak{Z}) / C(\mathfrak{Z})$ is a 2 -group for every subgroup \mathfrak{N} of \mathfrak{F}. So $\mathfrak{\sim}$ centralizes \mathfrak{Y}_{1}, whence $\mathfrak{\Omega} \subseteq \boldsymbol{C}\left(\mathfrak{F}_{0}^{G}\right) \subseteq \mathfrak{M}^{G}$. Thus, $\mathfrak{\Omega}$ is a S_{3}-subgroup of \mathfrak{M} and of \mathfrak{M}^{G}. By Lemma 20.17, $\mathfrak{F} \mathfrak{\mathfrak { M }} \mathscr{I}^{*}, \mathfrak{F}^{G} \mathfrak{Q} \in \mathscr{M}^{*}$. Hence, $\mathfrak{M}=\mathfrak{M}^{G}$, whence $\mathfrak{F}=\mathfrak{F}^{G} . \quad$ This is absurd, since $\mathfrak{F} \cong \boldsymbol{O}_{2}(\mathfrak{M}), \mathfrak{F}^{G} \nsubseteq \boldsymbol{O}_{2}(\mathfrak{M}) . \quad$ So $|\mathfrak{M}|_{2^{\prime}}=5$.

If $\left|\mathfrak{R}_{1}\right|_{2^{\prime}}=5$ or 15 , then $\mathfrak{U}=\Omega_{1}(Z(\Re))$ is of order 16 , and the final argument of $\S 19$ yields a contradiction. So $\left|\mathfrak{R}_{1}\right|_{2^{\prime}}=3,|\mathfrak{U}|=4$.

Let $\mathfrak{u}_{0}=\mathfrak{U} \cap \boldsymbol{Z}(\mathfrak{T})$, so that $\left|\mathfrak{U}_{0}\right|=2, \mathfrak{u}_{0} \subseteq \boldsymbol{Z}(\mathfrak{M})$. Let $\mathfrak{M}=\mathfrak{U}^{\mathfrak{M}}=\mathfrak{U}^{\mathfrak{q}}$, where \mathfrak{P} is a S_{2}-subgroup of $\mathfrak{M},|\mathfrak{B}|=5$. Then $|\mathfrak{M}| \leqq 2^{6}$, and $\mathfrak{F} \supset \mathfrak{H}$. By a standard argument, $\mathfrak{W}^{\prime}=1$. Let $\mathfrak{W}_{0}=\boldsymbol{C}_{\mathfrak{W}}(\mathfrak{F})$. Since $\left[O_{2}(\mathfrak{M}), \mathfrak{W}\right] \cong$ $\mathfrak{U}_{0} \subseteq \mathfrak{W}_{0}$, it follows that $\mathfrak{B}_{0} \triangleleft \mathfrak{M}$. If $\left|\mathfrak{F}_{0}\right|=4$, then we may let \mathfrak{F} play the role of \mathfrak{F}. We have already shown that this case does not occur. So $\left|\mathfrak{W}_{0}\right|=2$. Since $C_{28}(\mathfrak{F})$ admits \mathfrak{F}, we get $\mathfrak{W} \cong C(\mathfrak{F})$, so we may let $\mathfrak{M} \mathfrak{F}$ play the role of \mathfrak{F}. This contradiction establishes the important

Theorem 20.2. $|\mathscr{F}|=2$.
Lemma 20.23. (a) $|\mathfrak{M}|_{2^{\prime}}>3$.
(b) $|\mathfrak{F}|>8$.

Proof. Suppose $|\mathfrak{M}|_{2^{\prime}}=3$. Since $|\mathfrak{F}| \geqq 8$ and $\mathfrak{F} / \mathscr{G}$ is a chief factor of \mathfrak{M}, it follows that $|\mathfrak{F}|=8$.

Choose $\mathfrak{N} \in \mathscr{A}(\mathfrak{T})$ with $|\mathfrak{R}|_{2^{\prime}}>3$. Let \mathfrak{U} be a minimal normal subgroup of \mathfrak{R}, and let \mathfrak{Q} be a S_{2}-subgroup of \mathfrak{N}. Thus, $\mathfrak{U} \supset \mathfrak{F}$, and $\mathfrak{\Omega}$ acts faithfully on \mathfrak{H}. Since $J_{1}(\mathfrak{N}) \not \equiv O_{2}(\mathfrak{R})$, it follows that $|\mathfrak{U}|=2^{4}$, $|\mathfrak{Q}|=5$ or 15.

Let $\mathfrak{I}_{0} / \boldsymbol{O}_{2}\left(\mathfrak{N}_{1}\right)$ be the subgroup of $\mathfrak{I} / \boldsymbol{O}_{2}(\mathfrak{R})$ of order 2. Suppose $I \in \mathfrak{l}^{\ddagger}, \mathfrak{C}=\boldsymbol{C}(I), \mathfrak{T}^{0}=\boldsymbol{C}_{\Re}(I)$. We will show that \mathfrak{T}^{0} is a S_{2}-subgroup of \mathfrak{C}. We may assume that $O_{2}(\mathfrak{R}) \subseteq \mathfrak{I}_{0} \subseteq \mathfrak{T}^{0} \subseteq \mathfrak{I}$. Thus, $J(\mathfrak{I})=J\left(\mathfrak{T}^{0}\right)=$ $J\left(O_{2}(\mathfrak{R})\right)$, and so $\mathfrak{N}\left(\mathfrak{T}^{0}\right) \subseteq \mathfrak{N}$, whence \mathfrak{T}^{0} is a S_{2}-subgroup of \mathfrak{C}. Since $\left|\mathfrak{R}^{*}\right|_{2^{\prime}}$ divides 15 for every $\mathfrak{R}^{*} \in \mathscr{M}(\mathfrak{I})$, it follows that $\left|\mathfrak{R}^{*}\right|_{2^{\prime}}$ divides 15 for every 2 -local subgroup \mathfrak{R}^{*} of \mathfrak{E}, and so $|\mathfrak{G}|_{2}$, divides 15 . We must show that $\mathfrak{T}^{0} / \boldsymbol{O}_{2}(\mathbb{C})$ is cyclic. Suppose false. Then $\mathfrak{T}^{0} \Re=\mathfrak{C}$, where $|\Re|=15$. A standard argument shows that $\mathfrak{C}^{C} \subset \mathfrak{C}^{*}$, where \mathfrak{C}^{*} contains a S_{2}-subgroup of \mathfrak{G}. Since $|\mathfrak{M}|_{2^{\prime}}=3$, \mathbb{C}^{*} is not conjugate to \mathfrak{M}. Since $5 \| \mathfrak{C}^{*} \mid$, it follows that \mathfrak{c}^{*} is conjugate to \mathfrak{N}. Since $\mid \mathfrak{C}^{*}$: $\mathfrak{c} \mid=2$, it follows that the normal closure of I in \mathfrak{S}^{*} is a four-group centralized by \Re. This is false, since $C(\mathscr{F})=\mathfrak{M}$ is a 5^{\prime}-group. We conclude that $\mathfrak{I} / O_{2}(\mathfrak{C})$ is cyclic. It is straightforward to check that $C\left(\mathfrak{U}_{1}\right)=$ $\boldsymbol{O}_{2}(\mathfrak{R})$ for every hyperplane \mathfrak{U}_{1} of \mathfrak{l}, and so the argument of $\S 19$ yields a contradiction. This establishes (a).

Suppose $|\mathfrak{F}|=8$. Since $|\mathfrak{M}|_{2^{\prime}}>3$, Lemma 20.17 implies that \mathfrak{F} is
a T.I. set in (F). Hence, if $\mathfrak{B}=V\left(\operatorname{ccl}_{\mathfrak{B}}(\mathfrak{F}) ; \mathfrak{T}\right)$, it follows that $\mathfrak{B} \subseteq C(\mathfrak{F})$, and so $N_{\mathfrak{M}}(\mathfrak{B}) \supset \mathfrak{I}$, whence $N(\mathfrak{B}) \subseteq \mathfrak{M}$.

Let \mathfrak{F} be a subgroup of (5) of odd prime order which is permutable with \mathfrak{I} and such that $\mathfrak{F} \not \equiv \mathfrak{M}$. Set $\mathbb{R}=\mathfrak{D} \mathfrak{P}$. Thus, $\boldsymbol{N}_{\mathfrak{R}}(\mathfrak{B})=\mathfrak{I}$, so there is G in $\mathscr{S H}^{2}$ such that $\mathfrak{F}^{G} \subseteq \mathfrak{I}, \mathfrak{F}^{G} \nsubseteq \mathfrak{F}_{2}=\boldsymbol{O}_{2}(\mathbb{R})$. Let $\mathfrak{F}_{0}^{G}=\mathfrak{F}^{G} \cap \mathfrak{S}$, so that $\mathfrak{F}^{G}=\mathfrak{F}_{0}^{G} \times\langle F\rangle$. We assume without loss of generality that F inverts \mathfrak{B}. Let $\mathfrak{U}=\Omega_{1}(\boldsymbol{Z}(\mathfrak{S}))$, so that $\mathfrak{U}=[\mathfrak{l}$, $\mathfrak{P}]$. Thus, $\mathfrak{l} \subseteq C\left(\mathfrak{F}_{0}^{G}\right) \subseteq \mathfrak{M}^{G}$, and so $1 \subset[\mathfrak{U}, \mathfrak{F}] \subseteq \mathfrak{F}_{0}^{G}$, whence $\mathfrak{S} \subseteq \mathfrak{M}^{G}$. Let $\mathfrak{S}_{1}=[\mathfrak{F}, \mathfrak{F}]$, so that $\mathfrak{K}_{1}=$ $\left[\mathfrak{F}_{1}, F\right] \times\left[\mathfrak{S}_{1}, F\right]^{P}$, where $\mathfrak{B}=\langle P\rangle$. Since $|\mathfrak{F}|=8$, and since $C(\mathfrak{P}) \cap$ $\mathfrak{F}^{G}=1$, we see that $\left[\mathfrak{F}_{1}, F\right]=\mathfrak{F}_{0}^{G}$ is of order $4,\left|\mathfrak{S}_{1}\right|=16$. Since $\boldsymbol{Z}(\mathfrak{I}) \subset C(\mathfrak{F})=1$, it follows that \mathfrak{K}_{2} acts faithfully on \mathfrak{K}_{1}, where $\mathfrak{K}_{2}=$ $\boldsymbol{C}_{\mathfrak{F}}(\mathfrak{P})$, and so $\left|\mathfrak{S}_{2}\right| \leqq 2$. But $|\mathfrak{M}|_{2^{\prime}}>3$, and so $\left|\boldsymbol{O}_{2}(\mathfrak{M})\right| \geqq 2^{7},|\mathfrak{I}| \geqq 2^{8}$. This is false, since $|\mathfrak{I}|=|\mathfrak{N}| \cdot\left|\mathfrak{I}: \mathfrak{S g}_{2}\right| \leqq\left|\mathscr{S}_{2}\right| \cdot 2^{4} \cdot 2^{2} \leqq 2^{7}$. So (b) holds.

Lemma 20.24. $\mathscr{L}(\mathfrak{I})=\{\mathfrak{M}, \mathfrak{N}\}$, where $\mathfrak{N}=N(\mathfrak{B}), \mathfrak{B}=V\left(\operatorname{ccl}_{\mathfrak{N}}(\mathfrak{F}) ; \mathfrak{T}\right)$.
Proof. Suppose p is an odd prime and \mathfrak{F} is a p-group permutable with \mathfrak{I}, and $\mathfrak{P} \nsubseteq \mathfrak{M}$. Set $\mathbb{Z}=\mathfrak{I} \mathfrak{P}$. Thus, $\mathbb{Z} \cap \mathfrak{M}=\mathfrak{I}$. Let $\mathfrak{R}=\boldsymbol{O}_{2}(\mathfrak{Z})$, $\mathfrak{U}=\Omega_{1}(\boldsymbol{Z}(\mathfrak{R}))$. Thus, $\mathfrak{U}=[\mathfrak{U}$, $\mathfrak{P}]$, and \mathfrak{F} acts faithfully on \mathfrak{U}.

Suppose $G \in \mathfrak{F}$ and $\mathfrak{F}^{G} \subseteq \mathfrak{I}, \mathfrak{F}^{G} \nsubseteq \mathscr{R}$. Let $\mathfrak{F}_{0}^{G}=\mathfrak{F}^{G} \cap \mathfrak{R}$, so that $\mathfrak{F}^{G}=\mathfrak{F}_{0}^{G} \times\langle F\rangle$, and we may assume that F inverts \mathfrak{F}. Thus, \mathfrak{u} centralizes the hyperplane \mathfrak{F}_{0}^{G} of \mathfrak{F}^{G}, and so $[\mathfrak{M}, F]=\mathfrak{B}^{G}$. Thus, $|\mathfrak{M}|=4$, $|\mathfrak{B}|=3$, and $\mathfrak{Z}^{G}=\mathfrak{3}$, whence $\mathfrak{F}=\mathfrak{F}^{G}$. Let $\mathfrak{K}_{1}=[\Re, \mathfrak{P}], \mathfrak{R}_{2}=C_{\Re}(\mathfrak{F})$. Then $\Re_{1}=\left[\Re_{1}, F\right] \times\left[\Omega_{1}, F\right]^{P}$, where $\mathfrak{F}=\langle P\rangle$, and $\mathfrak{F} \cap \Omega=\mathfrak{F} \cap \Omega_{1} \times$ $\mathfrak{F} \cap \mathfrak{R}_{2}$. Thus, $\left[\mathscr{R}_{1}, F\right]^{P}$ centralizes the hyperplane $\mathfrak{F} \cap \mathfrak{R}$ of \mathfrak{F}, and so $\left[\left[\Omega_{1}, F\right]^{P}, F\right]=\mathfrak{3}$, whence $\left|\Re_{1}\right|=4$. Thus, $\Omega=\Re_{1} \times \Omega_{2}$, and $\boldsymbol{Z}(\mathfrak{I})$ is non cyclic. This contradiction shows that $\mathfrak{B} \triangleleft \mathfrak{\Omega}$. The proof is complete.

Let $\widetilde{\mathscr{F}}_{0}=\left\{\mathfrak{X} \mid \mathfrak{X} \in \operatorname{ccl}_{\mathscr{S}}(\mathfrak{F}), \mathfrak{X} \cong \mathfrak{I}, \mathfrak{X} \not \equiv \boldsymbol{O}_{2}(\mathfrak{M})\right\}$. \quad Since $\boldsymbol{N}_{\mathfrak{M}}(\mathfrak{B})=\mathfrak{I}$, it follows that $\tilde{\mathscr{F}}_{0} \neq \varnothing$. Let $\tilde{\mathscr{F}}=\left\{\mathfrak{X} \mid \mathfrak{X}=\mathscr{F}^{G} \in \mathscr{F}_{0}, \mathfrak{B}^{a} \cong O_{2}(\mathfrak{M})\right\}$. It is crucial to show that $\widetilde{F}^{\prime} \neq \varnothing$. We must work for this.

Lemma 20.25. If $\widetilde{\mathscr{F}}=\varnothing$, then \mathfrak{F} has a subgroup \mathfrak{F}_{0} of index 4 such that $C\left(\mathfrak{F}_{0}\right) \nsubseteq \mathfrak{M}$.

Proof. Choose $\mathfrak{F}^{G} \in \mathscr{F}_{0}$. Let $\mathfrak{F}_{1}^{G}=\mathfrak{F}^{G} \cap \boldsymbol{O}_{2}(\mathfrak{M})$, and suppose that $\mathfrak{3}^{G} \not \equiv \mathfrak{F}_{1}^{G}$. Let \mathfrak{Z} be a complement to \mathfrak{F}_{1}^{G} in \mathfrak{F}^{G} which contains \mathfrak{B}^{G}. Let \mathfrak{F} be a S_{2}-subgroup of \mathfrak{M}, and let $\mathfrak{F}=\boldsymbol{O}_{2}(\mathfrak{M})$, so that $\mathfrak{F} \mathfrak{F} \triangleleft \mathfrak{M}$ and \mathfrak{A} acts faithfully on $\mathscr{F} \mathfrak{P} / \mathfrak{S}$. Thus, there is a subgroup \mathfrak{a} of $\mathfrak{S} \mathfrak{P}$ of odd prime order inverted by Z^{G}, the generator of $\mathfrak{3}^{G}$. Let $\mathbb{Z}=\mathfrak{S} \mathfrak{F} \mathfrak{F}^{G}$, $\mathfrak{Z}_{0}=\boldsymbol{O}_{2}(\mathfrak{Z})$. Thus, $\mathfrak{Y}=\mathfrak{F}^{G} \cap \mathfrak{Z}_{0}$ is a hyperplane of \mathfrak{B}^{G} and $\mathfrak{F}^{G}=\mathfrak{Y} \times \mathfrak{B}^{G}$.

Let $\overline{\mathfrak{F}}=\mathfrak{F} / \mathfrak{B}$. Thus, we may view $\overline{\mathfrak{F}}$ as a module for $\mathfrak{B} / \sqrt{2}$. Let

By the $\mathfrak{P} \times \mathfrak{\Omega}$-lemma, \mathfrak{D} acts faithfully on $\mathfrak{F}_{1}=\mathfrak{F}_{1} / \mathfrak{Z}=C_{\tilde{\mathfrak{F}}}(\mathfrak{Y})$. . Since $C_{\overparen{f}}(\mathfrak{Q})=1$, it follows that \mathfrak{F}_{1} is a free $\mathfrak{F}_{2} \mathcal{S}^{G}$-module. Thus, there is $F \in \mathfrak{F}_{1}^{\sharp}$ such that $\left[F, Z^{G}\right] \neq 1$. Thus, $F \notin \mathfrak{M}^{G}$. On the other hand, $[F, Y] \cong 3$, and so $\mathfrak{V}_{0}=C_{y}(F)$ is of index at most 2 in \mathfrak{V}, so of index at most 4 in \mathfrak{F}^{G}. Since $F \in C\left(\mathfrak{Y}_{0}\right)$, we have $C\left(\mathfrak{Y}_{0}\right) \nsubseteq \mathfrak{M}^{G}$. The proof is complete.

Set

$$
\mathscr{B}=\{\mathfrak{B}|\mathfrak{B} \subseteq \mathfrak{F},|\mathfrak{F}: \mathfrak{B}|=4, C(\mathfrak{B}) \nsubseteq \mathfrak{M}\}
$$

Suppose that $\mathscr{B} \neq \varnothing$. Choose $\mathfrak{l} \subseteq \mathfrak{F},|\mathfrak{U}|=4, \mathfrak{U} \triangleleft \mathfrak{L}$. As before, let \mathfrak{F} be a $S_{2^{\prime}}$-subgroup of \mathfrak{M}. Let $\mathfrak{F}_{0}=[\mathfrak{F}, \mathfrak{F}]$, so that $\mathfrak{F}=\mathfrak{F}_{0} \times 3$ and $\mathfrak{F}_{0} \mathfrak{F}$ is a Frobenius group. Since \mathfrak{F} is not 2-reducible in \mathfrak{M}, it follows that $\mathfrak{S} / \mathscr{S}_{0}$ and $\mathfrak{F} / 3$ are in duality, where $\mathfrak{S}=\boldsymbol{O}_{2}(\mathfrak{M}), \mathfrak{S}_{0}=\boldsymbol{C}(\mathfrak{F})$. Thus, \mathfrak{S} permutes transitively the set of hyperplanes of \mathfrak{F} which do not contain 3. Thus, if $\mathscr{B} \neq \varnothing$, then $\mathscr{B}_{0} \neq \varnothing$, where

$$
\mathscr{\mathscr { P }}_{0}=\left\{\mathfrak{B} \mid \mathfrak{B} \in \mathscr{B}, \mathfrak{B} \subseteq \mathscr{F}_{0}\right\} .
$$

Let $\mathfrak{U}_{0}=\mathfrak{H} \cap \mathfrak{F}_{0}=\langle\mathfrak{U}\rangle$, and choose $\mathfrak{B} \in \mathscr{B}_{0}$. Since \mathfrak{B} is a hyperplane of \mathfrak{F}_{0}, and $\mathfrak{F}_{0} \mathfrak{F}$ is a Frobenius group, there is P in \mathfrak{F} such that $U \in \mathfrak{B}^{P}$. Thus, $\mathscr{B}_{1} \neq \varnothing$, where

$$
\mathscr{B}_{1}=\left\{\mathfrak{B} \in \mathscr{B}_{0} \mid U \in \mathfrak{B}\right\}
$$

We have thus shown that
if $\mathscr{B} \neq \varnothing$, then $C(U) \nsubseteq \mathfrak{M}$, where $\langle U, Z\rangle \in \mathscr{K}(\mathfrak{I})$, and $U \in \mathfrak{F}$.
Let us continue with our assumption that $\mathscr{B} \neq \varnothing$. Set $\mathbb{C}=C(U)$, so that $\mathfrak{C} \nsubseteq \mathfrak{M}$. Since $\mathfrak{F}_{0} \mathfrak{P}$ is a Frobenius group, it follows that $\mathfrak{C} \cap \mathfrak{M}=\mathfrak{I}_{0}=C_{\mathfrak{u}}(U)$ is of index 2 in \mathfrak{I}. Since $Z(\mathfrak{V})$ is cyclic, it follows that $\mathfrak{l}=\Omega_{1}\left(Z\left(\mathfrak{I}_{0}\right)\right)$. We argue that \mathfrak{I}_{0} is not a S_{2}-subgroup of \mathfrak{C}. Suppose false. In this case, © has a subgroup $\mathfrak{A l}$ of odd prime order which is permutable with \mathfrak{I}_{0}. Let $\mathbb{R}=\mathfrak{I}_{0} \mathfrak{Z}, \mathfrak{R}_{0}=\boldsymbol{O}_{2}(\mathfrak{R}), \mathfrak{B}_{0}=\Omega_{1}\left(Z\left(\Omega_{0}\right)\right) \supseteqq \mathfrak{H}$. Since $\mathfrak{A} \nsubseteq \mathfrak{M}$, it follows that $\mathfrak{B}_{1}=\left[\mathfrak{Z}_{0}, \mathfrak{Z}\right] \neq 1$. Let $\mathfrak{B}_{0}=V\left(\operatorname{ccl}_{\mathscr{E}}(\mathfrak{F}) ; \mathfrak{I}_{0}\right)$. We argue that $\mathfrak{B}_{0} \subseteq \mathfrak{R}_{0}$. Suppose this, too, is false. Choose G in (5) such that $\mathfrak{F}^{G} \subseteq \mathfrak{I}_{0}, \mathfrak{F}^{G} \nsubseteq \mathfrak{R}_{0}$. Thus, $\mathfrak{B}_{1} \subseteq C\left(\mathfrak{F}^{G} \cap \mathfrak{R}_{0}\right)$, 'and $\mathfrak{F}^{G} \cap \mathbb{R}_{0}$ is a hyperplane of \mathfrak{F}^{G}, whence $\left[\mathfrak{B}_{1}, \mathfrak{F}^{G}\right]=\mathfrak{3}^{G}$. Thus, $\left|\mathfrak{B}_{1}\right|=4,|\mathfrak{F}|=3$, and $\mathfrak{F}^{G} \triangleleft \mathfrak{I}_{0}$. If $\mathfrak{F}^{G} \neq \mathfrak{F}$, then $\mathfrak{I}_{0} \subseteq \mathfrak{M} \cap \mathfrak{M}^{G}$. Thus, \mathfrak{M}^{G} has a S_{2}-subgroup which normalizes \mathfrak{I}_{0}, and so normalizes \mathfrak{U}, whence $\boldsymbol{A}_{\odot}(\mathfrak{U})=$ Aut (\mathfrak{l}). This violates the assumption that \mathscr{I}_{0} is a S_{2}-subgroup of $C(U)$. So $\mathfrak{F}^{G}=\mathfrak{F}$.

Let $\mathfrak{R}_{1}=\left[\mathfrak{R}_{0}, \mathfrak{Z}\right]$. Then $\mathfrak{A l}=\langle A\rangle$, and $\mathfrak{R}_{1}=\left\langle\mathfrak{R}^{1}, \mathfrak{B}^{1 A}\right\rangle$, where $\mathfrak{B}^{1}=$ $\left[\mathfrak{R}_{1}, F\right]$, and $\mathfrak{F}=\mathfrak{F} \cap \mathbb{R}_{0} \times\langle F\rangle$. Hence $\mathbb{R}_{1}^{\prime} \subseteq \mathfrak{F}$ and so $\mathfrak{A} \subseteq C\left(\mathfrak{L}_{1}^{\prime}\right)$. We argue that $\mathfrak{R}_{1}^{\prime} \subseteq \mathfrak{U}$. Namely, $\mathfrak{S} \cap C(U)=\mathscr{S}_{1}$ has the property that $\boldsymbol{C}_{\S}\left(\mathscr{S}_{1}\right)=\mathfrak{U}$, and so if $L \in \mathfrak{Z}_{1}^{\prime}-\mathfrak{U}$, there is $H \in \mathfrak{S}_{1}$ such that $[L, H]=Z$,
where $3=\langle Z\rangle$. Hence, we find that $Z \in \mathfrak{R}_{1}^{\prime} \subseteq C(\mathfrak{Y})$, against $\mathfrak{Z} \ddagger \mathfrak{M}$. So $\mathfrak{R}_{1}^{\prime} \subseteq \mathfrak{H}$. Since \mathfrak{Z} centralizes U and $\mathfrak{Z}_{1}^{\prime}$, while \mathfrak{Z} does not centralize Z, it follows that $\mathscr{Q}_{1}^{\prime} \cong\langle U\rangle$. It is now straightforward to check that $\mathfrak{F} \cap \mathfrak{R}_{0}=\left\langle\mathfrak{F} \cap \mathfrak{心}_{1}, \mathfrak{F} \cap \mathfrak{R}_{2}\right\rangle$, and that $\mathfrak{F} \cap \mathfrak{R}_{2}$ centralizes \mathfrak{R}_{1}. Here $\mathfrak{R}_{2}=\boldsymbol{C}_{\mathfrak{R}_{0}}(\mathfrak{Y})$. Suppose $\mathfrak{R}_{1}^{\prime} \neq 1$. Choose $X \in \mathfrak{R}^{1 A}-\boldsymbol{Z}\left(\mathfrak{R}_{1}\right)$. Thus, $\boldsymbol{C}_{\tilde{\mathscr{S}}}(X)$ is of index at most 4 in \mathfrak{F} and $[\mathfrak{F}, X] \not \equiv 3$. We conclude that $|\mathfrak{F}|=2^{5}$, as $\mathfrak{F} / 3$ is a free $\mathfrak{F}_{2}\langle X\rangle$-module. Hence, in this case, we have $\mathscr{R}_{1}=B_{1} \times \mathscr{R}_{1}$, where Ω_{11} is the central product of two dihedral groups of order 8. Hence, \mathfrak{R}_{11} contains a four-group \mathfrak{R}^{11} such that $\mathfrak{R}_{11}=\left(\mathfrak{R}_{11} \cap \mathfrak{F}\right) \mathfrak{R}^{11}$. Since $\left[\mathbb{R}^{11}, \mathfrak{F}\right] \not \equiv \mathbb{Z}$ for all $L^{11} \in \mathfrak{R}^{11}$, it follows that $\mathfrak{T} / \mathscr{S}_{\mathfrak{c}}$ is not cyclic. This is false, since $|\mathfrak{F} / 3|=2^{4}$. So \mathbb{R}_{1} is abelian. Hence, $\mathbb{R}_{1}=\mathfrak{R}^{1} \times \mathbb{Z}^{14}$. As usual, we get that $\mathbb{R}_{0} \cap \mathfrak{F} \subseteq \boldsymbol{C}\left(\mathfrak{R}_{1}\right)$. Thus, elements of $\mathbb{B}^{1 / 4}$ centralize the hyperplane $\mathfrak{Z}_{0} \cap \mathfrak{F}$ of \mathfrak{F}, and so $\left[\mathbb{R}^{14}, F\right] \cong \mathfrak{3}$. Hence, $\left|\mathfrak{R}_{1}\right|=4, \mathbb{R}_{0}=\mathfrak{R}_{1} \times \mathfrak{R}_{2}$.

Let $\mathfrak{I}=\left\langle\mathfrak{I}_{0}, T\right\rangle$. Thus, $\langle T, \mathfrak{l l}\rangle \subseteq N\left(\mathfrak{R}_{2} \cap \mathfrak{R}_{2}^{T}\right)$. Suppose $\mathbb{R}_{2} \cap \mathfrak{R}_{2}^{T} \neq 1$. Then $\mathfrak{I N}$ is a group, and $\left|\operatorname{ccl}_{\mathfrak{z q}}(U)\right|=2$, whence $\mathfrak{V} \subseteq C(\mathfrak{l l}) \subseteq \mathfrak{M}$. This is false, so $\mathscr{R}_{2} \cap \mathfrak{R}_{2}^{T}=1$, and so \mathcal{R}_{2} is isomorphic to a subgroup of $\mathbb{Z}_{0} / \mathcal{R}_{2}$. Hence, $\left|\mathfrak{I}_{0}\right| \leqq 2^{6},|\mathfrak{I}| \leqq 2^{7}$. This is false, since $|\mathfrak{S}| \geqq 2^{9}$. This contradiction shows that $\mathfrak{B}_{0} \subseteq \mathbb{R}_{0}$, so that $\mathfrak{B}_{0} \triangleleft \mathbb{R}$. Thus, $\mathfrak{I} \mathfrak{N}$ is a solvable group, whence $\mathfrak{Z} \subseteq C(\mathfrak{l}) \subseteq \mathfrak{M}$. This is false, and so \mathfrak{I}_{0} is contained properly in a S_{2}-subgroup \mathfrak{I}^{*} of \mathfrak{c}. Hence, $\boldsymbol{A}_{\mathbb{\Theta}}(\mathfrak{l l})=$ Aut $(\mathfrak{l l})$, and $N(\mathfrak{l})=\mathfrak{I} \mathfrak{R}$, where $|\mathfrak{R}|=3$. Also, of course $N(\mathfrak{l}) \subseteq \mathfrak{l}$.

Let $\mathfrak{W}=\left\langle\mathfrak{F}^{R} \mid R \in \mathfrak{R}\right\rangle=\mathfrak{F}^{\mathfrak{v (u)}}$. Since $\boldsymbol{C}(\mathfrak{l l})$ is a 2 -group, it follows that $\mathfrak{M} \subseteq \mathfrak{I}$. Let $\mathfrak{B}^{*}=V\left(\operatorname{ccl}_{\oplus}(\mathfrak{B}) ; \mathfrak{T}\right)$. Since $\mathfrak{B}^{*} \cong \mathfrak{B}$, we have $N\left(\mathfrak{B}^{*}\right)=\mathfrak{N}$, and so $N_{\mathfrak{M}}\left(\mathfrak{B}^{*}\right)=\mathfrak{N}$. Note that $\mathfrak{U} \subseteq \mathfrak{F} \cap \mathfrak{F}^{R} \cap \mathfrak{F}^{R^{2}}$. Choose G in $\left(\mathbb{S}\right.$ such that $\mathfrak{W}^{G} \subseteq \mathfrak{T}, \mathfrak{W}^{G} \nsubseteq \mathfrak{I}=\boldsymbol{O}_{2}(\mathfrak{M})$.

Case 1. $\mathfrak{H}^{G} \subseteq \mathfrak{F}$. Now $\mathfrak{W}^{a}=\left\langle\mathfrak{F}^{R i G}, i=0,1,2\right\rangle$, so there is i such that $\mathfrak{F}^{P^{i} G} \subseteq \mathfrak{I}, \mathfrak{F}^{R^{i_{G}}} \not \equiv \mathfrak{S}$. Hence, $\mathfrak{F}^{R^{i_{G}}} \in \widetilde{\mathscr{F}}$, and so $\tilde{\mathscr{F}} \neq \varnothing$.

Case 2. $\left|\mathfrak{U}^{G} \cap \mathfrak{F}\right|=2$.
In this case $\mathfrak{l}^{G} \cap \mathscr{F}=\mathcal{B}^{R^{i} G}$ for some i and so $\mathfrak{F}^{R^{i} G} \in \widetilde{\mathscr{F}}$, as $\mathfrak{U}^{G} \subseteq \mathfrak{F}^{R^{i} G}$, so that $\mathfrak{F}^{R_{i}{ }_{C}} \nsubseteq \mathcal{S}_{c}$.

Case 3. $\mathfrak{H}^{G} \cap \mathfrak{S}=1$.
In this case, the four-group \mathfrak{H}^{G} acts faithfully on $\mathfrak{S} \mathfrak{P} / \mathfrak{S}$, where \mathfrak{P} is a $S_{2^{\prime}}$-subgroup of \mathfrak{M}, and so there is a prime $p \geqq 5$ such that \mathfrak{u}^{G} does not centralize $\mathfrak{K} \supseteq / \mathfrak{N}$, where $|\mathfrak{Q}|=p$. Let $\boldsymbol{C}_{\mathfrak{u} a}(\mathfrak{S} \mathfrak{N} / \mathfrak{L})=\langle X\rangle$. Thus, $\langle X\rangle=\mathfrak{B}^{R^{i} G}$ for some i. Set $G^{\prime}=R^{i} G$. Thus, $\mathfrak{F}^{G^{\prime}}$ normalizes
 $\mathfrak{V}=\boldsymbol{C}_{\mathfrak{\mathcal { F }}} G^{\prime}(\mathfrak{F} \supseteq / \mathfrak{F})$, and let $\overline{\mathfrak{Y}}=\mathfrak{F} / \mathfrak{B}, \mathfrak{\mathscr { F }}_{1}=\boldsymbol{C}_{\mathscr{F}}(\mathfrak{Y})$. We have $\mathfrak{F}^{G^{\prime}}=\mathfrak{V} \times\langle F\rangle$, and we may assume that F inverts \mathfrak{Q}. Thus, $\overline{\mathscr{F}}_{1}$ is a free $F_{2}\langle F\rangle$-module, and since $p \geqq 5,\left|\overline{\mathfrak{F}}_{1}\right| \geqq 16$. Let $\mathfrak{F}_{2}=C_{\tilde{\mathfrak{r}}_{1}}\left(\mathcal{B}^{G^{\prime}}\right)$, so that $\left|\widetilde{\mathfrak{F}}_{1}: \mathfrak{F}_{2}\right| \leqq 2$. Choose $F^{\prime} \in \mathfrak{F}_{2}-C(F)$. Then $F^{\prime} \in \boldsymbol{C}\left(\mathfrak{B}^{a^{\prime}}\right)=\mathfrak{M}^{G^{\prime}}$, and $\left|\mathfrak{Y}: \boldsymbol{C}_{\mathfrak{2}}\left(F^{\prime}\right)\right| \leqq 2$. Since $\mathfrak{B}^{G^{\prime}} \not \equiv \mathfrak{F}$, we have $\left[\mathfrak{F}^{G^{\prime}}, F^{\prime}\right] \not \equiv \mathfrak{B}^{G^{\prime}}$. Since $\left|\mathfrak{F}^{G^{\prime}}: C\left(F^{\prime}\right) \cap \mathfrak{F}^{G^{\prime}}\right| \leqq 4$, it
follows that $|\mathfrak{F}|=2^{5}$. But in this case, $\mathfrak{I} / \mathfrak{F}$ is cyclic, against the fact that \mathfrak{l}^{G} acts faithfully on $\mathscr{S} \mathfrak{F} / \mathfrak{S}$. Putting the pieces together, we see that we have shown that

$$
\widetilde{\mathscr{F}} \neq \varnothing
$$

Choose G in $\mathscr{S H}^{2}$ such that $\mathfrak{F}^{G}=\mathfrak{F}^{*} \in \mathscr{F}$. Let $3^{*}=3^{G}=\left\langle Z^{*}\right\rangle$, $Z^{*}=Z^{G} . \quad$ Let $\mathfrak{F}_{1}=C_{\mathfrak{\gamma}}\left(Z^{*}\right)$, so that $\left|\mathfrak{F}: \mathfrak{F}_{1}\right| \leqq 2$. Let $\mathfrak{F}_{0}^{*}=\mathfrak{F}^{*} \cap \mathfrak{I}$. We proceed to show that $|\mathfrak{F}|=2^{5}$.

Case 1. $\left|\mathfrak{F}^{*}: \mathfrak{F}_{0}^{*}\right| \geqq 4$.
Since $\mathfrak{F} \mathfrak{P} / 3$ is a Frobenius group, it follows that $\mathfrak{F} / 3$ is a free $F_{2} \mathfrak{F}^{*} / \mathfrak{F}_{0}^{*}$-module. On the other hand, $\left[\mathfrak{F}_{1}, X, Y\right]=1$ for all $X, Y \in \mathfrak{F}^{*}$, and so we get $|\mathfrak{F} / \mathfrak{3}|=2^{4}$. This is impossible, since in this case $\mathfrak{T} / \mathfrak{K}$ is cyclic.

Case 2. $\left|\mathfrak{F}^{*}: \mathfrak{F}_{0}^{*}\right|=2$, and $\mathfrak{B}^{*} \nsubseteq \mathfrak{F} . \quad$ Let $\mathfrak{F}^{*}=\mathfrak{F}_{0}^{*} \times\langle F\rangle$. We can then choose $F_{1} \in \mathfrak{F}_{1}$ such that $\left[F, F_{1}\right] \neq 1$. Since $\mathfrak{F}_{0}^{*} \cap C\left(F_{1}\right)$ is of index at most 2 in \mathfrak{F}_{0}^{*}, we have

$$
F_{1} \in \mathfrak{M}^{G}, \quad\left[\mathfrak{F}^{G}, F_{1}\right] \not \equiv \mathcal{S}^{G},\left|\mathfrak{F}^{G}: \mathfrak{F}^{G} \cap C\left(F_{1}\right)\right| \leqq 4
$$

This forces $|\mathfrak{F}|=2^{5}$, as $\mathfrak{F}^{G} / \mathfrak{Z}^{G}$ is a free $F_{2}\left\langle F_{1}\right\rangle$-module.
Case 3. $\left|\mathfrak{F}^{*}: \mathfrak{F}_{0}^{*}\right|=2$ and $3^{*} \subseteq \mathfrak{F}$. Since $\mathfrak{F} / 3$ is a free $F_{2}\langle F\rangle$ module of order $\geqq 16$, there is $F_{1} \in \mathfrak{F}$ such that $\left[F, F_{1}\right] \notin \mathcal{S}^{G}$. Hence, $\left|\mathfrak{F}^{G}: C\left(F_{1}\right) \cap \mathfrak{F}^{G}\right| \leqq 4$, and $F_{1} \in \mathfrak{M}^{a}$, so once again, we have $|\mathfrak{F}|=2^{5}$.

We thus have established the important equality:

$$
|\mathfrak{F}|=2^{5}
$$

Proof. Let $\mathbb{B}=N(X)$, $\mathfrak{I}_{0}=\mathfrak{Z} \cap \mathfrak{M}$. Let \mathfrak{P} be a $S_{2^{\prime}}$-subgroup of \mathfrak{M}. Since $\mathfrak{P F} / 3$ is a Frobenius group, it follows that \mathfrak{I}_{0} is a 2 -group. Clearly, $\mathfrak{F}=\boldsymbol{O}_{2}(\mathfrak{M}) \subseteq \mathfrak{I}_{0}$, as $[\mathfrak{F}, \mathfrak{F}] \subseteq \mathfrak{B} . \quad$ Since $3=\Omega_{1}(\boldsymbol{Z}(\mathfrak{K}))$, it follows that $3=\Omega_{1}\left(Z\left(\mathfrak{I}_{0}\right)\right)$, and so $N\left(\mathfrak{I}_{0}\right) \subseteq \mathfrak{M}$. Thus, \mathfrak{I}_{0} is a S_{2}-subgroup of ㄹ. Suppose by way of contradiction that $\mathfrak{I}_{0} \subset \mathfrak{R}$.

Let $\Omega_{0}=C(X)$, so that $\Omega_{0} \triangleleft \Omega$, and Ω_{0} is a 2-group, since $C(\mathfrak{X}) \leqq$ $\mathfrak{M} \cap \mathfrak{Z}=\mathfrak{I}_{0}$. Let $\overline{\mathfrak{R}}=\mathfrak{R} / \mathfrak{R}_{0}$. Since $\mathfrak{S}_{\mathcal{L}} \subseteq \mathbb{R}$, it follows that $\overline{\mathcal{F}}=\mathfrak{S} \mathbb{R}_{0} / \mathbb{R}_{0}$ is elementary abelian of order 8 and stabilizes the chain $\mathfrak{X} \supset 马 \supset 1$.

Let $\mathfrak{Y}=\mathfrak{B}^{L}$ so that $\mathcal{Z} \subset \mathfrak{Y} \subseteq \mathfrak{X}$. Since $\mathcal{Z} \subseteq Z\left(\mathfrak{I}_{0}\right)$, \mathfrak{Y} is 2 -reducible in ㅇ. Let \mathfrak{D} be a S_{2}-subgroup of \mathbb{R}. Thus, $|\mathfrak{D}| \mid 15$ and \mathfrak{D} acts faithfully on \mathfrak{V}. If $5 \| \mathfrak{D} \mid$, then $\mathfrak{Y}=\mathfrak{X}$ is an irreducible $F_{2} \mathfrak{R}$-module, and so $\overline{5}$ acts faithfully on a cyclic group of order 5 or 15 . This is
false, since $\overline{\bar{Y}}$ is elementary of order 8 . So $|\mathfrak{D}|=3$, and $|\mathfrak{Y}|=4$. Let $\mathfrak{D}=\langle D\rangle$ and let $\mathfrak{F}_{1}=C_{\mathfrak{s}}(\mathfrak{F})$. Thus, $\tilde{\mathfrak{F}}_{1}=\mathfrak{F}_{1} \mathbb{R}_{0} / \Omega_{0}$ is a four-group and $\tilde{\mathscr{F}}_{1}$ stabilizes the chains $\mathfrak{X} \supset \mathfrak{y} \supset 1, \mathfrak{X} \supset 3 \supset 1$. Hence, \mathfrak{K}_{1}^{D} stabilizes the chains $\mathfrak{X} \supset \mathfrak{V} \supset 1, \mathfrak{X} \supset \mathbb{3}^{D} \supset 1$. Since $\mathfrak{S}_{2}^{D} / \mathscr{S}_{\mathcal{L}} \cap \mathfrak{K}_{1}^{D}$ contains a fourgroup, it follows that S_{2}-subgroups of $M / / \mathscr{S}_{2}$ are non cyclic. This contradiction completes the proof.

We next note that $|\mathfrak{M}|_{2^{\prime}}=5$. Namely $|\mathfrak{F} / 3|=2^{4}$, and so $|\mathfrak{M}|_{2^{\prime}}=5$ or 15. If $|\mathfrak{M}|_{2^{\prime}}=15$, then $\left|N_{\mathfrak{w}}\left(\Omega_{1}(\mathfrak{Z})\right)\right|=3|\mathfrak{I}|$, whence $N_{\mathfrak{r}}(\mathfrak{B}) \supset \mathfrak{Z}$, which is false. So

$$
|\mathfrak{M}|_{2^{\prime}}=5 .
$$

Again, choose G in \mathscr{G} such that $\mathfrak{F}^{G} \in \widetilde{\mathscr{F}}$. Let $\mathfrak{F}^{*}=\mathfrak{F}^{G}, \mathfrak{F}_{1}^{*}=\mathfrak{F}^{*} \cap \mathfrak{F}$, $\mathfrak{F}_{2}^{*}=\mathfrak{F}^{*} \cap \mathfrak{F}_{0}$, where $\mathfrak{S}_{0}=\boldsymbol{C}(\mathfrak{F})$. Also, let $\mathfrak{3}^{*}=\mathfrak{3}^{G}$. Thus,

$$
\left|\mathfrak{F}^{*}: \mathfrak{F}_{1}^{*}\right|=2, \quad \mathfrak{F}^{*}=\mathfrak{F}_{1}^{*} \times\langle F\rangle,
$$

F inverts a subgroup \mathfrak{P} of \mathfrak{M} of order 5 ,

$$
3^{*} \subset \mathfrak{F}_{1}^{*}
$$

Now $\left|\mathfrak{S}_{2} / \mathscr{F}_{0}\right|=2^{4}$ and if $\mathfrak{F}_{2} / / \mathscr{\mathfrak { N }}_{0}=\boldsymbol{C}_{\mathfrak{F} / \mathfrak{F}_{0}}(F)$, then $\mathfrak{F}_{2} / \mathscr{F}_{2}$ is a four-group. Since \mathfrak{F}^{*} is abelian, it follows that

$$
\mathfrak{F}_{1}^{*} \cong \mathfrak{g}_{1}, \quad\left|\mathfrak{F}_{1}^{*}: \mathfrak{F}_{2}^{*}\right| \leqq 2^{2} .
$$

It is important to show that

$$
\mathfrak{B}^{*} \cong \mathfrak{F}_{2}^{*}
$$

Suppose false.
Case 1. $\left|\mathfrak{F}_{1}^{*}: \mathfrak{F}_{2}^{*}\right|=4$. Here $\mathfrak{F}_{1}^{*}=\left\langle\mathfrak{F}_{2}^{*}, \mathfrak{B}^{*}, X\right\rangle$ for some $X \in \mathfrak{F}_{1}^{*}$. Let $\tilde{\mathfrak{F}}=\boldsymbol{C}_{\tilde{\mathfrak{z}}}(X), \tilde{\mathfrak{F}}_{1}=\boldsymbol{C}_{\mathfrak{\gamma}}\left(\mathfrak{B}^{*}\right)$. Then

$$
\left[\tilde{\widetilde{z}}, 3^{*}\right]=3, \quad\left[\tilde{z}_{⿺}, X\right]=3 .
$$

The second equality shows that $Z \in \mathfrak{V}^{G} \cap \mathfrak{F} \subseteq \mathfrak{F}_{1}^{*}$, and then the first equality shows that $\tilde{\mathfrak{F}} \subseteq N\left(\mathscr{F}_{1}^{*}\right)$. This, however, violates Lemma 20.26 .

Case 2. $\left|\mathfrak{F}_{1}^{*}: \mathfrak{F}_{2}^{*}\right|=2$.
Let $\mathfrak{F}_{0}=\boldsymbol{C}_{\mathfrak{F}}\left(\mathcal{B}^{*}\right)=\boldsymbol{C}_{\mathfrak{F}}\left(\mathfrak{F}_{1}^{*}\right)$. Thus, $\left|\mathfrak{F}: \mathfrak{F}_{0}\right|=2$, and so $\left[\mathfrak{F}_{0}, F\right] \neq 1$. By Lemma 20.13, $\left[\mathfrak{F}_{0}, F\right] \subseteq 3^{*}$, against $\left[\mathfrak{\mho}_{0}, F\right] \subseteq \mathfrak{F}, 3^{*} \leqq \mathfrak{F}$.

So $3^{*} \cong \mathfrak{F}_{2}^{*} \cong C(\mathfrak{F})$.
We now proceed to show that

$$
3^{*} \cong \mathfrak{F},\left|\mathfrak{F}_{1}^{*}: \mathfrak{F}_{2}^{*}\right|=2, \quad 3 \cong \mathfrak{F}_{2}^{*} .
$$

Namely, if $\mathfrak{F}_{1}^{*}=\mathfrak{F}_{2}^{*}$, then Lemma 20.13 gives $[\mathfrak{F}, F] \subseteq 3^{*}$, against
$|[\mathfrak{F}, F]|=2^{2}$. So $\mathfrak{F}_{1}^{*} \supset \mathfrak{F}_{2}^{*}$. Since $3^{*} \subseteq C(\mathfrak{F})$, we have $\mathfrak{F} \subseteq \mathfrak{M}^{q}$, and since $\left[\mathfrak{F}_{1}^{*}, \mathfrak{F}\right]=3$, we get $3 \subset \mathfrak{F}^{*}$, whence $3 \subseteq \mathfrak{F}_{2}^{*}$. Thus, $\left[\mathfrak{F}, \mathfrak{F}^{*}\right] \cong$ $\mathfrak{F} \cap \mathfrak{F}^{*}$, and $\left|\left[\mathfrak{F}, \mathfrak{F}^{*}\right]\right|=2^{3}$. Hence, $\left[\mathfrak{F}, \mathfrak{F}^{*}\right]=\mathfrak{F}_{2}^{*}$, and so $3^{*} \subset \mathfrak{F}$. Since $\left|\mathfrak{F}_{1}^{*}\right|=2^{4}$, it follows that $\left|\mathfrak{F}_{1}^{*}: \mathfrak{F}_{2}^{*}\right|=2$.

Set $\mathfrak{D}=\langle\mathfrak{P}, F\rangle$, a dihedral group of order 10. Now \mathfrak{D} acts on $\mathfrak{K}_{0}=C(\mathfrak{F})$. Since $\mathbf{3}^{*} \subseteq \mathfrak{F}$, we have $\mathfrak{K}_{0} \subseteq \mathfrak{M}^{\boldsymbol{G}} . \quad$ Thus, $\left[\mathfrak{S}_{0}, F\right] \subseteq \mathfrak{K}_{0} \cap \mathfrak{F}^{*}=$ $\mathfrak{F}_{2}^{*} \subset \mathfrak{F}$. So F centralizes $\mathfrak{E}_{0} / \mathfrak{F}$, whence \mathfrak{F} centralizes $\mathfrak{E}_{0} / \mathfrak{F}$, and so

$$
\mathfrak{F}_{0}=\mathfrak{F}^{0} \times \mathfrak{F}_{0},
$$

where

$$
\mathfrak{S}^{0}=C_{\mathfrak{v}_{0}}(\mathfrak{F}), \quad \mathfrak{F}_{0}=[\mathfrak{F}, \mathfrak{F}], \quad \mathfrak{F}=\mathfrak{F}_{0} \times 3 .
$$

Let $\mathfrak{M}=\left\langle\mathfrak{F}, \mathfrak{F}^{*}\right\rangle$, so that $\mathfrak{M} \subseteq \mathfrak{F} \cap \mathfrak{F}^{*} \subseteq Z(\mathfrak{B}),|\mathfrak{M}|=2^{7}$. Thus,

$$
\begin{gathered}
\mathfrak{F}^{*}=\left\langle\mathfrak{F} \cap \mathfrak{F}^{*}, U^{*}, V^{*}\right\rangle, \quad \mathfrak{F}_{1}^{*}=\left\langle\mathfrak{F} \cap \mathfrak{F}^{*}, U^{*}\right\rangle, \quad V^{*}=F, \\
\mathfrak{F}=\left\langle\mathfrak{F} \cap \mathfrak{F}^{*}, U, V\right\rangle, \quad \mathfrak{F} \cap \boldsymbol{O}_{2}\left(\mathfrak{M}^{G}\right)=\left\langle\mathfrak{F} \cap \mathfrak{F}^{*}, U\right\rangle,
\end{gathered}
$$

and V inverts a subgroup \mathfrak{B}^{*} of \mathfrak{M}^{σ} of order 5.
Since

$$
\left[\mathfrak{F}_{1}^{*}, \mathfrak{F} \cap \boldsymbol{O}_{2}\left(\mathfrak{M}^{\sigma}\right)\right] \subseteq 3 \cap 3^{*}=1,
$$

we have

$$
\left[U, U^{*}\right]=1
$$

Thus,

$$
\left[U^{*}, V\right]=Z, \quad\left[U, V^{*}\right]=Z^{*}, \quad \text { and }\left[V, V^{*}\right]=T
$$

where

$$
\mathfrak{F} \cap \mathfrak{F}^{*}=\left\langle Z, Z^{*}, T\right\rangle .
$$

So the isomorphism class of \mathfrak{M} is determined.
Set

$$
\mathfrak{\Omega}=\boldsymbol{C}(\mathfrak{W})=\boldsymbol{C}(\mathfrak{F}) \cap C\left(\mathfrak{F}^{G}\right) .
$$

Since $\mathfrak{S}_{\mathscr{L}} / \mathfrak{V}_{0}$ is an irreducible module for \mathfrak{M}, and since $\mathfrak{V}_{2}^{*} \subset \mathfrak{X}_{1}^{*}$, it follows that

$$
\mathfrak{S}=\mathfrak{K}_{0} \cdot \Omega_{1}(\mathfrak{F}) .
$$

Thus, there is an involution I of $\mathfrak{5}$ such that

$$
\left[Z^{*}, I\right]=Z
$$

Thus, I normalizes $\left\langle 3,3^{*}\right\rangle$, since I normalizes every subgroup of \mathfrak{F}
which contains 3. By symmetry, there is an involution J in \mathfrak{S}^{G} such that

$$
[Z, J]=Z^{*} .
$$

Thus, $\langle K\rangle=\mathfrak{F} \cap \mathfrak{F}^{*} \cap C(I) \cap C(J)$ is of order 2. It follows that $N\left(\mathfrak{F} \cap \mathfrak{F}^{*}\right)$ contains an element S of order 3 such that

$$
K^{s}=K, \quad Z^{s}=Z^{*}, \quad Z^{* S}=Z \cdot Z^{*}
$$

With this information, we can show that $\mathfrak{M} / \mathscr{S}_{\mathcal{C}}$ is a Frobenius group of order 20. Namely, \mathfrak{F} contains an element H such that $H \in \boldsymbol{C}(\langle 3,3 *\rangle)$, $K^{H}=K Z$. Let $\tilde{H}=H^{S}$. Then $\tilde{H} \in C\left(\left\langle З, 3^{*}\right\rangle\right), K^{\widetilde{H}}=K Z^{*}$. Thus, $\langle\mathfrak{F}, F\rangle$ does not map onto $\boldsymbol{A}_{\mathfrak{m}}\left(\mathfrak{F} \cap \mathfrak{F}^{*}\right)$, and so $\langle\mathfrak{F}, F\rangle$ is not a S_{2}-subgroup of \mathfrak{M}. So
$\mathfrak{M} / \mathscr{S}$ is a Frobenius group of order 20 ,

$$
\mathfrak{F} \cap \mathfrak{F}^{*} \triangleleft \mathfrak{I}
$$

The fact that $\mathfrak{F} \cap \mathfrak{F}^{*}$ is normal in T follows from the fact that $\mathfrak{F} \cap \mathfrak{F}^{*} \triangleleft\langle\mathfrak{F}, F\rangle$, and \mathfrak{N} is the only S_{2}-subgroup of \mathfrak{M} which contains $\langle\mathfrak{K}, F\rangle$. Since $S \in C(K)$, it follows that
Z and K are not ©-conjugate.
Let $N_{\mathfrak{z}}(\mathfrak{F})=\widetilde{\mathfrak{T}}$. Thus, $\widetilde{\mathbb{I}} \supset \mathfrak{S}^{0}$, and $\widetilde{\mathfrak{I}} / \mathscr{S}^{\circ}$ is cyclic of order 4 . Since \widetilde{H} centralizes $\left\langle Z, Z^{*}\right\rangle$, it follows that $\tilde{\mathfrak{T}} \subseteq C\left(\mathbb{3}^{*}\right)=\mathfrak{M}^{G}$. Let $\tilde{\mathscr{F}}=\boldsymbol{C}_{\mathfrak{s}}\left(\mathfrak{B}^{*}\right)$, so that

$$
\begin{gathered}
|\mathfrak{I}: \tilde{\mathfrak{I}} \cdot \tilde{\mathfrak{K}}|=2, \quad \tilde{\mathfrak{I}} \cdot \tilde{\mathfrak{I}}=C_{\mathfrak{\Sigma}}\left(3^{*}\right), \\
\mathfrak{I}=\tilde{\mathfrak{I}} \cdot \tilde{\mathfrak{K}}\langle I\rangle .
\end{gathered}
$$

Next, we show that

$$
\mathfrak{R}=N(\tilde{\mathfrak{I}} \cdot \tilde{\mathfrak{S}}), \quad|\mathfrak{N}|=3|\mathfrak{I}| .
$$

In any case, $|\langle\mathfrak{I}, S\rangle|=3|\mathfrak{I}|$, and $\langle\mathfrak{I}, S\rangle \subseteq \mathfrak{N}$. If $|\mathfrak{N}|=15 \cdot|\mathfrak{I}|$, then $\left|\boldsymbol{N}_{\mathfrak{r}}\left(\Omega_{1}(\mathfrak{I})\right)\right|=3|\mathfrak{L}|$. This is false, since $I \in \Omega_{1}(\mathfrak{I})$, and I inverts an element of $\langle\mathfrak{I}, S\rangle$ of order 3.

Let $\mathfrak{C}=\boldsymbol{C}\left(\mathfrak{F} \cap \mathfrak{F}^{*}\right)$, so that $\mathfrak{C} \triangleleft \mathfrak{R}$, $\mathfrak{C}=(\mathfrak{C} \cap \mathfrak{S})\langle F\rangle, \mathfrak{N} / \mathfrak{C} \cong \Sigma_{4}$.
We next show that
\mathfrak{M} has no normal subgroup of order 4 .
Suppose false, and $\mathfrak{F r}\langle\mathfrak{M},| \mathfrak{F} \mid=4$. By Theorem 20.2, $\mathfrak{C}=\langle E\rangle$ is cyclic. It is then straightforward to check that $V\left(\operatorname{ccl}_{\mathfrak{G}}(\mathfrak{S}) ; \mathfrak{I}\right) \triangleleft\langle\mathfrak{M}, \mathfrak{N}\rangle$, which is false. In particular, we have

$$
\mathfrak{B}=\boldsymbol{Z}(\mathfrak{M})=\boldsymbol{Z}(\mathfrak{S})
$$

We now tackle \mathfrak{S}^{0}. We will show that $\left|\mathfrak{S}^{\circ}\right| \leqq 4$. Suppose false. Now $\mathfrak{S}_{0}=\mathfrak{S}^{\circ} \times \mathfrak{F}_{0} \triangleleft \mathfrak{M}$, and so $\boldsymbol{D}\left(\mathfrak{S}_{c}{ }^{\circ}\right) \triangleleft \mathfrak{M}$. If $\left|\boldsymbol{D}\left(\mathfrak{S}_{\mathrm{S}}{ }^{\circ}\right)\right| \geqq 4$, then \mathfrak{M} has a normal subgroup of order 4. This is false, so $\boldsymbol{D}\left(\mathfrak{F}^{\circ}\right) \subseteq 3$. Since $\mathfrak{S}^{\circ} \subseteq C\left(3^{*}\right)$, it follows that

$$
\left[\mathfrak{S}^{0}, \mathfrak{F}_{1}^{*}\right] \subseteq \mathfrak{F}^{*} \cap \mathfrak{S}_{0}=\mathfrak{F}^{*} \cap \mathfrak{F} \subseteq \mathfrak{F}
$$

Since \mathfrak{F} acts irreducibly on $\mathfrak{S e}_{\mathcal{E}} / \mathfrak{S}_{0}$, it follows that $\left[\mathfrak{S}^{\circ}, \mathfrak{F}\right] \subseteq \mathfrak{F}$. Set $\mathfrak{V}=\mathfrak{F} / \mathfrak{B}, \overline{\mathfrak{F}}=\mathfrak{F} / \mathfrak{B}, \overline{\mathfrak{F}}=\mathfrak{F} / \mathfrak{F}_{0}$. If $Y \in \mathfrak{Y}, H \in \overline{\mathfrak{F}}$, so that $Y=Y_{0} \mathbb{Z}, H=\mathfrak{S}_{0} H_{0}$, set

$$
\varphi_{Y}(H)=\left[Y_{0}, H_{0}\right] ß
$$

So $\varphi_{Y} \in \operatorname{Hom}(\overline{\mathcal{S}}, \overline{\mathfrak{F}})$, and φ_{Y} commutes with \mathfrak{P}. If $\varphi_{Y}=1$, then $\left[\mathscr{F}, Y_{0}\right] \subseteq \mathcal{S}$, and so $\left\langle Y_{0}, 3\right\rangle \triangleleft \mathfrak{S}$, whence $Y_{0} \in \mathfrak{B}, Y=1$. Since F normalizes \mathfrak{K}^{0}, we have $\left[\mathfrak{S}^{0}, F\right] \subseteq \mathscr{S}^{0} \cap \mathfrak{F}^{*}=\mathfrak{B}$, and so φ_{Y} commutes with F. So $\left\{\varphi_{Y} \mid Y \in \mathfrak{Y}\right\} \cong \mathfrak{V}$, and \mathfrak{V} may be identified with a subgroup of Hom ($\left.\overline{\mathfrak{F}}, \overline{\mathfrak{Y}}\right)$ which commutes with the action of $\langle\mathfrak{P}, F\rangle$, a dihedral group of order 10. Hence, $|\mathfrak{Y}|=4,\left|\mathfrak{S}^{\circ}\right|=8$.

Since $|\mathfrak{I}|=|\mathfrak{I}: \mathfrak{K}| \cdot|\mathfrak{S}|=4|\mathfrak{K}|=2^{6} \cdot\left|\mathfrak{S}_{0}\right|=2^{10} \cdot\left|\mathfrak{S}^{0}\right|$, we find that $|\mathfrak{I}|=2^{13}$. Consider $\widetilde{T}=\left\langle\mathfrak{K}^{0}, T_{0}\right\rangle$, where $F \in\left\langle\mathscr{S}^{0}, T_{0}^{2}\right\rangle$. Since $\mathfrak{I} \cap \mathscr{S}^{G} \supseteq$ $\langle\mathcal{B}, F\rangle$, and $\tilde{\mathbb{T}} / \mathfrak{T} \cap \mathscr{F}^{G}$ is cyclic of order at most 4 , while $\tilde{\mathbb{T}} /\langle 3, F\rangle$ is a dihedral group of order 8 , it follows that $\tilde{\mathbb{S}} \cap \mathscr{S}^{G}$ is of index at most 2 in $\tilde{\mathbb{I}}$. This implies that $\tilde{\mathfrak{I}} \cap \mathscr{S}^{G}$ contains an element \widetilde{T} such that $\left[\widetilde{T}, \mathfrak{F}_{1}^{*}\right]=1,[\widetilde{T}, F]=3^{*}$. Since $C_{\tilde{\Sigma}}\left(\mathfrak{F}_{2}^{*}\right)=\left\langle\mathcal{S}^{0}, F\right\rangle$, we have $\widetilde{T} \in\left\langle\mathfrak{S}^{0}, F\right\rangle$. Since $F \in \boldsymbol{C}\left(\mathfrak{F}^{*}\right)$, we may choose $\widetilde{T} \in \mathfrak{S}^{0}$. But then $\boldsymbol{C}_{\mathfrak{s}}(\widetilde{T}) \supset \mathfrak{S}_{0}$, and since \mathfrak{F} acts irreducibly on $\mathfrak{S c}_{\mathfrak{S}} / \mathscr{S}_{0}$, it follows that $\mathfrak{S}=\mathfrak{S}_{0} \cdot \boldsymbol{C}_{\mathfrak{s}}(\widetilde{T})$. As we have already shown this forces $\widetilde{T} \in \mathcal{3}$, against $[\widetilde{T}, F]=Z^{*}$. So

$$
\begin{gathered}
\left|\mathfrak{S}^{0}\right|=2^{h}, \quad h=1 \text { or } 2, \\
|\mathfrak{I}|=2^{10+h} .
\end{gathered}
$$

Suppose $h=1$. In this case, $\mathfrak{F}=[\mathfrak{S}, \mathfrak{P}]$ is of order 2^{9}. (It is precisely at this point that I made my mistake. I thought I could show that \mathscr{S} was extra special.) We argue that $\mathscr{S}_{\mathcal{L}}$ is not extra special. Suppose indeed that \mathfrak{S} is extra special. In this case, $\mathfrak{S} \cap \mathbb{M}^{G}$ is of index 2 in \mathfrak{M}^{a}, and $\mathfrak{S} \cap \mathfrak{S}^{G}$ is of index at most 8 in \mathfrak{S}^{G}, whence $\left(\mathscr{F} \cap \mathfrak{S}^{G}\right)^{\prime}=3=3^{*}$, the desired contradiction. So \mathscr{F} is not extra special. This implies that $\mathscr{S}_{\varepsilon}^{\prime}=\mathfrak{F}$. Since $\mathscr{F}=\left\langle\mathfrak{F}, \mathfrak{F}_{1}^{* *}\right\rangle$, and since $\widetilde{\mathfrak{T}}$ is of type $(2,4)$ (the type of $\widetilde{\mathbb{I}}$ is uniquely determined since $F \in \widetilde{\mathfrak{I}}$), it is straightforward to show that the isomorphism class of \mathfrak{M} is uniquely determined, and so $G \cong{ }^{2} F_{4}(2)$ ', by a result of Parrott [A characterization of the Tits' simple group, to appear].

Suppose $h=2$, so that $\left|\mathfrak{S}^{0}\right|=4,|\mathfrak{T}|=2^{12}$.
We argue that $\mathfrak{S E}^{\circ}$ is cyclic. Suppose false. Then $\mathfrak{S}^{\circ}=\langle Z, Y\rangle$ for some involution \mathfrak{Y}.

There are 15 cosets of \mathfrak{K}_{0} in $\mathfrak{K}-\mathfrak{K}_{2}$. Of these, the 5 cosets $\mathfrak{S}_{0} \cdot F_{1}^{P i}$ contain involutions, where $\mathfrak{F}=\langle P\rangle, 0 \leqq i \leqq 4$, and $F_{1} \in \mathfrak{F}_{1}^{*}-\mathfrak{F}_{2}^{*}$. As $N_{\mathrm{m}}(\mathfrak{F})$ is transitive on the remaining 10 cosets, either all of them or none of them contain involutions. If all contain involutions, then $\mathfrak{S} / \mathfrak{F}$ is elementary of order 2^{5}, so $\mathfrak{S}_{1}=[\mathfrak{V}, \mathfrak{F}]$ is of order 2^{9}. If every coset of \mathfrak{F} in \mathfrak{K}_{1} contains involutions, then \mathscr{K}_{1} is forced to be extra special. This is false, and so precisely 5 cosets of \mathfrak{F} in \mathscr{E}_{1} contain involutions, (note that $F_{1} \in \mathfrak{F}_{1}$) and if $\left\{\mathfrak{F} R_{j} \mid 1 \leqq j \leqq 10\right\}$ are the remaining cosets, then none of them contain involutions, while $\mathfrak{F} R_{j} Y$ contains involutions for all j. We may assume that $\left(R_{j} Y\right)^{2}=1$. Since Y is an involution, it follows that R_{j} has order 4 and is inverted by Y. This implies that Y inverts $\mathscr{Y}_{1} / \mathcal{3}$, a homocyclic group of exponent 4 and order 2^{8}. This is false, since $F_{1} \in \mathscr{K}_{1}$, and so the only cosets of \mathfrak{K}_{0} in $\mathfrak{5}-\mathfrak{g}_{0}$ which contain involutions are the $\mathfrak{S}_{0} F_{1}^{p i}$.

Now $\left[F_{1}, Y\right]=Z^{*}$, and so $\mathfrak{F} Y F_{1}$ contains no involutions. Thus, all involutions of $\mathfrak{g}_{0} F_{1}$ are contained in $\mathfrak{J} F_{1}$, and there are thus 16 involutions in $\mathfrak{g}_{0} F_{1}$, namely, $\tilde{\mathfrak{\gamma}} F_{1}$, where $\tilde{\tilde{\gamma}}=\boldsymbol{C}_{\mathfrak{F}}\left(F_{1}\right) . \quad$ Now $\tilde{\tilde{F}}=\left\langle\mathfrak{F} \cap \mathfrak{F}^{*}\right\rangle \times$ $\langle\widetilde{F}\rangle$, and so every involution of $\mathfrak{F}_{0} F_{1}$ is either conjugate to an element of \mathfrak{F} or is in $\left(\mathfrak{F} \cap \mathfrak{F}^{*}\right) \mathfrak{\tilde { 夕 } ^ { 2 }} F_{1}$.

Let $\mathfrak{S}^{1}=\boldsymbol{C}_{\mathfrak{s}}\left(Z^{*}\right)$, and choose $H \in \mathfrak{S}-\mathfrak{g}^{1}$. If $F_{1}^{H} \in\left(\mathfrak{F} \cap \mathfrak{F}^{*}\right) F_{1}$ then $H \in N\left(\mathfrak{F}_{1}^{*}\right) \subseteq N\left(\mathfrak{F}^{*}\right)$. This is false, and so $F_{1}^{H} \in\left(\mathfrak{F} \cap \mathfrak{F}^{*}\right) \tilde{\mathfrak{F}}_{1} F_{1}$, whence $\left(\left(\mathfrak{F} \cap \mathfrak{F}^{*}\right) \tilde{\mathscr{F}} F_{1}\right)^{H}=\left(\mathfrak{F} \cap \mathfrak{F}^{*}\right) F_{1}$. Thus, all involutions of $\mathfrak{g}-\mathfrak{F}_{0}$ are fused to elements of \mathfrak{F}.

Since \mathfrak{M} has 3 orbits on \mathfrak{F}^{*}, with representatives $\left\{Z, Z^{*}, K\right\}$, it follows that every involution of $\mathfrak{g}-\mathscr{F}_{0}$ is fused to precisely one of Z, K.

Now $Y \in \boldsymbol{C}\left(Z^{*}\right)$, and $\left[F_{1}, Y\right]=Z^{*}$, whence $\left|C_{3^{*} \mid 3^{*}}(Y)\right| \geqq 2^{3}$. So $Y \in \mathfrak{S}^{G}-\mathfrak{K}_{0}^{G}$, and so Y is fused to either Z or K. Since \mathfrak{S}^{0} is a fourgroup, \mathfrak{F} is a S_{5}-subgroup of $(\mathbb{C}$, and $N(\mathfrak{F}) \subseteq \mathfrak{M}$. Thus, Y and Z are not fused in \mathbb{C}. So Y and K are fused, whence $15 \| C(Y) \mid$. This is false, since $N(\mathfrak{F}) \subseteq \mathfrak{M}$, and \mathfrak{F} is a S_{0}-subgroup of \mathfrak{G}. This contradiction shows that $\mathfrak{5}^{\circ}$ is cyclic of order 4.

The exact determination of the isomorphism type of \mathfrak{M} is now straightforward, if somewhat detailed. Thus, $G \cong{ }^{2} F_{4}(2)$, by a result of Hearn.

The proof of the (augmented) Main Theorem is complete.
Received November 2, 1972.

[^0]: ${ }^{1}$ An historical note is in order. In January, 1963, I announced at the meeting of the American Mathematical Society that with finitely many exceptions, the simple N-groups were $L_{2}(q)$ and $S z(q)$. Had I been content to leave the explicit determination of the exceptions to someone else, I would have avoided the embarrassment of having missed ${ }^{2} F_{4}(2)^{\prime}$. Furthermore, several of the proofs would have been shortened considerably. But part of the fun and a great deal of the work involve pinning down the exceptions.
 ${ }^{2}$ The other papers are: Nonsolvable finite groups all of whose local subgroups are solvable, I-V: Bull. Amer. Math. Soc., 1968, Vol. 74, no. 3, pp. 383-437, Pacific J. Math., Vol. 33, no. 2, 1970, pp. 451-536, Vol. 39, no. 2, 1971, pp. 483-534, Vol. 48, No. 2, 1973, र p. 511-592, Vol. 50, no. 1, (1974), 215-297.
 ${ }^{3}$ I have not taken the trouble to check Corollary 5 for the case $\mathscr{F}={ }^{2} F_{4}(2)$.

[^1]: ${ }^{4}$ I am indebted to I. M. Isaacs for making available to me some notes which he took, based on lectures of mine given several years ago.

