FUNCTIONALS ON CONTINUOUS FUNCTIONS

J. R. Baxter and R. V. Chacon

Let $\mathscr{C}(M)$ be the space of continuous functions on a compact metric space M. In a previous paper a class of nonlinear functionals Φ on $\mathscr{C}([0,1] \times[0,1])$ was constructed, such that each Φ satisfied:
(i) $\lim _{\|f\| \rightarrow 0} \Phi(f)=0$,
(ii) $\Phi(f+g)=\Phi(f)+\Phi(g)$ whenever $f g=0$, and
(iii) $\Phi(f+\alpha)=\Phi(f)+\Phi(\alpha)$ for any constant α.

In this paper we show that the dimensionality of $[0,1] \times$ $[0,1]$ is what makes the construction work. More precisely, we show that if Φ is a functional on $\mathscr{C}(M)$ satisfying (i), (ii), and (iii), and if the dimension of M is less than two, then Φ must be linear.

1. Introduction. Let M be a compact metric space. Let $\mathscr{C}(M)$ be the space of continuous real-valued functions on M. In this paper, we will prove the following result:

Theorem 1. Let $\Phi: \mathscr{C}(M) \rightarrow \boldsymbol{R}(\boldsymbol{R}=$ the real numbers $)$ be a functional such that:
(i) $\lim _{\| f \mid \rightarrow 0} \Phi(f)=0,\left(\|f\|=\sup _{x \in M}|f(x)|\right)$
(ii) $\Phi(f+g)=\Phi(f)+\Phi(g)$ whenever $f g=0$
(iii) $\Phi(f+\alpha)=\Phi(f)+\Phi(\alpha)$ for all $f \in \mathscr{C}(M), \alpha \in \boldsymbol{R}$.

Then if M has dimension no greater than one, Φ must be linear.
The additivity properties (ii) and (iii) may also be expressed by one condition:
(ii) $\quad \Phi(f+g)=\Phi(f)+\Phi(g)$ whenever g is constant on $\{x \mid f(x) \neq 0\}$.

It is also easy to see that we must have $\Phi(\alpha)=\alpha \Phi(1)$ for all $\alpha \in \boldsymbol{R}$.

It has been shown in [2] that there exist nonlinear functionals Φ on $\mathscr{C}([0,1] \times[0,1])$ which are bounded, continuous, monotonic, and satisfy conditions (ii) and (iii). Thus Theorem 1 does not extend to spaces of dimension greater than one.

In [1], a proof of Theorem 1 is given for the special case $M=$ $[0,1]$. We will use this case of Theorem 1 to prove the general case. In $\S 2$ it is shown that Theorem 1 is equivalent to the following result:

THEOREM 2. For each $f \in \mathscr{C}(M)$, let $\mathscr{B}_{f}=\left\{f^{-1}(E) \mid E \subseteq R, E\right.$ Borel\}. Suppose a measure μ_{f} on \mathscr{B}_{f} is given, for each $f \in \mathscr{C}(M)$, such that:
(i) the measures μ_{f} are uniformly bounded in total variation, and
(ii) the measures μ_{f} are consistent, in the sense that if $\mathscr{B}_{f} \subseteq \mathscr{B}_{g}$ then $\mu_{f}=\mu_{g}$ on \mathscr{B}_{f}.

Then if M has dimension no greater than one, a measure μ on the Borel sets of M can be found, which is the common extension of all the μ_{f}.

Theorem 2 is obvious if M is the unit interval, but not if M is the unit circle. Theorem 2 will be proved in $\S 3$.
2. Construction of a set function. For each $f \in \mathscr{C}(M)$, let \mathscr{L}_{f} be the space of continuous functions $g \in \mathscr{C}(M)$ which are measurable with respect to \mathscr{B}_{f}. It is easy to see that $g \in \mathscr{L}_{f}$ if and only if $g(x)=g(y)$ whenever $f(x)=f(y)$, and that this means g is of the form $h \circ f$, where h is a continuous function on \boldsymbol{R}.

Lemma 1. Φ satisfies conditions (i), (ii), and (iii) of Theorem 1 if and only if:
(i) Φ is bounded, that is, there exists k such that $|\Phi(f)| \leqq k\|f\|$ for all $f \in \mathscr{C}(M)$,
(ii) Φ is linear on each space \mathscr{L}_{f}.

Proof. Assume Φ satisfies (i), (ii) and (iii) of Theorem 1. Fix $f \in \mathscr{C}(M)$. Let I be a compact interval containing $f(M)$.

Define Φ^{*} on $\mathscr{C}(I)$ by the equation $\Phi^{*}(h)=\Phi(h \circ f)$. Clearly Φ^{*} satisfies conditions (i), (ii), and (iii) of Theorem 1. By the special case of Theorem 1 that is proved in [1], Φ^{*} must be linear. It follows at once that Φ is linear on \mathscr{L}_{f}.

Since Φ is continuous at 0 , there exists $r>0$ such that

$$
\|f\| \leqq r \text { implies }|\Phi(f)| \leqq 1
$$

Then for any $f \in \mathscr{C}(M), f \neq 0$,

$$
|\Phi(f)|=\left|\frac{\|f\|}{r} \Phi\left(\frac{r f}{\|f\|}\right)\right| \leqq \frac{1}{r}\|f\|
$$

Thus Φ is bounded.
Now assume Φ satisfies conditions (i) and (ii) of Lemma 1. Then condition (i) of Theorem 1 clearly holds.

To prove that condition (ii) of Theorem 1 holds, let us first assume that f and g are in $\mathscr{C}(M)$, with $f \geqq 0, g \leqq 0$, and $f g=0$.

Then $f=(f+g) \vee 0$ and $g=(f+g) \wedge 0$, so that f and g are both in \mathscr{L}_{f+g}. Hence $\Phi(f+g)=\Phi(f)+\Phi(g)$.

Now assume that $f \geqq 0, g \geqq 0$, and $f g=0$. Then by the preceding argument f and g are both in \mathscr{L}_{f-g}, so again $\Phi(f+g)=\Phi(f)+\Phi(g)$.

Finally, for arbitrary f and g in $\mathscr{C}(M)$ with $f g=0$, let $f_{1}=f \vee 0$, $f_{2}=f \wedge 0, g_{1}=g \vee 0, g_{2}=g \wedge 0$. Then

$$
\begin{aligned}
\Phi(f+g) & =\Phi\left(f_{1}+f_{2}+g_{1}+g_{2}\right) \\
& =\Phi\left(f_{1}+g_{1}\right)+\Phi\left(f_{2}+g_{2}\right) \quad \text { by the first case, } \\
& =\Phi\left(f_{1}\right)+\Phi\left(g_{1}\right)+\Phi\left(f_{2}\right)+\Phi\left(g_{2}\right) \quad \text { by the second case } \\
& =\Phi\left(f_{1}+f_{2}\right)+\Phi\left(g_{1}+g_{2}\right) \quad \text { by the first case, } \\
& =\Phi(f)+\Phi(g) \text {. Thus condition (ii) of Theorem } 1 \text { holds. }
\end{aligned}
$$

Condition (iii) of Theorem 1 clearly holds, so Lemma 1 is proved.
Using Lemma 1 and the Riesz representation theorem it is easy to see that for each functional Φ satisfying conditions (i), (ii), and (iii) of Theorem 1 we can find a system of measures μ_{f} satisfying conditions (i) and (ii) of Theorem 2, and such that $\Phi(f)=\int f d \mu_{f}$ for each $f \in \mathscr{C}(M)$. Conversely, if $\mu_{f}, f \in \mathscr{C}(M)$, is a system of measures satisfying conditions (i) and (ii) of Theorem 2, then Lemma 1 implies that the functional Φ defined by $\Phi(f)=\int f d \mu_{f}$ must satisfy conditions (i), (ii), and (iii) of Theorem 1. It follows at once that Theorems 1 and 2 are equivalent.

In what follows we will use both Φ and the corresponding system of measures μ_{f}.

Lemma 2. Let f and g be in $\mathscr{C}(M)$. Let K be a closed set in $\mathscr{B}_{f} \cap \mathscr{B}_{g} . \quad$ Then $\mu_{f}(K)=\mu_{g}(K)$.

Proof. $f(K)$ is a compact set in \boldsymbol{R}. It is easy to see that one can find a sequence of continuous functions h_{n} on \boldsymbol{R} such that $0 \leqq$ $h_{n} \leqq 1, h_{n}=1$ on a neighborhood of $f(K), h_{n}=1$ on the support of h_{n+1}, and the intersection of the supports of the h_{n} is $f(K)$.

Let $f_{n}=h_{n} \circ f$. Then clearly $0 \leqq f_{n} \leqq 1, f_{n}=1$ on a neighborhood of $K, f_{n}=1$ on the support of f_{n+1}, and the intersection of the supports of the f_{n} is K.

Let $g_{n}=p_{n} \circ g$ be a sequence having the same properties as the f_{n}. Fix f_{n}. Then $f_{n}=1$ on a neighborhood, A, of K. Since the intersection of the supports of the g_{n} is K, it follows that for sufficiently large m the support of g_{m} will be contained in A. Hence, by choosing subsequences and relabelling, we may assume that, in addition to the properties mentioned above, f_{n} and g_{n} are also such that $f_{n}=1$ on a neighborhood of the support of g_{n}, and $g_{n}=1$ on a neighborhood of the support of f_{n+1}.

Since the f_{n} are uniformly bounded, and $f_{n} \rightarrow \chi_{k}$ pointwise as
$n \rightarrow \infty$, we have $\Phi\left(f_{n}\right)=\int f_{n} d \mu_{f} \rightarrow \mu_{f}(K)$ as $n \rightarrow \infty$. Similarly $\Phi\left(g_{n}\right) \rightarrow$ $\mu_{g}(K)$ as $n \rightarrow \infty$. Suppose $\mu_{f}(K)>\mu_{g}(K)$. Choose $\delta>0, \delta<\mu_{f}(K)-$ $\mu_{g}(K)$. For sufficiently large n we must have $\Phi\left(f_{n}\right)>\Phi\left(g_{n}\right)+\delta$. By relabelling we may assume that $\Phi\left(f_{n}\right)>\Phi\left(g_{n}\right)+\delta$ for all n.

Let u_{n} be a continuous function on M such that $0 \leqq u_{n} \leqq 1$, $u_{n}=0$ on the support of g_{n}, and $u_{n}=1$ on $\left\{x \mid f_{n}(x)<1\right\}$. Let

$$
v_{n}=f_{n}-u_{n} f_{n}-g_{n} .
$$

It is easy to check that $0 \leqq v_{n} \leqq 1$, and the support of v_{n} is contained in

$$
\left\{x \mid f_{n}(x)=1\right\}-\left\{x \mid g_{n}(x)=1\right\}
$$

Hence $\Phi\left(-v_{n}+f_{n}\right)=\Phi\left(-v_{n}\right)+\Phi\left(f_{n}\right)$, by the additivity property (ii)' of Φ. That is, $\Phi\left(u_{n} f_{n}+g_{n}\right)=\Phi\left(-v_{n}\right)+\Phi\left(f_{n}\right)$. Since $u_{n} f_{n}=0$ on the support of g_{n}, we have $\Phi\left(u_{n} f_{n}+g_{n}\right)=\Phi\left(u_{n} f_{n}\right)+\Phi(g)$ by the additivity of Φ again. Thus $\Phi\left(u_{n} f_{n}\right)+\Phi\left(g_{n}\right)=\Phi\left(-v_{n}\right)+\Phi\left(f_{n}\right)$. Hence $\Phi\left(u_{n} f_{n}\right)>$ $\Phi\left(-v_{n}\right)+\delta$, and so $\sum_{n=1}^{m} \Phi\left(u_{n} f_{n}\right)>\sum_{n=1}^{m} \Phi\left(-v_{n}\right)+m \delta$, for all m.

It is easy to check that the supports of the $u_{n} f_{n}$ are pairwise disjoint, as are the supports of the v_{n}. Hence

$$
\Phi\left(\sum_{n=1}^{m} u_{n} f_{n}\right)>\Phi\left(\sum_{n=1}^{m}\left(-v_{n}\right)\right)+m \delta,
$$

by additivity, for all m.
The functions $\sum_{n=1}^{m} u_{n} f_{n}$ and $\sum_{n=1}^{m}\left(-v_{n}\right)$ are uniformly bounded in m. Hence the last inequality contradicts the boundedness of Φ. Hence our original supposition, $\mu_{f}(K)>\mu_{g}(K)$, was false. This proves Lemma 2.

Since M is a metric space, it is easy to see that every closed set E and every open set E occurs in some \mathscr{B}_{f}.

Definition 1. Let us write $\mu_{f}(E)=\mu(E)$ for E closed or E open, since the number has been shown to be independent of f.

Lemma 3. The set function μ is bounded and additive wherever defined.

Proof. μ is bounded because the total variation of the μ_{f} 's is uniformly bounded.

Let E_{1} and E_{2} be sets, with $E_{1} \cap E_{2}=\phi$, such that $\mu\left(E_{1}\right), \mu\left(E_{2}\right)$, and $\mu\left(E_{1} \cup E_{2}\right)$ are defined. We may have E_{1}, E_{2} open, E_{1}, E_{2} closed, E_{1} open, E_{2} closed, and $E_{1} \cup E_{2}$ open, or E_{1} open, E_{2} closed, and $E_{1} \cup E_{2}$ closed. In each of the four possible cases it is easy to find a function $f \in \mathscr{C}(M)$ such that E_{1} and E_{2} are in \mathscr{B}_{f}. This proves Lemma 3.

Lemma 4. Let G_{n} be a monotone increasing sequence of open sets, with union G. Let F_{n} be a sequence of closed sets such that $G_{n} \subseteq F_{n} \subseteq G$ for all n. Then $\mu\left(G_{n}\right) \rightarrow \mu(G)$ and $\mu\left(F_{n}\right) \rightarrow \mu(G)$ as $n \rightarrow \infty$.

Proof. Suppose $\mu\left(G_{n}\right) \nrightarrow \mu(G)$ or $\mu\left(F_{n}\right) \nrightarrow \mu(G)$. Then there exists a $\delta>0$ and a subsequence n_{j} such that

$$
\left|\mu\left(G_{n_{j}}\right)-\mu(G)\right|+\left|\mu\left(F_{n_{j}}\right)-\mu(G)\right|>\hat{o}
$$

for all j. Since the F_{n} are compact we can choose n_{j} so that $F_{n_{j}} \subseteq G_{n_{j+1}}$. It is then a straightforward matter to construct $f \in \mathscr{C}(M)$ such that $G_{n_{j}}, E_{n_{j}} \in \mathscr{B}_{f}$ for all j. This contradiction proves the lemma.
3. Proof of the theorems. In this section we will prove:

Theorem 3. Let μ be a real-valued set function defined for closed subsets and for open subsets of M, such that:
(i) μ is bounded and additive wherever defined, and
(ii) μ has the continuity property described in Lemma 4.

Then if M has dimension no greater than one, μ can be extended to a measure on the Borel sets of M.

We can apply Theorem 3 to the set function μ constructed in the previous section. The Borel measure $\hat{\mu}$ which is an extension of μ agrees with each measure μ_{f} on all closed sets in \mathscr{B}_{f}. Since each μ_{f} is obviously regular, $\hat{\mu}$ must be an extension of μ_{f}. Thus Theorem 2 is proved, and hence Theorem 1 also.

From now on let μ be any set function satisfying conditions (i) and (ii) of Theorem 3.

Lemma 5. Let F_{n} be a monotone decreasing sequence of closed sets, having intersection F. Let G_{n} be a sequence of open sets such that $F_{n} \supseteq G_{n} \supseteq F$ for all n. Then $\mu\left(F_{n}\right) \rightarrow \mu(F)$ and $\mu\left(G_{n}\right) \rightarrow \mu(F)$ as $n \rightarrow \infty$.

Proof. Follows from condition (ii) by taking complements and using the additivity property.

Definition 2. For any set $E \subseteq M$, define

$$
\nu(E)=\sup \{\mu(F) \mid F \cong E, F \text { closed }\}
$$

Since μ is bounded, so is ν. Clearly ν is monotone.
Lemma 6. Let E_{1} and E_{2} be disjoint subsets of M. Then $\nu\left(E_{1} \cup\right.$ $\left.E_{2}\right) \geqq \nu\left(E_{1}\right)+\nu\left(E_{2}\right)$. If E_{1} and E_{2} are either both open or both closed,
then $\nu\left(E_{1} \cup E_{2}\right)=\nu\left(E_{1}\right)+\nu\left(E_{2}\right)$.
Proof. Follows from the additivity of μ.
Lemma 7. Let G be open. Then

$$
\nu(G)=\sup \{\mu(H) \mid H \cong G, H \text { open }\}
$$

Proof. Follows from the continuity of μ.
We pause now for a general topological lemma.

Lemma 8. Let X be a locally compact separable metric space of dimension 0. Then X is a countable union of monotone increasing sets that are both compact and open.

Proof. From the definition of dimension 0, each point x has arbitrarily small neighborhoods G_{x} which are both closed and open.

By choosing G_{x} small enough, it can therefore be made both compact and open.

Since $X=\bigcup_{x \in X} G_{x}$, and X has a countable base, we can find x_{1}, x_{2}, \cdots such that $X=\bigcup_{n=1}^{\infty} G_{x_{n}}$. Let $K_{n}=\bigcup_{j=1}^{n} G_{x_{j}}$. Then each K_{n} is both compact and open, and $K_{n} \uparrow X$.

Now we return to M, μ, and ν.
Lemma 9. Let G be open. Let E be open, $E \subseteq G$, such that $\partial E \cap G$ has dimension 0 . Then $\mu(G) \leqq \nu(E)+\nu(G-E)$.

Proof. Let $D=\partial E \cap G$. Let $H=G-\bar{E}$. Then the sets E, D, and H are mutually disjoint, and $G=E \cup D \cup H$.

Since D is a closed subset of the locally compact separable metric space G, D is a locally compact separable metric space also.

By Lemma 8, we can find sets K_{n} which are both compact and open in D, such that $K_{n} \uparrow D$.

Let $K_{n}=A_{n} \cap D$, where A_{n} is open. Since K_{n} is compact we may choose A_{n} such that $\bar{A}_{n} \cong G$. By taking unions if necessary we may choose the A_{n} to be increasing.

Let E_{n} and H_{n} be open sets such that $\bar{E}_{n} \subseteq E, \bar{H}_{n} \subseteq H$ for all n, $E_{n} \uparrow E$ and $H_{n} \uparrow H$. Let $G_{n}=E_{n} \cup A_{n} \cup H_{n}$. Then G_{n} is open, $\bar{G}_{n} \subseteq G$, and $G_{n} \uparrow G$. Then $\mu\left(G_{n}\right) \rightarrow \mu(G)$ as $n \rightarrow \infty$, by continuity.

$$
\text { But for all } \begin{aligned}
n, G_{n} & =\left(G_{n} \cap E\right) \cup\left(G_{n} \cap D\right) \cup\left(G_{n} \cap H\right) \\
& =\left(G_{n} \cap E\right) \cup K_{n} \cup\left(G_{n} \cap H\right) .
\end{aligned}
$$

Thus $\mu\left(G_{n}\right)=\mu\left(G_{n} \cap E\right)+\mu\left(K_{n}\right)+\mu\left(G_{n} \cap H\right)$, by additivity,

$$
\leqq \nu\left(G_{n} \cap E\right)+\nu\left(K_{n}\right)+\nu\left(G_{n} \cap H\right)
$$

$$
\leqq \nu(E)+\nu(D)+\nu(H) \leqq \nu(E)+\nu(G-E)
$$

This proves Lemma 9.
Lemma 10. Let G be an open set. Let E be open, $E \subseteq G$, such that $\partial E \cap G$ has dimension 0 . Then $\nu(G)=\nu(E)+\nu(G-E)$.

Proof. Let $\varepsilon>0$ be given. Choose H open, $H \subseteq G$, such that $\mu(H) \geqq \nu(G)-\varepsilon$. This is possible by Lemma 7.

Then $\partial(E \cap H) \cap H=\partial E \cap H \cong \partial E \cap G$. Hence $\partial(E \cap H) \cap H$ has dimension 0. By Lemma 7, $\mu(H) \leqq \nu(E \cap H)+\nu(H-E \cap H) \leqq$ $\nu(E)+\nu(G-E)$. Hence $\nu(G) \leqq \nu(E)+\nu(G-E)$.

The reverse inequality holds by Lemma 6, so Lemma 10 is proved.
From now on in this section, let M have dimension at most one.
Lemma 11. Let G_{1} and G_{2} be open, with union G. Then $\nu(G) \leqq$ $\nu\left(G_{1}\right)+\nu\left(G_{2}\right)$.

Proof. $G_{1}-G_{2}$ and $G_{2}-G_{1}$ are disjoint and relatively closed in G. G is a separable metric space of dimension no larger than 1. Hence by Theorem 1 in [3], section 27II, page 290, we can find an open set $E \cong G$ such that $E \supseteqq G_{1}-G_{2}, \bar{E} \cap\left(G_{2}-G_{1}\right)=\varnothing$, and $\partial E \cap G$ has dimension 0.

By Lemma 10,

$$
\nu(G)=\nu(E)+\nu(G-E) \leqq \nu\left(G_{1}\right)+\nu\left(G_{2}\right) .
$$

Lemma 12. Let G_{n} be a sequence of open sets. Let $G=\bigcup_{n=1}^{\infty} G_{n}$. Then $\nu(G) \leqq \sum_{n=1}^{\infty} \nu\left(G_{n}\right)$.

Proof. Let $\varepsilon>0$ be given. Choose F closed, $F \subseteq G$ such that $\mu(F) \geqq \nu(G)-\varepsilon$.

Then there exists n such that $F \cong \bigcup_{j=1}^{n} G_{j}$. Hence $\sum_{j=1}^{\infty} \nu\left(G_{j}\right) \geqq$ $\sum_{j=1}^{n} \nu\left(G_{j}\right) \geqq \nu\left(\bigcup_{j=1}^{n} G_{j}\right)$, by Lemma $11, \geqq \mu(F)$ by definition.

This proves Lemma 12.
Definition 3. For any set $E \subseteq M$, define $\nu^{*}(E)=\inf \{\nu(G) \mid E \subseteq$ G, G open\}. Clearly $\nu^{*}(E)=\nu(E)$ when E is open.

Lemma 13. ν^{*} is an outer measure.
Proof. Follows from Lemma 12.

Lemma 14. Every open set is measurable with respect to ν^{*}, in the sense of Caratheodory.

Proof. Let G be open. Let E be any set. We know

$$
\nu^{*}(E) \leqq \nu^{*}(E \cap G)+\nu^{*}(E-G)
$$

since ν^{*} is an outer measure. We must show that

$$
\nu^{*}(E) \geqq \nu^{*}(E \cap G)+\nu^{*}(E-G) .
$$

Choose any open set H such that $E \subseteq H$. Let $\varepsilon>0$ be given. Choose F closed, $F \cong G \cap H$, such that $\nu(F) \geqq \nu(G \cap H)-\varepsilon$. Then $\nu(H) \geqq \nu(F)+\nu(H-F)$, by Lemma $6, \geqq \nu(G \cap H)-\varepsilon+\nu(H-F) \geqq$ $\nu^{*}(E \cap G)-\varepsilon+\nu^{*}(E-G)$ by definition.

Hence $\nu(H) \geqq \nu^{*}(E \cap G)+\nu^{*}(E-G)$. By definition, then, $\nu^{*}(E) \geqq$ $\nu^{*}(E \cap G)+\nu^{*}(E-G)$, and Lemma 14 is proved.

Because of Lemma 14 we know that ν^{*} defines a measure on a σ-algebra of sets that includes the Borel sets of M.

Proof of Theorem 3. First suppose that μ is nonnegative. Let G be open. By Lemma $7, \mu(G) \leqq \nu(G)$. On the other hand, for any closed subset F of $G, \mu(F) \leqq \mu(F)+\mu(G-F)=\mu(G)$. Thus $\mu(G)=$ $\nu(G) . \nu^{*}$ is a measure on the Borel sets of M which agrees with μ on open sets and hence on all sets in the domain of μ.

Now let μ be arbitrary. Consider the set function $\omega=\nu^{*}-\mu$, defined for closed subsets of M and for open subsets of $M . \omega$ is nonnegative by Lemma 7. By what has already been proved, ω can be extended to a Borel measure. But then $\mu=\nu^{*}-\omega$ can be extended also, so the theorem is proved.

References

1. J. R. Baxter and R. V. Chacon, Almost linear operators and functionals on $\mathscr{C}([0,1])$, to appear in Proc. Amer. Math. Soc.
2. —, Nonlinear functionals on $\mathscr{C}([0,1] \times[0,1])$, Pacific. J. Math., 48 (1973), 347-353.
3. K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1968.

Received January 19, 1973.
University of British Columbia

