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ON TWO CONGRUENCES FOR PRIMALITY

M. V. SϋBBARAO

In this paper we consider the congruences

nσ(n) = 2(mod φ(n)) , φ(n)t(n) + 2 = 0 (mod n) .

1* Introduction* Apart from the classical Wilson's theorem
(that a positive integer p > 1 is a prime if and only if (p — 1)1 +
1 = 0 (mod p)) and its variants and corollaries, there is probably no
other simple primality criterion in the literature in the form of a
congruence. In this connection, we may recall Lehmer's congruence
[1]:

(1.1) n - 1 = Omodφ(n) .

This is satisfied by every prime. We do not yet know if it has
any composite n as a solution. In 1932, Lehmer [1] showed that if
there exists a composite number n satisfying (1.1), then n must be
odd and square free and have at least seven distinct prime factors.
This result was improved in 1944 by Fr. Schuh [4] who showed that
such a n must have at least eleven prime factors. In 1970, E.
Lieuwens [2] corrected an error in the proof of Schuh.

In the congruences we shall consider,

(1.2) nσ(n) = 2(mod φ(n))

and

(1.3) φ(n)t(n) + 2 = 0(mod n) ,

where φ(n) is Euler's totient, and t(n) and σ(n) are respectively the
number and sum of the divisors of n. Each of these is satisfied when-
ever n is a prime. It is a simple matter to solve (1.2) completely
(Theorem 1). However, the problem of solving (1.3) for all composite
integers n seems to be a deep one, and we offer only a partial solution.

2* THEOREM 1. The only composite numbers n satisfying (1.2)
are n = 4, 6, and 22.

Proof. Let a solution of (1.2) be

n = 2apΐι - Prr

where plf *-,pr are the distinct odd prime divisors of n. If for
some i(l <̂  i <̂  r), α< > 1, then pt \ φ(n) and pt \ n, so that pt \ 2, an
absurdity. Hence
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aι = α2 = = ar — 1 .

An analogous argument shows that a — 0, 1 or 2. Hence n =
2aPiP2'" Pn where a = 0, 1 or 2. Next, when n is in this form,
2r I σ(w) and 2r | 0(π), so that we should have 2r | 2, on using the con-
gruence. Hence r = 0 or 1, and we get n = 2, 4, ^x, 2^, 4 ^ for the
possible solutions of (1.2). However, n = 4px is impossible, for other-
wise 41 ̂ (^), and this would imply, on using the congruence, that
4 |2.

In the next place, if n = 2pί9 we have

βPi(Pι + 1) = 2 mod (P l - 1) .

This shows that (p, — 1) 110, and this gives p1 = 2, 3, and 11.
Hence all the possible composite solutions of (1.2) are n = 4, 6, and
22, and these are indeed solutions of the congruence.

3* The solution of congruence (1*3) Up to 100,000, the only-
composite solution of (1.3) is n = 4, and the question naturally arises
if there is any composite solution > 4. While this is still open, we
devote the rest of the paper to obtain some information about such
a solution if it exists.

THEOREM 2. Every composite solution n > 4 of the congruence
(1.3) satisfies the following conditions:

(A) n is square-free.
(B) If p is an odd prime divisor of n, then there is no prime

divisor of the form px + 1.
(C) Let K be defined by the relation

(3.1) φ(n)t(n) + 2 = Kn .

Then K and n are of opposite parity and AJ(K.
(D) If n — m is a solution o/(1.3), then n — 2m is not a solution.

Proof. For an odd prime p, if p2 \ n, then p \ φ(n); hence on using
(1.2), p 12, which is absurd. Again if 4 | n and n > 4, a simple ar-
gument shows that (1.3) is impossible. This establishes result (A).
The proofs of (B), (C), and (D) are equally easy.

LEMMA. For a given r, the number of solutions n of (2.11) hav-
ing r prime divisors is finite. In fact, if pu p2, '"fpr are the
prime divisors of n in increasing order of magnitude, and if
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where qr is the r th prime in the sequence of primes 2, 3, 5, (qί =
2, q2 = 3 etc.), then

(3.3) 2'Qr ̂  K ^ 2%

(3.4) A < r(l - -I-)"1 ,

cmd /or i = 2, 3, , r,

P«-i < P« < (r - i + l)(l --fί-- — — Γ
V 2r ft ft^/

Proof. The relation (3.1) gives

κ =ΦWnl + _2_
n n

rg t(n) + A ,

for n > 2. Hence K ^ £(w). Since by Theorem 2, w is square free,
n = Pu P*9 , 3>« s o Λ a t *(^) = 2r. Hence K <; 2r.

In the next place,

n

= 2rί

This completes the proof of (3.3). To prove (3.4), we note that

iΓ>2'iW,2'π(i- JL)
n i=i\ Pi /

Vl Vr

Hence,

2r Vl " " Vr Vr

and this gives

Again, using

*<r[i-fy.

_L + J_+...+J_<_i. + i ^ l
Vl V% Vr Vl Vz
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and proceeding as before, we get

(3.5) Pi < A < (r - l ) ( l - %• - —Y

Continuing this process, we obtain

(3.6) p2 < Ps < (r - 2)(l --§--- - Γ ,

and finally,

(3.7) pr.t < pr < (l - A - J_ _ J _ V1 .

This establishes (3.4).
For a given r, (3.3) shows that if can take only a finite number

of values, and (3.4)-(3.7) show that pl9 p2, ---,pr can take only a
finite number of values. Thus for a given r, the congruence (1.3)
has got only a finite number of solutions, since for a given r the
upper and lower bounds for if, pl9 p2, , pr are fixed by the rela-
tions (3.3) and (3.4). The actual solutions corresponding to any given
r can be obtained after a finite number of trials. Following this
method, we have obtained the following results. (The details of
the numerous computations involved in the proofs of Theorems 3
and 4 below are available with the authors.)

THEOREM 3. Any composite solution n > 4 of (1.3) must have
at least 4 distinct odd prime factors.

THEOREM 4. For the congruence (1.3) we have the following:
(3.8) IfK = l or 3 ^ K <̂  14, there are no solutions.
(3.9) If K = 2, the only solutions are all the primes and 4.
(3.10) If K= 15, then r = 4 or 5.
(3.11) IfΠ£K£ 29, then r = 5.
(3.12) If K = 30 or 31, then r - 5 or 6.
(3.13) If 33 ^ K ^ 58, ίλew r = 6.
(3.14) If 59 ^K^ 63, ίλen r - 6 or 7.
(3.15) // 65 ^ if ^ 116, £ / ^ r = 7.
(3.16) // 117 ^ if ^ 127, £Aew r = 7 or 8.
(3.17) If 129 ^ K ^ 230, £/*,ew r = 8.
(3.18) 1/ 231 ^ if ^ 255, £/*ê  r - 8 or 9.
(3.19) 7/ 257 ^ if ^ 457, then r = 9.
(3.20) 1/ 458 ^ if g 551, £/*ê  r - 9 o r 10.
(3.21) If 513 ^ if ^ 909, then r = 10.
(3.22) // 910 ^ if ^ 1023, then r = 10 or 11.
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Proof. We illustrate the proof for the case when n is odd.
Using the lemma, we have

p2/ \ pr

on using part (B) of Theorem 2 and Theorem 3. Giving K successive
integral values and examining the consistency of the resulting in-
equalities while keeping in view the restrictions of Theorem 2, we
get the results of the theorem.

REMARK. Any solution n of (3.1) satisfies the relation

2' < K

where 7 is Euler's constant, r is the number of distinct prime fac-
tors of n and x = qr+b. To show this, we note that

2' = t{n) < K n

φ(n)

on using Theorems 2 and 3. Hence

9 κ 1 6 10 12 18 o _ !

where Qr+5 is defined as in (3.2). We now use the estimate given
by Rosser and Schoenfeld [3, Theorem 8, Corollary 1] for Qrj5, namely
Qrl5 < er log x(l + log"2 a?), where x = gr+5; and obtain the stated result.

In the next theorem, qu denotes, as already noted, the %th prime
in the sequence of primes qx = 2, g2 = 3,

THEOREM 5. Let K and m be given and let qu be the smallest
prime factor of n which is a solution of the simultaneous equations

(3.8) φ(n)t(n) + 2 = Kn

(3.9) t(n) = mK .

Then n has a prime factor at least as large as

qZ + O(um exp - log6 u)

where b is any number < 3/5.
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Proof. By Theorem 2, n is square free. Let it have r distinct
prime divisors.

Then A. Walfisz [5, Satz 4, p. 187] has shown that if π(x) de-
notes, as usual, the number of primes ^ x, and

dt
log* '

then

π(x) = li(x) + O ( ί φ x p — A log3/5 x(log log x)~~1/5}),

where A is a positive constant. It follows that

π(x) = li(x) + O(x exp — logα x)

for all a < 3/5. By using a standard argument, we can show that

Σ — = log log x + c + O(exp - logα x),
q^χ q

q varying over primes.
It follows that

Σ -

= log log x + c + O(exp — logα x)

for all a < 3/5, where c is an absolute constant (not necessarily the
same as the c used before).

Hence for any given h for which h = O(xm), we have

(3.10) Σ - log ( l - —)
Q

= log log (xm + h) — log log x + O(exp — logα x)

for all α < 3/5. If we choose h = xm exp (— log6 x), where b < a < 3/5,
we get

( i) e x p - l o s h χ

log a?

+
m log α?

0 ( _ b r

and this is greater than log m for all sufficiently large x. Again, if
we take h = —xmexp(— log6 x) where b < a < 3/5, then
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Σ _ Wi _ 1) =
q^xn+h \ q /

log x

m log x

0 ( e χ p ( _ lQgaχ)) t

which is less than log m for all sufficiently large x. Hence, if g(x)
is the smallest number such that

- log f 1 - —) ^ log m ,
x) \ q /

then g(x) = xm + O(#w exp(— logα α;)) for all a < 3/5. Now going back
to the relation

2rφ(n) + 2 = Kn .

This gives, with m = 2r/iί, the result

m + ^iΦiri) = n/φ(n) .

Taking qu to be the smallest prime divisor of n, let the integer v
be defined to be the smallest integer with the property

m< Π
.. - 1

that is,

v _ log (l - i-^ > log m .Σ

Then it follows that n must have a prime factor other than qu and
at least as large as qv. The previous investigation shows that.

q7 exp (- logα (<??))) ,

that is,

qv = 9« + O(um exp ( - logδ %)) for any 5 < α < 3/5 .

Hence, we have proved the theorem.
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