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APPROXIMATION PROPERTIES OF VECTOR
VALUED FUNCTIONS

R. C. BUCK

There are several analogues of the Weierstrass approxi-
mation theorem that characterize the uniform closure of a
C[X] submodule ^ o f the space C[X: E] of bounded continuous
unvalued functions on a compact space X. In this paper, a
strong form of such a theorem is obtained which is then
applied to yield a characterization of all the f unctionals Φ in
the dual of C[X: E] that are extreme among those of unit
norm that vanish on an arbitrary chosen -^. Each is deter-
mined by a point xoe X and a unit functional L that is
extreme in the annihilator of a closed subspace M c E.

The space C[X] of bounded continuous real valued functions on
a topological space X has been studied as an algebra, a lattice, and
a normed linear space; each of these reflects an aspect of the struc-
ture of the reals. In the present paper, we are interested in the
more general space G[X: E] of bounded continuous functions from
X to E, a fixed normed linear space, under the uniform topology
defined by the norm | | / | | = sup |/(#) | . Here, | | denotes the norm
in E.

The amount of structure in C[X: E] depends upon that of E.
In earlier work, Yood [21] assumed that E was itself a Banach
algebra, and Kaplansky [7] chose E to be an algebra of operators;
in both cases, C[X: E] is then itself an algebra. Others have looked
at C[X: E] as a normed space and have sought Riesz-like represen-
tation theorems for its dual, or for its continuous linear transfor-
mations. (See Tucker [18] and the references therein.) In 1957-58,
I obtained some theorems of the Weierstrass type for general E by
regarding C[X: E] as a module over C[X], both in the uniform
topology and in the strict topology, results later generalized by
Todd [17] and Wells [20], Other aspects of this have been studied
by Singer [14, 15], by Nachbin and his students Prolla and Machado
[1967], [1972], and by Prenter [12].

The main objective of the present paper is to identify all the
extreme functionals in the unit ball of the dual of C[X: E], and in
the cross-section of the ball obtained by intersecting it with the
annihilator of an arbitrary submodule Λ€ of C[X: E], The former
is known (Singer [15]) but the latter is new. The present result was
initiated by a new proof of the simpler case by Strobele.

2* A special case* It is instructive to examine C[X: E] when
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E=C[Y], Any function / in C[X: E] gives rise to a continuous scalar
valued function /* on X x Y defined by /*(a?, y) = f(x)(y). The map
/—*/* is a linear isometry of C[X: E] with a closed subspace of
C[X x F]. The image does not have to be dense. Take X = F =
(-co, oo) and let F(x, y) = eixy. This is a bounded continuous func-
tion on X x F; however, F does not arise as the image of any
f eC[X: E], This is because the only candidate to obey /* = F is
f(x) = eix{ >, and one finds | f(x) - f{ά) | = 2 if α =£ α, = 0 if x = a,
so that the function / is not continuous on X to E = C[Y].

No such example can be constructed if Y is compact, and in
this case, the mapping /—>/* maps C[-3Γ:C[F]] isometrically onto
C[Xx Y]. For, let FeC[Xx Y] and define / on X to C[Y] by
f(x)(y) = F(x, y). Take any ae X and δ > 0 and let ^ be the open
set in X x Y consisting of those (x, y) such that

I F(cc, y) - F ( a , y) \<δ.

Clearly, g? contains the set {a} x Y. Since Y is compact, there is an
open set T~ about a such that 7" x 7 c ^ , and therefore

I f i x ) - / ( « ) I - s u p I F ( x , y) - F ( a , y ) \ < δ
V

for all xe 5^ and / is continuous and /* = F.
These arguments show that if E = C[Y], then C[X: E] can

always be regarded as a closed subspace of a conventional function
space C[Z], and that in some cases it coincides with it. Is this
typical? Given an arbitrary normed linear space E, we can first
embed E as a closed subspace of C[B*]f where J3* is the unit ball
in the dual space E* consisting of all funetionals L on E with
II I'll 2*1, by representing any ^ e ί as a function on J3* by the
usual pairing (u,L} = L(u). C[X: E] becomes a subspace of
C[X: C[B*]], and thus in turn a subspace of C[Z] where Z= Xx JB*.
Explicitly, each function f eC[X: E] corresponds to a scalar function
/* on X x B* defined by

/*(α>, L) = L(f(x)) .

While this permits one to reduce many questions dealing with
C[X: E] to more familiar ones dealing with a scalar function space
C[Z], (for example the determination of the dual space,) much of the
essential structure of C(X: E) is concealed in the embedding. We
shall return to this viewpoint in § 6 when we complete the determi-
nation of the extreme points in the set of funetionals that annihilate
an arbitrary module _̂ C

3. The structure of submodules. Let ^€ be a subspace of
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C[X: E] that is a module over the ring C[X]; we note in passing
that there is little gained by replacing C[X] by a function algebra
SI that is dense in C[X\, but that the corresponding problem when
SI is a proper closed (e.g., maximal) subalgebra of C[X] are profound.
Examples of modules are easily given. If M is a proper closed
subspace of E and x0 e X, let ^£ be the class of all functions
fe C[X: E] such that f(x0) e M. Then, ^ is a proper closed sub-
module. Other examples can be produced by varying xQ and M and
taking the intersection of the resulting modules. The main results
depend on the fact that this process produces all closed submodules
of C[X: E]. For simplicity, we treat only the case where X is
compact. It is convenient to introduce a special notation.

DEFINITION 1. For any module <̂ C let Mx be the closure in E
of the set {all f(x) for / e ^€\ = cl ̂ T(a?).

Thus, x—+Mx is a mapping from X into the lattice of closed
subspaces of E, associated with a particular C[X] submodule ^£ of
C[X: E]. The first results is the Weierstrass theorem for modules.

THEOREM 1. A function g e C[X: E] belongs to the uniform closure
of a module Λ€ if and only if g(x) e Mx for every x e X.

COLOLLARY 1. A module ^fέ is dense in C[X: E] if and only if
is dense in E for each xe X.

COLOLLARY 2. The maximal proper submodules of C[X: E] are
those determined by the choice of a point x0 e X and a nonvanishing
continuous functional L in the dual of E, and characterized as the
class offe C[X: E] such that Lf(xQ) = 0.

COLOLLARY 3. Every closed submodule of C[X: E] is the inter-
section of the maximal submodules that contain it.

Each of these results is an immediate deduction from the follow-
ing more general result which we call the strong Weierstrass theorem
for modules.

THEOREM 2. Let g e C[X: E] and let ^£ be any module. Then,

inf || g - f || = sup inf | g(x) - u | .

Proof. The left side of this equation is the distance from g to
^£ί Let us denote this by p. The right side is λ = sup^x λ(α )
where X(x) is the distance in E from g(x) to Mx. Since Mx is the
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closure of ^fί(x)y we may also write \(x) = inf / e^ \g(x) — f(x)\ from
which it is immediately clear that p ^ λ. To prove the reverse
relation, let ε > 0. Then, for any xQ e X, there is an f0 e ^y/ί such
that I g(x0) — f(x0) | < λ + ε. Let έ?0 be the open set about x0 such
that I g(x) — fo(x) | < λ + ε for all x e έ?0. As x0 varies, the sets ^ 0

cover the compact space X. We thus arrive at points xi9 open sets
έ?i9 and ft e ^χ£ so that X = UΓ ^ and | #(&) - /<(a;) | < λ + ε f or all
x e &%. Choose φ% e C[X] so that φt vanishes off ^ , φ%(x) ̂  0, and
ΣΓ <pt(x) - 1 for all x. Set / = Σ ? 9></t G - ^ τ h e n >

I flr(a?) - /(α?) | ^ | Σ 9t(x)g(x) ~ Σ 9>*(»)/.(») I

^ Σ (λ + ε)^(α ) - λ + ε .

Since this holds for all x e X, we have || g — f\\ ^ λ + ε and we have
produced a function in ^ that approximates g within λ + ε. Hence,
p <; λ + ε for every ε, and p = λ.

4* Duality and .^€"\ If M is a subspace of a normed linear
space E, and ikί1 denotes the collection of all linear f unctionals L e E*
that vanish on M, then the following duality relations hold: (See
Buck, [5])

inf \u — m\ — max | L(vJ) \
meM LeM1

( 1 )
min \\L - LQ\\ = sup | L0(m) \

for any ueE and LoeE*.
If we apply these to the conclusion of Theorem 2, then the strong

Weierstrass theorem can be restated as follows:

max I Φ(g) \ = sup max | L(g(x)).
Φe.,//± xex L e γ l
| | ί > ! ^ ^ b J 1

(Because of the cumbersome notation, we will omit the norm restric-
tions in future formulae; it is to be understood that all functionals
will have norm at most 1, unless otherwise specified.)

In the duality relations (1), sharpened forms can be obtained by
maximizing merely over the set of extreme points of the appropriate
convex sets. Thus, one may write

sup I Φ(g) I = sup I L(g(x)) |
ί)ee(^J-) x 6 X

Lee(Mi)

where we have used e(S) to denote the set of extreme points of a



APPROXIMATION PROPERTIES OF VECTOR VALUED FUNCTION 89

convex set S. This new formulation of the strong Weierstrass
theorem suggests very strongly the conjecture that the extreme
functional Φ that annihilate ^£ are precisely the special functionals
ψ of the form f{g) = L{g{x)), where xeX and L e e(M^). The remainder
of the paper presents a proof of this.

THEOREM 3. Every functional ψ, defined on C[X: E] by the choice
of a point xQe X and an extreme functional L in the convex set
B* Π M£o, is extreme in the set of those of norm 1 that lie in ^ L .

The key to the proof lies in the following characterization theorem
for extreme functionals. (See Buck [4], Phelps [11].)

THEOREM 4. Let E be a normed linear space and M a subspace
of E. Then, a functional L e B* Γ) M1 is extreme in this set if and
only if E=M+ (l/k)HL - (l/k)HL for k = 1, 2, 3, . .

Here, the set HL is the unbounded convex neighborhood of the
origin in E defined for a real space E by the inequality

u e HL if and only if \u\ — L(u) <̂  1

and for a complex space by

ue HL if and only if | u | — Re L(u) ^ 1 .

To prove Theorem 3, we will use the characterization theorem in both
the direct and converse forms. For simplicity, we treat only the real
case.

In order to prove that a functional ψ determined by the pair
x0 e X, L e e(MXQ) is extreme in ^€ /± , it is sufficient to show that
C[X: E] = ^f+ Hψ - Hψ. Given an arbitrary function Fe C[X: E],
we must show that F = / + g — h, where fe ^// and g and h lie in

Let us write M for MXQ = closure of ^/f(xQ) in E. Since L is
extreme in M1, the characterization theorem shows that E — M +
(1/8)HL — (1/8)HL. Since F(x0) is a point in E, we can choose m e M,
and α, b in (1/8)HL so that

F(xQ) = m + a — b .

The set HL is unbounded, so we may choose c e (1/8)HL such that
I c I > 2 || F\\ + I a |. HL is convex so that aQ = a + c and bQ = b + c
both lie in (1/4)HL9 and

F(x0) = m + a0 — b0
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while | α o | ^ | c | - | α | > \\F\\.
Since m e M, the closure of ^f(x0), we can choose a function

/ 6 ^ such that f(x0) = m0, and | m — m01 < 1/8. Choose an open
set <? about x0 such that | f(x) - f(x0) \ < 1/4 and | F(x) - F(x0) | < 1/4
for all x e ^ , and then a real valued function φeC[X] such that
φ(x) = 0 off 0>, while for all α, 0 ^ <PO) ^ 1 = φ(x0).

Define three functions in C[X: E] by

g(x) = F(x) + (b0 - f{x))φ(x)

h(x) = hQφ(x) .

Since ^ is a C[X] module, foe^£ί Clearly, F = fQ + 9 - h. All
that remains, in the proof of Theorem 3, is to show that g and h
lie in Hψ.

For h, this is immediate; \\h\\ = || 60 |, and ψ(h) = L(h(x0)) =
so that

where we have used the fact that ί>0 is in (1/A)HL.
If .τ lies outside ^ , then

If « lies in d7, then

1 g(x) I = I ^(a?) - F(x0) + ^ o ) + (b0 - f(x))φ(x) I

^ I F(x) - F(x0) I + I F(xB) + (60 - f(x*))φ(x) I

») I

ϊ)! + 4
4

(α0 - -P(so))<P(«) I + I m - m0

^ - | + I a

Accordingly, we have \\g\\ ^ | α o | + 5/8. Now, f(g) = L(g(x0))
L(F(x0) + b0 — m0) = L(a0) + L(m — m0) and
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llffll - Ήδ) ̂  K i - L(a0) - L(m - m0) + J-
O

~ 4 8 8

and geHψ. This completes the proof of Theorem 3.
When the module ^ consists merely of 0, this theorem identifies

extreme functionals in the unit ball of the dual space of C[X: E];
here the result is not new. (See Singer [15] and Brosowski and Deutsch).
[2]. The present result was initiated by a proof of this special case by
Strobele which was based upon the use of the Characterization
Theorem (Theorem 4), and which was simplified by suggestions from
Overdeck [16J, [10].

5* The converse* To complete our results, we prove that every
extreme functional in ^ L is among the functions ψ discussed in
Theorem 3. The method depends upon the embedding of C[X: E] in
C[Z] with Z = Xx B* that was discussed in § 2. We show that
any functional Φ that is extreme in ^t-1 has an extension to C[Z]
that is extreme in a certain convex set associated with ^t, and then
that it can be identified as one of the functionals of the form ψ.

First, recall that any function / e C[X: E] corresponds to a func-
tion /* in C[Z] defined by f*(x, L) = L(f(x)). This is an isometric
embedding of C[X: E] as a subspace ^ of C[Z]. The image func-
tions /* are quite special, among all functions Fe C[Z]. For example,
a general function F may have arbitrary values at two distinct points
(x, L) of Zy but if F = /*, then for example, F(x, (1/2)L: + (1/2)L2) =
(l/2)F(x, LO + (l/2)F(x, L2). Also, F(x, 0) = 0 for all x. Thus 9f is
a very special subspace.

If ^ # is an arbitrary closed submodule of C[X: E], then under
the canonical embedding, it is mapped onto a subspace of the special
subspace ^ Our first result characterizes this image, which for
convenience we continue to denote by

DEFINITION 2. Given ^ let A be the subset of Z = X x B*
consisting of all (x, L) such that xeX and LeMi.

It is easily seen that A is compact.

DEFINITION 3. Given any subset GcZ, let ~4^(G) be the space
of functions FeC[Z] that vanish on G.

THEOREM 5. ^= ^ Π ^V(A). Explicitly, a function f* arises
from a function f e M if and only if f* vanishes on A.

Proof. Suppose that / € ̂  Then, for any (x, L) e A, f*(x, L) = 0,
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since f(x)eMx and LeMϊ. Thus, f*e^V(Λ). Conversely, let fe
C[X: E] and suppose that f*e^V{Λ). If there were a point xe X
such that f(x) g Mxf then there would be a functional Le B* such
that L vanishes on Λfβ but Lf(x) Φ 0. But, this would imply that
f*(x, L) Φ 0 for some (a?, L) e Λ. Thus, we must have f(x) e Mx for
all x. By the Weierstrass theorem for modules (Theorem 1), fe^f.

The next result is the key to proving the converse of Theorem
3.

THEOREM 6. Any functional φ on ^ that vanishes on ^ has
a norm-preserving extension to a functional ψ on C[Z] that vanishes
on <yΓ{Λ).

Proof. Any p = (x, L) in Z — X x .B* defines a point functional
ψp on C[Z] with fP{F) = F(x, L). If (x, L) is restricted to the set
Λ, then the functionals ψp belong to ^f^(Λ)L, and in fact are precisely
the extreme functionals among those of norm 1. Their convex hull
is therefore exactly ^K{Λ)L. Hence, for any Foe C[Z], by the duality
relation,

- inf \\F0- F\\ .
PeΛ Fe^V{Λ)

If this is applied to the choice FQ = g* for any geC[X:E], we have

sup I Lflr(α?) I = inf \\g* - F\\ .
xeX Fe^r(Λ)

However, by the strong Weierstrass theorem (Theorem 2), this in turn
is equivalent to

inf | | f l r - / | | = inf | | r - ^ l l

(interesting in itself), as well as the result we need,

(2) s u p \ Φ ( g ) \ = i n f \\g* -F\\.

Let Φ be any functional on ^ that vanishes on ^ . We may
assume that Φ is of norm 1. Then, (2) shows that

for every g* e <& and Fe^4^(Λ). This therefore permits us to extend
Φ from ^ to i f + ^V by defining Φ0{g* + F) = Φ(g*), without
increasing the norm. Note that the extension now vanishes on ^Y\
We now extend Φo to a functional ψ on C[Z] in the usual way,
obtaining the desired result.
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The next result is an elementary observation about extensions
of functionals.

LEMMA. Let E be a subspace of the normed linear space F, and
let M and N be subspaces of F with M = E Π N. Suppose that every
functional Φ on E that is zero on M has a norm preserving extension
to a functional ψ on F that vanishes on N. Then, every functional
Φ that is extremal in ML has an extension ψ that is extremal in N1.

Proof. Given ΦeE*, extremal among those of norm 1 that
vanish on M, let S be the set of all ψe F* that extend Φ and vanish
on N. Choose ψ0 to be extremal in S. Then, it is easily seen that
ψo is extremal in N1.

In passing, we note that the spaces E, F, M, N have this exten-
sion property if and only if

inf I u — m | = inf \u — n\
me M neN

for every u e E; this is something like a generalized orthogonality
relationship for the subspaces E and N in the space F. [1] The
proof of this is essentially that of Theorem 6.

We are now ready to prove the converse of Theorem 3.

THEOREM 7. Every functional Φ on C[X: E] that is extremal
in the set of those of norm 1 that vanish on a closed submodule ^
is given by Φ = ψ{XQ,LQ) where x0 e X and LQ e e(Mϊ0).

Proof. Applying Theorem 6 and the lemma, Φ can be extended
to a functional ψ that is extreme in ^V*(Λ)L. Hence, ψ — ψP for
some (xOf Lo) = peΛ. We must now prove that Lo is extreme in
MA

XQ. Suppose that Lo = (L, + L2)/2 where || L, \\ ^ 1 and Lt = 0 on
MXQ. Because of the special nature of functions g* e ^ ψP(g*) =
Log(xo) = (l/2){Lig(xo) + L2g(x0)}, so that ψp - (l/2)(f x + f 2), where
fi G ^/Γ(Λ)L. Since ψp was extreme, ψL = ψ2, from which we find
Lt = L2, and LQ is extreme in Λβ-0.
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