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THE CONVERSE TO THE SMITH THEOREM
FOR Zp-HOMOLOGY SPHERES

STEPHEN J. WILLSON

Let X be a finite CW complex with the Zp homology of an
n -sphere. Let Zp act cellularly on X. The Smith theorem
asserts that the fixed point set XZp has the Zp homology of an
m -sphere for - 1 ̂  m ^ n. A converse to this Smith theorem is
proved.

Suppose X is a finite CW complex, p is a prime, and a: X ~» X is a
homeomorphism of period p (i.e., ap is the identity map). Let XZp

denote the set of points in X left fixed by a. The well-known Smith
theorem states that, if X has the Zp homology of a disk (respectively, an
n-sphere), then XZp has the Zp homology of a disk (respectively, some
m -sphere where - 1 ̂  m ^ n and the ( - l)-sphere is the empty
set). The converse to this theorem for the case where X has the Zp

homology of a disk appears in a paper of Lowell Jones [2],
This current paper shows how to extend Jones' methods to obtain

the converse for the case where X has the Zp homology of an
n-sphere. Specifically, we prove the following theorem:

THEOREM 1. Let p be a prime integer and n a positive integer. Let
K be a connected finite CW complex satisfying Hn(K; Zp) = Zp and for
which, ifijέ nandi^Q,Ht{K\ Z) is a finite group of order prime to p.

Then there exist a finite, simply connected, connected CW complex
X containing K as a subcomplex and a cellular homeomorphism
a: X->X of period p so that

(1) Xz* = K
(2) For some m >0, H,(X;Z) = 0 (fiVO, i/n+2m.
(3) IfΉn(K; Z) = Z 0 A where A is a finite abelian group of order

prime to p, then Hn+2m(X; Z) = Z.
(4) // Hn(K; Z) = Zps 0 A where A is a finite abelian group of

order prime to p, and 5 ^ 1 , then Hn+2m(X; Z) = Zp>.

Here Z denotes the ring of integers and Zp* denotes the cyclic group of
orderps. It is well-known that Hn(K\ Z) must satisfy the hypotheses of
either (3) or (4) since Hn(K;Zp) = Zp.

The proof is similar to Jones' proof of [2; Theorem 1.1], but utilizes
some further algebraic lemmas. The algebraic lemmas are given in §1,
and their topological analogues are given in §2. The proof of the
theorem appears in §3.
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If p is not prime, the methods still apply and yield a CW complex X
possessing a semi-free Zp action a with fixed point set K. The cases
(3) and (4) are, however, not exhaustive.

I wish to thank the referee for strengthening the original version of
Theorem I.

1. Algebraic l e m m a s . Let R = Z[ZP], the integral group
ring for the group Zp with generator g. Elements of R will be written
Σ α g1 where ax E Z All summations run over i - 0, ,p - 1. The
element g° is the identity, often written e. In some formulas we shall
use the identifications ap = aθ9 ap-λ = α_,, αp+, = ax. Denote by σ the
element σ = Σg'. If A and B are left R modules and /: A —>B is a
homomorphism, denote by Ker / the kernel of /; by Coker / the
cokernel of /: by Image / the image of /. A left R module M is said to
be trivial provided gιm = m for m E M and gι EZp.

LEMMA 1. Let e: R -^Zp* be the augmentation map which takes
Σ big1 to Σ bi mod p *. View Zp* as a trivial left R module. There is an
exact sequence of left R modules

and a homomorphism λ: R —> Ker μ such that
(1) λ is monic;

(2) Coker λ = Zp*.

Proof Define μ, if (α, b) E R 0 R , by

μ{a,b) = {e-g)a +p5ίσb

where

Define A: R-+RQR, if a (ΞR, by

We now verify that these maps have the properties asserted above:

Claim 1. eμ =0.
This follows since
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eμ(a, b) = e((e -g)a + ps-< σb) = ae(e -g) + p*-* be(σ)

= a 0 + ps-'b p = 0,

using the left R module structure of Zp .

Claim 2. Kere C Image μ.
If e (Σ α,g') = 0, then Σ α, = 0 mod ps. Let

Then Σbi = 0 G Z , and it is easy to see that Σ big1 =(e -g)c for some
c E:R. Hence

Claim 3. I m a g e λ C k e r μ .
To see this, if a E R, note

ισa +ps~xa(g-e)a =0.

Claim 4. λ is monic.
To see this, note ker λ = ker(g - e) Π ker(p*" ! σ) where (g - e) denotes
the homomorphism of multiplication by (g-e), and psX σ denotes
multiplication by psλ σ. Then

kerλ ={aσ: α G Z }

C/flim 5. Coker λ = Zp .
To see this, note

Kerμ = {(Σ agι

9 Σ ^ ' ) : U '8) Σ W1 + p - ' σ Σ ^ ' =

= {(Σ ag\ Σ ««') : * " flί-i + P5"1 (Σ fr/) = 0 for all /} .

Summing these latter conditions over i, we obtain Σ a,{ - Σ a,•+ ps Σ b} =
0. Hence Σ bj = 0 and α, = α.-j for all /. Thus

Ker μ = {(flσ, Σ ̂ ' ) : α eZ, Σ *ι =θ} .

Define γ : Ker μ, -> Zp^ by

γ(ασ, Σ &
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Th^n γ is surjective. Moreover, γλ = 0, which may be seen as
ίollows:

aβ) = y(PS~1 ( Σ ft) <r, Σ (ft-« - ft)*1

= P'"1 ( Σ ft) + P'-fyίflp-i ~ «o) + (P — 1)(ΛO

+ α p . 2 (l-2) + α p_ 1(p-

= p s~λpap-λ = 0 mod p 5.

Thus to prove Claim 5 there remains to show only that Ker γ C
Image λ. But if y(aσ, Σ bgι) = 0, then

(1) a +psl[pb0 + (p - l)&i + + feP-i] = 0 m o d p s .

For arbitrary c0 G Z, define ci+1 = cf - b/+i for i = 0,1, ,p - 2. Then
fr0 = Cp-i - Co since Σ fc, = 0, and

(Σ eg1) = ( p - (Σ C() σ, Σ (O- - c,)g')

By (1) we may choose c0 so

p'co = a + ps-'[(p - l)ft, + (p - 2)b2 + + 6P.,].

But then λ(Σ c,g') = (ασ, Σ ftjg').

LEMMA 2. Lei e: R-+Z be the augmentation map. There is a
map λ: R-+ R so

0->Z-> JR-4l?- f»Z->0 is exact.

Proof. Let λ (α ) = (<?- g)α for α G JR. Then eλ = 0 and ker e =
Image A easily. Moreover
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Ker λ = {Σ aig

l: Σ (at - a^)gι = θ

= | Σ aiSim' ao = aι = a2= -•

= {bσ: b<ΞZ} = Z.

LEMMA 3. If q is an integer prime to p, and e: R-^Zq is the
augmentation map, then there is an exact sequence

Proof. This is Lowell Jones' Lemma 1.1 [2; p. 53].

2. Topological l emmas . The major steps in the proof of
Theorem I consist of applications of the following lemmas, which may
be regarded as topological analogues of the lemmas of §1.

We shall let R be Z[ZP]. Unless otherwise indicated, all homol-
ogy groups have integer coefficients. Note that if X is a CW complex
and a: X->X is a homeomorphism of period p, then f ί (X Z) inherits
the structure of a left R -module.

LEMMA A. Suppose X is a connected, simply connected, finite CW
complex with a cellular Zp action given by a: X—»X such that XZp =
K. Suppose Hi(X; Z) = 0 for 0 < i < m. Assume Hm{X\ Z) contains
a finite subgroup A of order prime to p such that A is a trivial left
R-submodule of Hm(X). Then there exists a connected, simply con-
nected, finite CW complex Y containing X as a subcomplex and
possessing a cellular Zp action extending a such that

(1) Yz* = K
(2) Hi(Y;Z) = 0 for 0< / < m.
(3) Hm (Y Z) = Hm (X Z)\A as an R-module.
(4) The inclusion induces an isomorphism of HXX\Z) onto

H^Y Z) fori>m.

Proof. This is essentially the proof of Theorem 1.1 in [2]. We
note that it suffices by induction to assume A = Zq where q is prime to
p. Obtain, by the Hurewicz theorem, a map k: Sm —> X which realizes
a generator of Zq CHm(X, Z). We shall attach p cells of dimension
(m + 1) to X along the maps k,ak,a%- ,ap~ιk: Sm -*X. Call the
resulting CW complex Y{; clearly we obtain a cellular Zp action on Yx

by extending a to permute the points in the added cells. Then
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Hi(Yx\ Z) = HχX\ Z) for *V ra, m + 1, and the long exact sequence of
the pair (YUX) yields the exact sequence of R modules

Since Zq is a trivial R module, the map denoted e may be identified with
the augmentation map from R onto Zq. It follows that Hm(Y,) =
Hm(X)lZq and

0-+Hm+ι(X)-+HM+ί(Yι)-*Kcv€^>0 is exact.

By Lemma 3, Kere=jR and hence is projective. Thus Hm+λ(Yx) =
Hm+ί(X)φR. The Hurewicz map h: 7rm+1(Y,)-*Hm+1(Y,) is surjective
(see Hu [1; p. 167] or G. W. Whitehead [3]). Hence we may represent
the element e ER CHm+{{Y{) by a map/: 5m+1-> Y{. As before, attach
p cells of dimension (m + 2) to Y, along the maps j , aj,ά2j, , ap~ιj to
obtain a CW complex Y; we may extend the map a over Y. Then
Hi(Y) = Hi(Yι) for i V m + 2 , m + 1, and

is exact. By construction the map of R into Jfm+1(Yi) is an isomorph-
ism onto the summand isomorphic to R. Hence

Hm+2(Y) = Hm+2(Y,) = Hm+2(X), Hm+ι(Y) = Hn+ι(X).

The complex Y satisfies the conclusions of the lemma.

LEMMA B. Suppose X is a connected, simply connected, finite CW
complex with a cellular Zp action given by a: X —> X such that XZp =
K. Suppose Hi(X) = 0 // 0 < i < m. Assume Hm(X), Hm+ι(X), and
Hm+2(X) all are trivial as R modules, and that Hm(X) = Z, Hm+λ(X; Zp) =
0, Hm+2(X;Zp) = 0. Then there exists a connected, simply connected,
finite CW complex Y which contains X as a subcomplex and possesses a
cellular Zp action extending a such that

(1) YZ>=K
(2) Hi(Y;Z) = 0 for 0<i^m+l
(3) Hm+2( Y; Z) = Z as a trivial R module
(4) The inclusion induces isomorphisms from Hi(X Z) onto

Hi(Y;Z)fori>m +2.

Proof Obtain by the Hurewicz theorem a map k: Sm —> X which
represents the generator of Hm(X). Attach p cells of dimension
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(m + 1) along the maps k, ak, ,aplk to obtain a CW complex Yx\ and
extend the map a over Yί via the obvious permutation of points on the
added cells. Then HXYX) = H,(X) for iV m, m + 1; and

is exact. By construction, e may be regarded as the augmentation map
from R onto Z Hence Hm(Yx) = 0 and

0 ̂  ffm+1(X) ^ f ί ^ y , ) - * Ker €-•()

is exact. Since Hm+ι(X; Zp) = 0 and ifm+1(X) is a trivial 1? module, by
Lemma A we may obtain a complex Y2 D Y\ with an action extending a
so Hi(Y2) = 0 for 0 < i < m + l , Hm+1(Y2) = Ker 6, and Hi(Y2) =
Hi(Yι) = Hi(X) by the inclusion map for i>m + l. Let λ be the
homomorphism of Lemma 2. By the Hurewicz theorem we represent
λ(e)EHm+ι(Y2) by a map /: Sm + 1-* y2. Adjoin cells to Y2 along the
maps j,aj, -,ap~ιj to obtain a complex y3 with action α. Then

i V m + 2 , m + 1, and

is exact. Since Image λ = Ker e, Hm+ι(Y3) = 0 and

Hm+2(Y3) -

is exact. Since Hm+2(Y2) = Hm+2(X) is a trivial R module and
Hm+2(X;ZP) = 0, we may apply Lemma A to the subgroup Hm+2(y2) C
Hm+2(Yi) to obtain a complex YDY3 so HX{Y) = 0 for / < m + 2 and
iϊm+2(y) = Ker λ = Z. This y satisfies the conclusions of the lemma.

LEMMA C. Suppose X is a connected, simply connected, finite CW
complex with a cellular Zp action given by a: X —> X such that XZp =
K. Suppose Hi(X) = 0 if 0 < / < m. Assume Hm(X), Hm+ί(X), and
Hm+2(X) are all trivial as R modules and Hm(X) = Zp° for some s ^ 1;
and both Hm+ί(X) and Hm+2(X) are finite groups of order prime to
p. Then Hm+2(X; Zp) = 0. Then there exists a connected, simply con-
nected, finite CW complex Y containing X and with a cellular Zp action
extending a such that

(1) Yz> = K
(2) Hi(Y-Z) = 0 for 0 < / S m + l
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(3) Hm+2(Y Z) = Zps as a trivial R module
(4) The inclusion induces isomorphisms from fli(X) onto Ht{Y)

for i>m + 2.

Proof. Obtain by the Hurewicz theorem a map k: Sm —> X repres-
enting a generator for Zp = Hm(X). Attach p cells of dimension
(m + 1) along the maps k, ak, , α p l / c to obtain a complex Yj with
action a extending the previous a. Then Hι{Yλ) = Hι{X) for iVm,
m + 1, and

is exact. By construction, the map e may be identified with the
augmentation map of Lemma 1. Then Hm(Yι) = 0 and

Apply Lemma A to the subgroup Hm+ι(X) of Hm+ι{Yx) to obtain a
complex y 2 D Y, so that H/(Y2) = 0for 0 < i < m + 1; f/m+,(y2) = Ker β
Hi(Y2) = Hi(X) for i > m + 1 .

Let μ: R Q)R —>Ker 6 be the homomorphism in Lemma 1. By
the Hurewicz theorem we may represent μ(e, 0) by a map /: 5 m + 1 -^ Y2

and we may represent μ(0, e) by a map /: Sm+1-^Y2. Adjoin p cells of
dimension (m + 2) via j , α/, , α p " 7 and also p cells via /, α/, -,ap'Ί
call the resulting complex Y3 and extend a over Y3 in the obvious
fashion. Then Hi(Yι) = Hi(Y2) for ιV m + 1, m +2; and

is exact. Since Image μ = Ker e, Hm+ι(Y3) - 0; and

is exact. Apply Lemma A to the complex Y3 and the subgroup
Hm+2(Y2) C//m+2( Y3); this is possible since Hm+2(X; Zp) = 0 and Hm+2(X)
is a trivial R module. We obtain a complex Y4 so ίZi(y4) = 0 for
0 < i < m + 1, Hm+2(Y4) = Kerμ, fl;(y4) = fl;(X) for / > m + 2 . ' Let λ
be the homomorphism of Lemma 1, and represent λ(e) by a map
r: Sm+2->Y4. Attach p cells of dimension (m+3) to Y4 along
r,ar,'-,ap-ιr to obtain a complex Y. Then Jί(Y) = H/(Y4) for
ί V m + 2 , m + 3 and
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is exact. By Lemma 1, λ is monic, so Hm+3(Y4) = Hm+3(Y); and
Hm+2(Y) = Coker λ = Zp*. The complex Y satisfies the conclusions of
the lemma.

3 . Proof of T h e o r e m I. We must first deal with
πλ{K). Assume that n > 1. Choose a finite generating set bί9 ••-,&,
for τri(K) by Van Kampen's theorem. We may kill bλ by adjunction of
2-cells along bu abu , aplbu yielding a CW complex W. Since ihe
image of bλ in Hλ{K\Z) has order prime to p, we find H2{W\ Ύ) =
H2(K Z) 0 R, and we may proceed as in Lemma A to remove t ie R
summand by adjunction of 3-cells. Leal similarly with
b2, b3, - , bq. In this manner we obtain a simply-connected finite CW
complex Xλ with cellular action a: Xx -» X, of period p so i/f (X,; Z) =
Hi(K Z) for / > 1 , and Xfp = X. Apply Lemma A to the group
H2{XX\ Z). Continuing inductively in this manner, we obtain a simply-
connected, finite CW complex Xn such that f ί (Xn) = Ht(K) for ί > n
Hi(Xn) = 0 for ί < n Hn(Xn) = Z if Case (3) of Theorem I is pe rtinent;
and Hn(Xn) = Zp> if Case (4) of Theorem I is pertinent. Now we apply
repeatedly Lemma B for Case (3) and Lemma C for Case (4). After
finitely many steps, the process terminates since Hi(K) = 0 for suffi-
ciently large /.

If n = 1, we modify the above proof slightly. We fii kill HX(K Z)
except for the summand Z or Zp* by Lemma A. Call the resulting
complex Wl9 and choose a finite generating set bx, -,bq for
ττχ{Wx). We may assume that the image of bx in HX{WX) is a generator
of Hx{Wx) = Z or Zp*. If the image of b} is represented by m] E Z for
j=2,- ,q, then byb7mj has image 0 in f/i(W,), and the elements
bub2b\m\- - -,bqb\~m« generate π,(W,). Kill b2b\~m\ ',bqb\~m« as in the
case where π > 1; we obtain a complex W2 for which τrx{W2) = Z or Zp*,
and Hi(W2;Z) = Hi(K,Z) for / ^ 2 . Apply Lemma B or C to
W2. The remainder of the proof follows as for the case n > 1.
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