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A FUNCTION-THEORETIC APPROACH TO THE STUDY

OF NONLINEAR RECURRING SEQUENCES

J. N. FRANKLIN AND S. W. GOLOMB

For every real r g 0, there is a sequence {b'Γ} defined by

(1) b(

o

r>=\, &(;ί, = Π b\r) + r for niίO.
ι = 1

These sequences were considered previously, in [1], for integer
values of r, and it was shown that there is a constant 0 = 0(r)
such that

(2) b{;U~θ2\ n->«,,

for each r = l , 2 , 3 , . It was observed that

(3) b(2)

+ι = 22" + 1, n ^ O ,

whereby 0(2) = 2, and the problem was proposed "to determine
the algebraic or transcendental character of the real numbers
0(r) for r = 1,3,4,5,6,-••."

In this paper, we observe explicitly (in §11) that

(4) b{

n

4) = τ2n +τ'2n + 2 , n ̂  1,

where r = (V5 + l)/2 = 1.618 is the "Golden Mean", and
thus 0(4) = τ2 = (λ/5 + 3)/2 = 2.618

Moreover, we extend the result (2) by showing, for every real r > 0,
there is a real constant 0 = 0(r) > 1 such that

(5) frίΓii = 02" + f + | r(r -2)β"2" + O(β"2"+a), n->oo.

Thus for r ^ 2 the sequence {β(

n

Γ)} = {&πΓ)-(r/2)} differs from the se-
quence {02"~'(r)} by an amount which approaches 0 exponentially as
n —> oo. The case r = 4, described in (4), is illustrative of this behavior,
while the case r = 2, described in (3), is exceptional in that the error
term is identically 0.

For r = 0, bT = β(

n

0) = 1 for all n ̂  0, so that 0(0) = 1 and 0(r) is a
continuous, monotone increasing function of r ̂  0.

The basic tool used in treating the general case is a new theorem in
function theory (§111), which is ideally suited to the study of sequences
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generated by nonlinear (and especially polynomial) recursions. The
function-theoretic approach also reveals (§V) an unexpected connection
between the class of nonlinear recursions considered here, and the
enumeration problem for rooted trees.

I I . The case r = 4. We observe that τ2 = (3 + V5)/2 and
τ~2 = (3 - V5)/2. Thus τ2' + τ~2' = 3 = bf-2 = $f. Setting r = 4 in
(1), we see

The general identity

(6) b(

n

4) = τ 2 " + τ - 2 n + 2 , n^ί

is established inductively by

(7) b^+ι = (b<π

4) - 2)2 = (τ2" + τ-2" )2 = τ2n+I + τ-2"+1 + 2,

since we have already verified (6) for the case n = 1.

III. A function-theoretic approach. The behavior of b(

n

r)

as n —> oo will be elucidated by means of the following.

THEOREM. For \z \ ^R > 0 let p(z) be analytic, and let
A 12 |, w/iere Λ > 1. Then there is a unique positive integer, m, a unique
complex constant, c^O, and a unique function, f(z), analytic and
nonzero for \z\> R, such that f(z) = z as z -»oo? and such that

(8) f(p(z)) - c{f(zψ.

Proof. Since p(z)->™ as z—»°o? this function has a pole at
infinity. If the pole is of order M:

CzM as z->°oy

and if a functional equation of the form (8) holds, then since f(z) is
required to be = z at <», we conclude that c == C and m - M.

Let the unknown function f(z) be represented by /(z) = z exp φ(z)
where <ρ(z)—»0 as z-*oo. The functional equation (8) now takes the
form

p (z) exp φ (p (z )) = czm cxp[mφ (z)]

which is true if
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(9) φ() q(z)

where mq(z) is the logarithm of p(z)l(czm) which tends to zero as
Z —>oo.

A s o l u t i o n of t h e f u n c t i o n a l e q u a t i o n (9) c a n b e f o u n d b y t h e
m e t h o d of i t e r a t i o n . L e t φo(z) = < j ( z ) , a n d d e f i n e φ x ( z ) , φ 2 ( z ) , - b y

(10) φn+ι(z) = q(z) + j£ Ψn{p{z)) (n = 0,1, •)•

Since | p ( z ) | ^ A | z | > | z | , all the functions φn{z) are analytic for
| z | ^ J ? . Since q(z) is regular and equal to zero at z = o°, there is a
constant Q such that

(Π) \ \ \ \ \ \\

We can now prove by induction that, for n = 1,2,

(12) \φn(z)"φn.ι(z)\^QI(Aa\z\).

For n = 1, we deduce from (10) and (11)

For n > 1, we have

—

Assuming (12), we find

This completes the inductive proof of (12).
We now conclude that φn(z) tends to a limit as n -*oo9 namely

lim φII(z) =

since the infinite series is dominated by (Q/|z |)ΣΛ~" <°°. The con-
vergence is uniform for \z\^R. Therefore, the limit, φ(z), is analytic
for |z|>JR.
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It remains to prove that there is no other function, ψ(z), analytic
for J z I > R, with r̂(oo) = 0, such that

(13) Ψ(z) = q(z) + ~ψ(p(z)).

Let φ(z)-ψ(z) = w(z). Then (9) and (13) imply

(14) w(z) = ^

If w(z)^0, then w(z)^Wz~N as Z-H>O°, where WyO and JV is a
positive integer. Then (14) implies

Wz'*4 = — W(p(z))N as z->oo

which is absurd, since m ^ 1 and |p(z)/z \^Λ > 1. This completes the
proof of the theorem.

IV. Application to the quadratic recursion. Keeping
r >0 fixed, we define βn = β^ = b(f - (r/2). Then (1) implies

(15) βn+i = βl~ρ, where p = r(r-2)/4, π = l,2,3,

Then βn-^00 because βn g 14 | r if n ̂  1, and hence, βn+j ^
βn + r. Define

(16)

Then (15) takes the form

(17)

If A > 1 , then

(18) |p(z) | = | z 2 - p |

provided that we define

(19) R

since this is the positive root of R2~ \ρ | =
According to our theorem, there is a unique function of the form
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(20) f(z) = z + Co + j+'"(\z\>R)

such that, if p(z) = z2 + , then

(21) f(p(z))^{f(z)}2 for (\z\>R).

Since p(z) = z2- p is an even function of z,f(z) must be an odd
function of z in order to satisfy (21), and only the c, with odd subscripts
need be retained in (20). For all n ^ 3, we have

Moreover, since r > 0,

Define A as any number satisfying

(22) ι < A <

and define R by (19). Then the last inequality implies β2>R, and
hence βn > R for all n ^ 2. Hence, for n S 2, (17) and (21) imply

Therefore, if n S 2,

(23)

if 0 is the positive number defined by /(β2) = #4. Since βn -»α>5 we
have 0 > 1.

77ιe continuity of θ(r). If r ranges in any interval rQ^r ^ r,, then
there is a constant A, independent of r, satisfying (22). Then the
sequence of iterates φn(z) defined by (10) converges uniformly in z and
in r, and φn(z) depends continuously on the parameter r. Hence,
limingφn(z) is continuous as a function of r; and /(z) depends
continuously on the parameter r. But we have just shown that
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1/4

Hence, θ(r) depends continuously on r.
For sufficiently large | z |, every function /(z) of the form (20) has an

inverse function of the form

F(w) = W + Ύo +
1 w

satisfying

"" = z.

For the case p(z) = z2- p, f(z) is an odd function of z, and the
inverse function of an odd function is an odd function. Applying F to
(23), we find, for all sufficiently large n,

(24) βn = F(02") = θ2n + Ύ]θ~2n + γ30-32" + .

The coefficients in the power series for f(z) and F(w) can be
calculated recursively. Formula (21) yields

F V p(z) p3(z) \ z z3 J

from which

Therefore,

/^c\ P P(p + 2)
(25) c,= - | , c 3 = - ^ ^ g — S etc.

For the inverse function, we must have

z = (z +c 1 z" 1 + c3z"3+ ) + ri(^ + Γ

Hence
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_ _ c = g =γ, c, 2 8

2) . (r + 2) r ( r-2)( r-4)
(26) γ 3 - - c 3 - c , - g

etc.

Now (24) yields, for n -^oo9

(27) ft = 02" + | r(r -2)<T2"

If r.= 2 or r = 4, the preceding sections have shown that βn has the
form

and

Conversely, it is easily verified that, for r >0, and expression of this
exact form can satisfy (15) only if r = 2 or 4. In fact, the only reα/
values of p which lead to this exact form are p = 0 and p = 2.

We remark that the inverse function, F, satisfies a functional
equation. Letting z = F(w) in the identity

yields

Applying F to both sides now yields

In our application, we have the identity

(28) F\w)-p =F(w2).

The coefficients in the power series for F(w) can be calculated directly
from this equation.



462 J. N. FRANKLIN AND S. W. GOLOMB

The algebraic character of the constant, 0, depends on the nature of
the function /(z). If r is a positive integer, then β2 is an integer or a
half-integer, and

θ = {f{βύΫ.

Thus, θ is algebraic if /(z) is algebraic over the field of rationals. In the
known cases,

f(z) = z if r = 2

f(z) = i

2[z+(z2-4)>] if r = 4

since these are the functions whose inverse functions are

F(w)=w if r = 2

w + w~ι if r = 4.

Unfortunately, only p = 0 and p = 2 lead to functions F(w) with
finite expansions in w.

V. Coefficient relationships. In the previous section, we
considered the functions

(29) /(z) = z + c}z~] + c,z~3 + c5z~5 + •

and

(30) F(w)= w + y]w~ι + y3w~3+y5w~5+ ••

where

F(/(z)) - z,

(3D / ( z 2 - p ) = f(z) and

F 2 ( w ) - p = F(w2).

In this section, we shall assume only that p is a real number, and derive
certain identities involving the coefficient sequences {c,} and {γj.

From (29) and (31), we obtain

(32) Σ 7 7 ^ = Σ Σ1 c^.,11-
oddk=-\ V1 P M / m=-l odd/ = -l

where for convenience we have set C-x = 1.
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We rewrite (30) using t = Wι and qt = y2i-\ to obtain

(33) F(l/ί) = 7+ qxt + q4* +q,t5 + q4t
7 + = J * ί 2 ί " !

where we have set q 0

= 1.
Then from (31) we find

and in general

(34)

The assertion that the expansion for F(w) is finite only in the cases
p = 0 and p = 2 is proved as follows. Suppose

(35) FW = w+^ + ̂ +-- +Jtϊ, n>\,

where qn is the last nonzero coefficient. From F(w2) + p = F2(w), we
see that ql= qn, so that qn = 1. Next, ^n-i = 0, because 2gn_, is the
coefficient of w'{4n'4) in F 2(w), but the corresponding coefficient in
F(w2) is 0. The next coefficient identity, examining w (4π "6), is </„_, =
2qn-2 + ql-u but since qrn.-i = O we get ήfπ_2 = O, and proceeding induc-
tively, we find q t = 0 for all i,\=i~n-]. However, F(w) =
w -h 1/vv2""1 fails to satisfy the functional equation for all n > 1. The
cases F(H>) = κ> and F(w) = w + 1/w are the unique solutions of the
functional equation for n = 0 and n = 1 respectively.

Other than for p = 0 and p = 2, no cases of "well-known" functions
have been found as either f(z) or F(w). However, the case p = - 2
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turns out to be of considerable combinatorial interest. The recursion
equations (34), starting with p = - 2 and q] = - 1, generate a sequence
of integers {qt} such that {- qt) = {1,1,1,2,3,6,11,23,46,98, •}, where
it is easily seen (1) that - qt is the number of distinct "binary coding
trees" with ί = 1 interior nodes and i terminal nodes, where there are
always two edges leading down from each interior node (see Figure (1);
and (2) that - q, is the number of binary rooted trees with i nodes
altogether, and at most two edges leading down from each node (see
Figure 2). Indeed, the second set of trees is obtained by pruning away
all branches leading to terminal nodes in the first set of trees. A
recursion strikingly similar to (34) occurs in yet another tree enumera-
tion problem [2].

ΐ = 2 i = 3

Λ
i = 5

/ -

/ -

FIGURE 1. The "binary coding trees" of order /, 1 ̂  i:
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m = 1 m =2 m =3 m =4 m =5

FIGURE 2. The "binary rooted trees" with m = i - 1 nodes, 1 ̂  m ^ 7 .

Let /(z) satisfy (29) and (31). Then equation (32) can be solved to
obtain the following recursion relation for the coefficient sequence
{c2i+\}> starting with c_, = 1:

dd l dd l \] Woddy = l oddy = l \]
(36)

Thus, if / even,

i-l i -1 / 1 \

(37) c2i+ϊ = - Σ cfai-j +2 Σ c/ _ i P'"''
oddj = l odd/ = l \J W

while if / odd,

(38) c 2 i + 1 = - Σ
oddj = l

ϊ Σ ^ ( J I
odd) = l \J
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Equivalently:

(39) 2 c 2 ί + 1 = - Σ cfi^+ Σ
odd/ = ! m=0

(ί-m odd)

Thus, if i even,

(40) c 2 l + 1 = - Σ IcjCa-j+ϊ Σ C ' " 1

' dd \ M

while if ί odd,

Explicitly:

2

Ci=~\2

C]C3 ' 2

odd/ = l \ ^ / evenm =2

(42) c9= -cιc7-c3c5+
 ψ

_ _ r r _ r r /c5\ c,p4

-c5c7 + -ltL—

C15— C J C J 3 c 3 C π C5C -(?)•

2

Φ6+ 15c3ρ
4+15csp

2

C\η— C1C15 — C
3
C

1 3
 — C5C11 C7C9+

etc.
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VI. Asymptotic ratios. Define G(u) from (33) by

(43) G(u) = u{F{u") = 1 + qλu + q2u
2 + q3u* + q4u

4+ =
j = 0

Suppose there is a limiting ratio 1? =lim l _»«(ήfl +i/ql ). Then it is well
known that the radius of convergence of the power series (43) for G(u)
is Ϊ/\R |. Therefore the series (30) for F(H>) converges for | H> | > |JR*|,

diverges for | w \ < |R*\9 and may converge for some (or all) of the values
of w with I w I = |J?*|. By (34), if p is real, then all the q, are real, and R
is real, R = ±\R\.

From (34) we have

and therefore, for large m, dividing by qm yields

and in view of (30), 1? satisfies

(44) 1 { + i l + ^ + | i +

provided that 1?̂  is a point of convergence of the series (30) for
F(w). In this case, invoking (31), we find:

(45)

It would be interesting to determine the domain of values of R for
which (45) holds. Within that domain, (45) can be used in the practical
computation of JR. For example, when p = - 2 in (42), we find:

C | = l , c3 = 0, c 5 = - l , c 7 = l , c 9 = - 5 , c n = 12,

c , 3 = - 2 2 , c,5=19, c I 7 = 68, •••

The limiting ratio JR of the sequence

{- qt) = {1,1,1,2, 3, 6, 11, 23,46,98, 207,451,983, 2179,4850,10905, •}
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of the number of binary coding trees is then given by (45) as

2 + + + ± =

which is in good agreement with the empirical value.
From (34), for p < 0, all the q,'s are negative, while for p > 2, the

q/s precisely alternate in sign. For 0 < p < 2, the sign behavior of the
<7,-'s is considerably more intricate, and is not the same throughout this
interval. The relation F\w)-ρ = F(w2) is sufficient to insure the
convergence of F(w) at w = \R*\ provided that | JR | < 1 and that the <j,'s
become and remain, for large /, either all of the same sign, or strictly
alternating in sign. This sufficient condition can be restated entirely in
terms of the value of p: F(w) must converge at w = |JR*| for all
P < Pi ~ - 0.43, and for all p > p2 = 2. Whether this condition is also
necessary has not been determined.
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