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A GENERALIZED JENSEN'S INEQUALITY

TING O N TO AND YIP KAI WING

A generalized Jensen's inequality for conditional expectat-
ions of Bochner-integrable functions which extends the results of
Dubins and Scalora is proved using a different method.

1. Introduct ion. Let (Ω,F,P) be a probability space,
(U,[| ||) a complex (or real) Banach space and (V,|| ||, ^v) an ordered
Banach space over the complex (or real) field such that the positive cone
{v E V: v ^ vθ} is closed. Let x be a Bochner-integrable function on
(Ω,F,P) to U. Let G be a sub-σ-field of the σ- field F and let / be a
function on Ω x U to V such that for each u E U the function /( ,u) is
strongly measurable with respect to G and such that for each ω E Ω the
function f(ω, •) is continuous and convex in the sense that f/(ω,iii) +
(1-f) /(ω,M2) = ι>/(ω,ίw, + (1-0^2) whenever u l9 M 2 E U and Ogf ^
1. For any Bochner-integrable function z on (Ω,F,P) to any Banach
space W, we define E[z |G] "a conditional expectation of z relative to
G" as a Bochner-integrable function on (Ω,F,P) to W such that E(z |G]
is strongly measurable with respect to G and that

ί E[z\G](ω)dP= ί z(ω)dP9

J A J A
A E G ,

where the integrals are Bochner-integrals.
The purpose of this note is to prove the following generalized

Jensen's inequality:

THEOREM. ///(- , JC( )) is Bochner-integrable, then

(J) £[/(-, x( )) |G](ω)gJ(ω,E[x |G](ω)) a.e.

The above theorem extends the results of Dubins [2] (cf. Mayer [5,
p. 79]) and Scalora [6, p. 360, Theorem 2.3]. It is proved in [2] that the
theorem is true for the case in which the spaces U and V are both the
real numbers R, while in [6] Scalora uses the methods of Hille-Phillips
[4] to prove the theorem when the function /(ω,w) is replaced by a
continuous, subadditive positive-homogeneous function g(u) on U to
V. It should be noted that the method of the proof used here is
different than those used previously, the previous methods appear to be
ineffective for a proof of the extension.
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2. Preliminaries. We refer to [4] and [6] for the definitions
and basic properties of the concepts of Bochner-integrals and the
conditional expectation of a Bochner-integrable function. Our proof
of the theorem is based on the following lemmas. Unless otherwise
specified, functions in Lemma 1-5 are defined on (Ω,F, P) to U.

LEMMA 1. ([4, p. 73, Corollary 1]). A function is strongly
measurable if and only if it is the uniform limit almost everywhere of a
sequence of countably-valued functions.

LEMMA 2. (Egoroff's theorem, [4, p. 72] or [3, p. 149]). A se-
quence {z, }Γ=i of strongly measurable functions is almost uniformly
convergent to a function z if and only if

)-z(ω) | |-»0 a.e. asi-><*>.

The following lemma is an immediate consequence of Lemma 1 and
Lemma 2.

LEMMA 3. If z is a strongly measurable function, then for any
positive number M there exists a sequence {z,}Γ=i of simple functions
suchthat || Zi(ω) || ^ ||z(ω)|| + M a.e., i = 1,2, , and | |zi(ω)-z(ω)||-»0
a.e. /

LEMMA 4. ([6, p. 356, Theorem 2.2]).
(a) // z(ω) = u on Ω then E[z |G](ω) = u a.e.
(b) If z and zh i = 1,2, , are Bochner-integrable functions such

that z(ω) = ΣΓ=iί/Zi(ω) a.e. where U are scalars then J3[z|G](ω) =
τuUE[Zι\G]{ω) a.e.

(c) || E [z I G](ω) || g E [ || z \\ \ G ](ω) a.e., for any Boxhner-integrable
function z.

(d) // z is a Bochner-integrable function and zhi = 1,2, , are
strongly measurable functions such that ||z, (ω) —z(ω)||-*0 a.e. as
i -» oo, and if there is a real-valued integrable function y (ω) ̂  0 such that
||Zi(ω)||^y(ω) a.e., i = 1,2, ,then z ̂ s are Bochner-integrable and
||£[zί |G](ω)-E[z|G](ω)||-^0 a.e. as /->^.

LEMMA 5. If z is a Bochner-integrable function and zhi =
1,2, -",are strongly measurable functions such that ||z i(ω)-z(ω)||->0
uniformly a.e. as /—»<*>, then there exists an integer N such that
z, ,/ = N,N + 1, , are Bochner-integrable functions, and

a.e. as i —»oo.
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Proof An immediate consequence of Lemma 4 and the fact that
E[ |G] is a positive operator on the space of all real-valued integrable
functions.

LEMMA 6. // z is a strongly measure function on (Ω,G,P) to a
Banach space W, and if on (Ω,F,P), y is a numeric ally-valued
integrable function such that zy is a Bochner-integrable function with
values in W, then

E[zy\G](ω) = zE[y\G](ω) a.e..

Proof By using Lemma 3 and Lemma 4, the proof when W is the
real numbers R as given by Billingsley [1, p. 110, Theorem 10.1] can be
applied to obtain the general result.

LEMMA 7. Let g be a convex function on U to V. // u{ G U and

tι G R, U ̂  0, i = 1,2, n, such that

2 U = 1, then J fig (a*) ̂  , g ( Σ W ) .
ι = l ι = l \i = l /

Proof. By induction.

3. Proof of the theorem. We first note that if F G F with
P ( F ) > 0 and z is a simple function on (Ω,F>P) to U such that
Λ>/( ,2( )) is Bochner-integrable, then

(1)

To see this, let z = Σf=i utχAι, where w, G U and A ' s are disjoint sets of F
such that ΣΓ-IXA. = 1. It is clear that F C{ω: £[^ F |G](ω)>0}
a.e.. Since /( , u{,) is strongly measurable with respect to G and /(ω, )
is convex, by using Lemma 4, (b), Lemma 6 and Lemma 7, we then have
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' E[χF |G](ω) f§ nEtex* |G](ω))a.e. on F

e O n

Nextly, since x is assumed to be a Bochner-integrable function on
(Ω,F,P) to U, x is strongly measurable, and hence by the definition of
strong measurability (or by Lemma 3) there exists a sequence {xjΓ=i of
simple functions on (Ω,F,p) to U such that ||jc l(ω)-x(ω)||~>0
a.e.. Furthermore, since /(ω, ) is continuous on U it follows that
||/(ω,xι(ω))-/(ω,jc(ω))||->θa.e..

Therefore, by Lemma 2 we can find an increasing sequence,
Ω ^ ί l s C •••, of sets of F with P(Ω-Ω*)< 1/fc, k = 1,2, , such that

(2) \\χakjίω)xi(ω)--χ(ϊko(ω)x(ω)\\-*0 uniformly a.e. and
(3) \\χnΛω)f(ω,xi(ω))-χnk(ω)f(ω,x(ω))\\->0 uniformly a.e., as

/-*oo? for each k = 1,2,' .
According to Lemma 5, (2) implies
(2') \\E[χakXi \G](ω)-E[X[ϊkx |G](ω)||->0 uniformly a.e. as ί->«>,

for each k = 1,2, , and (3) implies
(3') \\E[χ«J(',xX ))\G](ω)-E[χnJ( ,x( ))\G](ω)\\-+O uni-

formly a.e. as i —><», for each k = 1,2, .
Now by using the continuity of /(ω, ) again, it follows from (2')

that

E[χίϊkx\G](ω)
E[χ

ak

a.e. on Ω* as ί ->oo.
On the other hand, from (1) we obtain

d') E(XoJ( , *•(

a.e. on ίl t, for each /c = 1,2, , and each / = 1,2,3 - .
Letting j->oo j n (Γ) and using (3') and (4), we obtain

d") E[XaJ( ,x(-))\G](ω) ^υ

a.e. on Ωfc, since the positive cone of (V; ̂  v) is closed.



A GENERALIZED JENSEN'S INEQUALITY 259

Finally, since |^ Ω k (ω) | ^ 1 and χnΛω)^ 1 a.e., by using Lemma 4,
(a) and (d), and the continuity of /(ω, ), when k —><*> we have

(J) E[fC ,x( ))\G](ω)^υf(ω,E[x\G](ω)) a.e..

4. R e m a r k . In particular, when G is the trivial sub-σ-field
Z = {Ω,φ}, inequality (J) reduces to

jj(ω,x(ω))dP ^ ,/(ω, J^

When the function /(ω,w) is replaced by a continuous and convex
function g on U to V, inequalilties (J) and (J') become

(K) E[g(x( ))\G](ω)^vg(E[x\G](ω)) a.e. and

As we have mentioned in the introduction, this result extends a theorem
of Scalora [6] in which the stronger condition that g is subadditive and
positive-homogeneous is assumed.
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