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MONOTONE BASES IN LP

L. E. D O R AND E. ODELL

We prove that every monotone basis (decomposition) for
Lp (μ), 1 < p < <», is unconditional. The structure of such bases
is closely related to that of the usual Haar basis. This structure
is described here, and it is shown that there is an uncountable
number of mutually non-equivalent monotone bases for
Lp. The structure of monotone bases in LΛ is also considered,
and the equivalence question there is characterized in analytic
terms.

Introduction. The Theorem (2.1), that every monotone decom-
position, and in particular every monotone basis for Lp(μ), Kp < °°, is
unconditional was discovered also by A. Pejczyήski and H. P. Rosenthal
[10]. The remainder of §2 deals with the structure pi monotone bases in
Lp(μ) ( K p < o o ) . In Theorem 2.2 we obtain a representation of a
monotone basis for Lp(0,1) as a direct /p-sum of what we call generalized
Haar bases (which are in turn a natural generalization of the classical
Haar system). Finally we show that there is a continuum of non-
equivalent generalized Haar bases in Lp.

In §3 we study monotone bases on 1^(0,1). First we show how a
general monotone basis in 1^(0,1) is obtained from generalized Haar
bases, and then we characterize analytically the equivalence of two
generalized Haar bases in Li(0,1).

Section 1 contains notation and preliminaries. Several open ques-
tions are stated throughout the paper.

We wish to thank Professors T. Figiel, W. B. Johnson and H. P.
Rosenthal for many helpful discussions regarding the material presented
here.

1. Notation and preliminaries. We use standard Banach
space notation. A sequence of closed subspaces Xn of a Banach space X
is said to be a (Schauder) decomposition if every / E X can be uniquely
expressed as f = Σ7=ιfh where f{ E Xx for all ί. The decomposition is
called unconditional if ΣΓ=i/ converges unconditionally for all /. This is
equivalent to the condition K = sup{||PE ||; E C N finite} < « where PE is
defined by: PEf = Σ/GE/j. K is called the unconditional constant of the
decomposition. A decomposition is called monotone if Pn = P{h2...„> is a
contractive (i.e. norm 1) projection for all n. Thus a monotone decom-
position corresponds to a sequence (Pi) of contractive projections
satisfying P ^ = Pmin(if/-).
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52 L. E. DOR AND E. ODELL

If (Ω, 5^,μ) is a measure space (μ is assumed to be finite unless
otherwise stated), we shall refer to its Lp-space as Lp(μ), ^(9*), or LP(Ω)
according to convenience. If Ω 0 CΩ we shall identify LP(ΩO) with
functions in LP(Ω) vanishing off Ωo. If $ is a sub σ-ring of if, S(J>) will
denote the support of $\ i.e. its greatest element, and the conditional
expectation <^/= %$J of f G Lx(il, if,μ) with respect to $ and μ is

defined as the unique g E Lι(Ω0,£, μ) satisfying I gdμ = I fdμ for all
JE JE

%$ is a contractive projection of Lp{£f) onto Lp(β), for any
p ^ 1. For a function /, S(f) will denote the support of /; for a set A,
~ A will denote the complement of A. m is Lebesgue measure on
[0,1].

The contractive projections in Lp(μ) were characterized by Douglas
[4] (for p = 1) and Ando [1] (for 1< p < oo, p^ 2) as follows (cf. also [9]):

THEOREM A. (i) Let 1< p <°°, p?^2. If P is a contractive projec-
tion in Lp(μ), then there is a measure v on tf, an isometry Tof Lp(μ) onto
Lp(v), and a sub σ-ring β of 9, so that

TPT1 = %,^

(ii) Let p = 1. If P is a contractive projection in L{(μ% there are v, T
and $ as in (i) and a norm l(nilpotent) operator N:LX(— S{β))

so that

We outline the proof, since a similar construction will be used
later. The main part of the proof is to show the following special case:

Fact 1. If P is a projection in Lp(μ) (1 ̂ p <™,p^ΐ) and χa is in
the range R (P) of P then there is a sub σ -algebra β of if so that P = Έβ.

Also needed is:

Fact 2. Every closed subspace X of Lp(μ) (1 ̂ p <oo) contains a
function k with greatest support S(k) (i.e. for all /GX, S(f)CS(k)
μ—a.e.).

Now, let kQ be an element with greatest support in R(P), (we shall
then write, S(P) = S(k0)) and let k = ko + χ^S(P) Define v by dv =
k |pdμ and T: Lp(μ)-»L,(i/) by Tf = //fc, if / G Lp(μ). 0 = ΓPΓ"1 is

a contractive projection in Lp(v), and ^S ( O ) = Λ's(p)̂  R(O)> Therefore
by Fact 1, OIL^P)) = %*v for some subσ -ring $ of 5̂  with
5(P). Denoting O|Lp(~5(P)) = N we have:
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Now, if 1< p <°°, then Lp{v) is smooth and hence contractive projec-
tions in Lp(v) are uniquely determined by their range, (cf. [3]), implying
that N - 0. For p = 1, N can be any contraction.

The proof of our first result essentially extends Theorem A to
sequences of contractive projections (Pt) satisfying PiPί, = Pmin(;,/) We
then apply the following result of Burkholder and Gundy (cf. [2],
Theorem 9).

THEOREM B. Let 1< p < oo. Ifβx Q β2 C is an increasing se-
quence of sub σ-algebras of ϊf which generate the σ-algebra $, then the
monotone Schauder decomposition (JR(< ,̂ - ?/,.,), i = 1,2, •) for Lp(β)
is unconditional Moreover, there is a constant Kp, depending only on p so
that the unconditional constant of this decomposition is smaller then Kp.

2. Monotone bases in Lp (1 < p < oo).

THEOREM 2.1. Let (Pt) be a sequence of contractive projections in
Lp(Cί,Sf,μ),(l<p<oo,p^2), with Pf, = Pimφ. Then there is a mea-
sure v on Ω, an isometry T of Lp(μ) onto Lp{v) and a sequence of
subσ-rings βiQ^C'-C^so that P, = T"γ%$J.

Proof. We first note that Theorem A (and the definition of T in its
proof) implies:

(*) lίhjGR (P), then h χS(n e R (P).

Let k1ER(P1) with S(kί) = S(P1). If S(P2)^S(PX) use (*) to choose
k2ER (P2) with S(fcO ΓΊ S(k2) = 0 and Sfa) U S(k2) = S(P2). If S(P2) =
S(P\) we proceed to P3 and continue in this manner. We obtain a
(possibly finite) sequence (kt) of disjointly supported functions and
integers n ( l ) ^ n(2)g with the property that for each each /,

S(P,)= U S(k,)

and kjER(Pι) for j^n(i). We may assume k = ΣTfc, E Lp(μ) and
proceed to define v and Γ as in the proof of Theorem A, i.e. dv -\k \pdμ
and Tf = //fc. Clearly Qt = Γ^Γ"1 satisfies O. Ctsία)) = Xsm and 0,0, =
Omm(/,/) By Theorem A there are subσ-rings / i C / 2 C C ^ with
O, = %h for i.

COROLLARY 1. A monotone decomposition in Lp(μ), (1 < p < oo) is
unconditional with constant ^ Xp, w/iere Kp depends only on p.
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Proof. For p - 2 this is well known. If p/2, we apply 2.1, and
observe, that in the notation of its proof, we have:

(a) 0/ - Σ * < Λ (Xsw 7), / e Lp (v),

(b) for fixed / the non zero projections f-*Xs(kβ$S in Lp(S(k})) are
conditional expectations with respect to σ-algebras on S(/cy), and
(c) the direct /p-sum of projections of norm smaller then Kp has norm
smaller than Kp. The rest follows from Theorem B.

REMARK. Corollary 1 holds for arbitrary measures μ. In fact, for
any given / E Lp(μ) we can find a sub σ-ring Σ 0 C Σ so that LP(XO) is
separable, contains / and is an invariant subspace for each projection Pn

(cf. [11], Lemma 1 and its proof). Then by Corollary 1,

for all en = ± 1 .

COROLLARY 2. If (Xt) is a monotone decomposition for Lp(μ),
(1 < p < o°) with each Xi finite-dimensional, then there is a monotone basis
(xt) and integers 1 = n(0) < n(ΐ) < so that Xt =

We proceed to describe more precisely the monotone bases in
Lp(0,1), l < p < o o ? p ^ 2 . For clarity of exposition we shall state the
results for separable Lp(μ) where μ is a purely nonatomic probability
measure.

A system of sets (An?ί i: ̂  2n, n = 0,1,2, •) is called a dyadic tree if
for all n and i g 2"

An + ui-, Π A n + 1,2i = 0
and

DEFINITION. Let 1 < p < oo, and let (An>i, i S 2n, n = 0,1,2, •) be a
dyadic tree in Sf. The generalized Haar system (hk, fc = 1,2, •) with
respect to (Λn ι) is defined as follows:

and:
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where

f o r ΐ ^ 2 n ' \ n^l.

The system (hnA) is determined by the conditions: hnJ is a linear
combination of χAna.-i a n ^ λ^w, which is positive on Λn2ι-i and satisfies:

If (An ί) are the dyadic intervals in [0,1] and μ is the Lebesgue measure
on [0,1], this gives the usual Haar system in Lp. It is easily seen, that a
generalized Haar system is a monotone basic sequence, which spans the
space Lp(β), where β is the σ-algebra generated by the Λnι. If β = Sf
we must have μ(Anι)-^0; on the other hand if the Λn i are intervals in
[0,1] and m(An,,)-*07 then β = Sf.

THEOREM 2.2. Let (xk) be a normalized monotone basis for Lp(μ),
μ purely nonatomic, l < p < o ° , p ^ 2 . Then there is a measure v, an
isometry T of Lp(μ) onto Lp(v) which sends (xk) to a basis (yfc), and a
sequence (possibly finite) of disjoint sets (En) in 5̂ , covering Ω, so that
(yk) is the union of disjoint subsequences (y", / = 1,2, •), n = 1,2,
where for each n, (y n

h i = 1,2, •) is a permutation of a generalized Haar
basis for Lp(En).

Proof By Theorem 2.1 we may assume that P, = %h for each i,
w h e r e / 1 C / 2 C are sub σ-ringsof Sf, andP,: Lp(μ)->[xu - -,xt] are
the projections associated with the basis (JC, ). For each i, we have:
L p ( # ) = R(Pt) = [xu ,jcn] and so $% is generated by i atoms. For
each i there are two cases:

1°. S(P t )=S(P ι _ 1 ) 2°. S(P,)2S(fl-i).

In case 1°, $x is obtained from $x-x by splitting some set A in /,_! into two

sets. Clearly S(xt) = A and I xt = 0. In case 2° jpf is obtained from
J A

βt-ι by adding an atom D disjoint from the / - 1 atoms of β^. Then
PΪ-IXD = 0 so that JC, = ± χD/v(D)1/p (being norm 1). We enumerate all
the Xι obtained in 2° as {x": n = 1,2, •} and for each n enumerate the
functions {*,: S(x t )C S(x")} as (JC " )Γ=2 This is clearly the required
partition.

REMARK. In the above Theorem we could have let v = Lebesgue
measure m, on [0,1]. Indeed there exist disjoint intervals En C [0,1] with
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m(En) = μ(S(xι)) and a map φ from U $ x into the intervals contained in
[0,1] which preserves inclusion, disjointness and measure, such that for
any JC£ of type 2°, φ({t: xt > 0}) is to the left of φ({t: xt < 0}). This map
extends to an isomorphism of the measure space (Ω,β9μ) onto the
Lebesgue measure space on [0,1]. Thus to study monotone bases in
Lp(μ), one need only study generalized Haar systems with respect to
dyadic trees and one can assume that the interval where x-t is positive is to
the left of the interval where it is negative.

We turn now to the question of equivalence of Haar bases for Lp,
. A basis (jcn) is said to be K-equivalent to a basis (yn),

(*„) — (yn), if for all n and all scalars au , an,

If (hnJ) is a generalized Haar basis for Lp we define its generalized
Rademacher functions rn by:

THEOREM 2.3. There exist two nonequivalent generalized Haar
bases for Lp (0,1), (1< p < QO, p μ 2).

Proof. Let (hni), (η) denote the classical Haar and Rademacher
systeπϊs. By Khintchine's inequality (cf. [12]), (rn) is equivalent to the
usual basis of /2. We shall construct a generalized system (h'^), (r'n) so
that (r'2n) is equivalent to the usual basis for /p, and hence (Λn,t)/ (hή,i).

It is easy to check, that if h = aχEι - bχE2 is a generalized Haar
function, then ||ft|E2[| approaches 1 as m(E2)/m(E1)—>0. (This does not
happen of course for p = 1).

We shall have (r'2n) ~ usual basis of lp if there are disjoint sets En so
that:

(1) ί |r^
JEk

and

(2) ί Σ k M P < 4 " ( f c + 1 ) p , * = 1 , 2 ,
JEk j = l

(see [7], proof of Theorem 2).

Let hόΛ = 1, h[Λ = ftu, and assume that (h'kJ) and E, are chosen for
l ^ / c ^ 2 n ' - l , i^2k~\ 1 ^ / ^ n - l , so that (1) and (2) hold for
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k = 1, , n - 1. Let (Afcl, fc ^ 2n - 1, i g 2k) be the underlying
intervals. For each / S 22""1, divide A2»-i,, into two disjoint intervals
A2nai'i and A2n,2ί with m(A2n,2/) so small that \\hf

2n,\Mnai | | > 1 - 4"(Π+I)P, and
ΣiS2

2—1'w(A2n^i)= e«> 6n > 0 being chosen so that M ( £ ) S e π implies

J E ^ Zr t Γ2/ I < 4

Let £ = U i 522π-iA2n,2l. Then we have:

Γ | r ' | P = _ i _ 2 y 111.' , IIP > 1 _ 4~(n+i)p

Thus (1) and (2) hold for k = n. Define now the functions h'2n+hh i S 22n

by splitting each A2fM into two intervals of equal measure. (This ensures
that m(Aπί)—>0 and so (hni) is a basis for all of Lp).

Using an idea of J. Hennefeld [5], we can now prove:

COROLLARY. There is an uncountable family of mutually nonequi-
valent generalized Haar bases for Lp.

Proof Let (JBn) be a partition of [0,1] into infinitely many disjoint
adjacent intervals, ordered from left to right. Define part of the tree
(An,,) as follows: for any n S 1 let A ^ -i = En, and An,2" = Uj>nEj. Now,
given a sequence (€n), en = ± 1 , complete the tree (Aπ,t) so that the
system {hnι )= ffl satisfies the condition that for em = 1 the sequence
{h E Έ\ S(h)C Em} in its natural ordering is equivalent to the usual
Haar basis (without constant term), while for em = - 1 it is equivalent to
the basis h'^ of 2.3. Different sequences (en) yield non-equivalent
systems (hnJ).

Questions. (1) Does every generalized Rademacher system span a
complemented subspace of Lp? If so could this be used to construct an S£p

space not isomorphic to any of those already known?
(2) Do there exist two non-permutatively equivalent generalized

Haar bases? (We can show that (for p > 2) some permutation of the
generalized Haar basis constructed in 2.3 has its generalized Rademacher
system equivalent to the unit vector basis of /2.)

3. M o n o t o n e bases in LlΛ Monotone bases in Lx are also
built from generalized Haar bases, however the "interlace" is somewhat
more involved, due to the larger variety of contractive projections in Lx

(cf. Theorem A(ii).):
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THEOREM 3.1. Let (xk) be a normalized monotone basis for Lλ(μ),
μ purely non atomic. Then there is an isometry TofLt(μ) onto some L^v),
which sends (xk) to a basis (yk), and a sequence (possibly finite) of disjoint
sets En in if, covering Ω, so that (yk) is the union of disjoint subsequences
(yn

h i = 1,2, •), n = 1,2, , where for each n, the sequence: χEnl\\χEn ||,
y", y", •** is a generalized Haar basis for Lλ{En). Moreover, y? =
cnχεn + fn where ||/n || ^ || cnχEn || and fn is a combination of the elements (yk)
preceding y" in the original sequence (yfe).

Proof. Let (Pn) be the projections associated with the basis
(xn). Using Theorem A(ii) and the proof of Theorem 2.1, we get an
isometry T of Lλ(μ) onto some Lx(v) and a sequence of sub cr-rings
βiQβiQ'-Qif so that the projections O, = TPJ1 have the form
Oif= %*f + Ni(f~sw)% Nt being some norm 1 operator from
Li(~ S(βi\¥,v) to Lx(Ω,βhv). Let y, = Tx,, We have two cases: 1°
S(Q, ) = S(Qi-0 and 2° S(Q.) 2 S(O,~i). In case 1° βt is obtained by
splitting an atom A in c£_ 1 and y( is a Haar function supported on A,
while in case 2° <#• is obtained by adding an atom D disjoint from
5(#_!>. In the latter case O.-^ΛTD - AUtfo) = 0, so y, =
where || N^XD \\^\\χD || and Ni-xχD is /,-rmeasurable.

In the rest of this section we examine the question when two
generalized Haar bases in LX[Q, 1] are equivalent. If (hnJ) is such a basis,
then a sequence (hnMn), n = 0,1,2, •) will be called a chain if S(h^i(n)) C
•S(ftn-i,i(n-i)) ί o r all n. Now, two generalized Haar bases (hnA) and (g^)
are equivalent if (and only if) there is K so that every chain of (hnι) is
K-equivalent to the corresponding chain in (gn,«) I n fact> suppose that
(hni) is built on the dyadic tree of sets (AnJ). Then [hki, 1 ̂  i ^ 2k~\ 0 ^
k ^ n] = [χAnι i ^ 2n] and any operator on this space attains its norm at
one of the χAn,t, since the convex hull of {^χAJm(Anι), i ^2n} is the unit
ball of [χAni i ^ 2n]. But each χAnι is contained in the span of a chain.

Thus it is enough to consider the equivalence of chains. For
simplicity we shall consider only the chain (h^), however the results
obviously apply to any chain.

THEOREM 3.2. Let (hni) be the generalized Haar system based on
the dyadic tree of sets (AnA), and let (gnJ) be the generalized Haar system
based on (Bni). Let Thni = gnJ, and define

T(χAJmiAnΛ)); <ln=\A T1

Then (hnΛ) ~ (g^) iffM = max {var (pn), var (qn)} < <», and the equivalence

constant K satisfies: M ^ K g 2M + 3

where, as usual, val(pn) = Σ |p» ~Pn+\\J
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Proof. Let enJ = χAJm{Anti). We have:

(3) enΛ = en-hl + 2cA,i, where

59

(4) cπ = m (Anώlm (An_ u).

(check their integrals on A n _ u and on An,2).

Thus for any k si n - 1 and i si 2*, we have:

ί TenΛ=\ TeΛ-XΛ + 2Cn[ g,,, = ί Γβ.-,,, = ί TeM,
JBk,. Jΰk,, ,/Bk.i JBk,i ^Bk,,

and so

I Tenί = I Te n l - I Γe n l = pfc_i - p k .

Now, Te n l is constant on 2?w, (^ = n), and β^!, so that:

\Bk2 Te>

Finally, en,2 = en_u - 2(1 - cn)hnΛ, similarly to (3), so || Tena\\ ̂  || Γβπ-U | | 4- 2,
and the unit ball of [hnΛ, n = 0,1, •] is the closed convex hull of the set

From (3) and the definition of the Haar functions gnJ we get that

(5) Pn = m(B M ) { l + Σ ck/m(BM)}.

Applying Stolz's theorem (i.e. the discrete version of LΉospitaΓs rule,
cf. [8] p. 77, Remark 5) to pn, and putting;

(6) dn = m(Bna)/m(Bn-ίΛ)y

we see that if limncπ/dπ = λ exists then limnpn = A. Given a sequence
(cn), there is a generalized Haar system (hni) for which (4) holds provided
that:

(7) 0 < cn < 1 and Z cn = °°

(The latter condition ensures that m (AM) = ΠΓ=1 (1 - cx) -»0). In particu-
lar, if we take cn - (n + l)"α, for fixed 0 < a ^ 1, then different values of a
give mutually non-equivalent generalized Haar bases.
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The considerations above motivate:

THEOREM 3.3. Let (hn,t), (gn ι) be two generalized Haar systems,
built on the dyadic trees (An,t), (Bni) respectively. Let cn =
m (Ana)/m (An_u), dn = m (Bna)/m (B n _ u ) . 1/

then the chains (hnl) and (gnΛ) are equivalent (with constant ^ 2M + 3).

Proof In formula (5), putting: hKi = gkM we get

so

Pn =

It is enough therefore to apply the following:

LEMMA. Let (an), (bn) be sequences of reals with all bn > 0, and let

n n

Then

Proo/. Let αfe = tkbk. Using AbeΓs transform, we have:

n n-l

An/Bn = B ; 1 Σ tkbk = Bl1 Σ (h- tk+1)Bk 4- fn, which gives:

H " = ί i M Σ (fc+. - tk)Bk, so that:

„ = ! \X5 Π -L>n + l/ k = l
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REMARKS. (1) It is conceivable that the condition in Theorem 3.3 is
also necessary. We can prove only that if (hnΛ) and (g^) are equivalent
and either infcn > 0 or inf dn >0, then var(cn/dn)<oo.

(2) If (hni) is a generalized Haar basis for Lp, then the chain
(hn,ύ n - 0,1, •) spans a space isometric to /p. In Lι these chains are
conditional bases for lx (by (7), (3) and [6], Lemma 2). As, shown above,
there is an uncountable family of mutually non-equivalent such chains.

For 1 < p ^ 2 , we do not know if all chains in Lp are equivalent.
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