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NORM ATTAINING OPERATORS ON D[0, 1]
AND THE RADON-NIKODΫM PROPERTY

J. J. UHL, JR.

Let Y be a strictly convex Banach space. Then norm
attaining operators mapping L^O, 1] to Y are dense in the
space of all linear operators from Lx[0, 1] to Y if and only
if Y has the Radon-Nikodym property.

Bishop and Phelps [1] have asked the general question—For
which Banach spaces X and Y is the collection of norm attaining
operators from X to Y dense in the space B(X, Y) of all bounded
(linear) operators from X to Y. Lindenstrauss in [8] investigated
this question and related this question to existence of extreme points
and exposed points in the closed unit ball of X. In the course of
his paper Lindenstrauss showed that for some space Y the norm
attaining operators in BiL^O, 1], Y) are not dense in B{Lι[0, 1], Y)
due to the lack of extreme points in the closed unit ball of Lx[0, 1].
Left open is the following question: For which Banach spaces Y
are the norm attaining operators dense in B[Lι[0, 1], Y)t Based on
Lindenstrauss's work, one is led to believe that if the closed unit
ball of Y has a rich extreme point or exposed point structure, then
the norm attaining operators may be dense in B{U-[Q, 1], Y). On
the other hand the Radon-Nikodym property is intimately connected
with extreme point structure (Rieffel [12], Maynard [10], Huff [6],
Davis and Phelps [2], Phelps [11], Huff and Morris [7]). So there
is some prima facie evidence to support the belief that the norm
attaining operators are dense in BiL^Q, 1], Y) if and only if Y has
the Radon-Nikodym property. The purpose of this paper is to verify
this for strictly convex Banach spaces Y.

First a few well known results will be collected.

LEMMA A [4, 5]. If (Ω, Σ, μ) is a finite measure space and
g: Ω—> Y is μ-essentially bounded Bochner integrable function, then

T{f) = Bochner - ί fgdμ

defines a member T of B(U{μ), Y) with \\T\\ = ess sup \\g\\γ.

LEMMA B [3]. Any one of the following statements about Y
implies all the others.

( i ) Y has the Radon-Nikodym property.
(ii) // {Ω, Σ, μ) is a finite measure space and G: Σ ~+ Y is a
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μ-continuous countably additive measure of bounded variation, then
there exists a μ-Bochner integrable

g: Ω > Y with G{E) = [ gdμ for all EeΣ .
JE

(iii) If μ is Lebesgue measure on [0, 1], then for each
T e B{Lι[Q, 1], Y) there is a μ-essentially bounded g: [0, 1] —» Y with

T(f) = \ίQi/0dμ for all feL\[0, 1], Y)

Moreover, if Y has the Radon-Nikodym property statement (iii)
is true for any finite measure space.

The first theorem is a straight forward observation that is based
on the definition of a measurable function.

THEOREM 1. If Y has the Radon-Nikodym property and if
(Ω, Σ, μ) is a finite measure space, then the norm attaining operators
are dense in B{U{μ), Y).

Proof. Let T e B{L\μ), Y) and ε > 0. Then there exists an essen-

tially bounded Bochner integrable g: Ω—> Y such that T(f) = I fgdμ
J Ω

for all / G L\μ) and there exists a countably valued function

ϊl. iJ > Λ. , ϊl — 2-A ^i^E% y Xt & u?L ,

Et e Σ , μ(Et) > 0 , Eιf\Ei= 0

for iφj, such that ess sup || g — h \\ < e/2. Define 7\: L 1 ^ ) —> Y

by TW = \ fhdμ, fe L\μ). Then || T - T, \\< (ε/2).
JO

Now T1 will be approximated within ε/2 by an operator which
attains its norm. If T1 = 0, there is nothing to prove. Otherwise
β = sup II yi || > 0. Choose iQ such that β — \\ylQ\\ < ε/2 and a > 1
such that e/4 < (a - 1) || ylQ \\ < ε/2 and define

τif) -

It is easy to verify that || 2\ - Γ21| < ε/2 and that || T21| = a \\ yiQ \\ =
IIΓaίa?^/^^))]!. Hence T2 attains its norm and || Γ - T2 | | < e, as
required.

The operator T2 constructed in the proof of Theorem 1 has two
important properties. First it attains its norm and second there
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e x i s t s EeΣ, μ{E)>0 a n d y o e Y w i t h || yo\\ = || Γ | | a n d T2(fyJ =

\ fdμy0 for all / e L\μ). If Y is strictly convex and real, this

property is shared by all norm attaining operators in B(Lι(μ), Y).

LEMMA 2. Let (Ω, Σy μ) be a finite measure space and Y be a
strictly convex Banach space. If T e B(Lι(μ), Y) attains its norm
then there exists a set EoeΣ with μ(EQ) > 0, g e L°°(μ) with j g \ — 1
on Eo, and yoeY with \\yo\\ = \\T\\ such that

T(fχEQ) = \E/Qdμyo

for all f e Lι{μ).
If Y is a real Banach space, g may be taken as the constant

function 1.

Proof. If || !Γ|| = 0, there is nothing to prove.

Otherwise, choose foeLι(μ) with | | Γ ( / 0 ) | | - | | Γ | | and | | / 0 | | = 1.
With the help of the Hahn-Banach theorem, choose y* e F* with
|| ίtfll - 1 and

= I! T\Next choose h e L°°(μ) with || A

y*T(f) =

for all feL\μ). A simple computation reveals that h = sgn/0 | | Γ| |
on the support of /0. (Here sgn/0 =/ 0 / |/ 0 | . ) Let Eo be the support
of /0. Thus if feV(μ),

o)= \ fsgnfo\\T\\dμ.

Next suppose EaEOf EeΣ and μ(E), μ(EQ - E) > 0. (The rest of
the proof is trivial if EQ is an atom of μ.) Then

and
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From these equalities, one obtains

|| T\\ μ(E«) = II T(χEo sgn/0) || = || T(χE sgn/0) + T(χEo_E sgn/0) ||

^ || T(χEι sgn/0) || + || T(χBo_E sgn/0) ||

= || TII μ{E) + || T || μ{E0 -E) = \\T\\ μ(E0) .

This combined with the fact that Y is strictly convex shows that
T(χEsgnf0) and T(χEo_E sgn /„) are multiples of each other. Since
Γ(χ£osgn/0) = T(χEsgnf0) + Γ(χ£o_E sgn/0), Γ(χEsgn/0) is a scalar
multiple of T(χ£osgn/O); i.e., Γ(χ£sgn/0) = 7Γ(χEosgn/o) for some
scalar 7. On the other hand

|| TII μ(E) = ytT{χE sgn/0) = Ίyt{XE<s sgn/0) = 7 || T \\ μ(E0)

thus 7 = μ(E)/μ(E0). Therefore if EcE0 and j«(£r) > 0,

_ Γ(χgosgn/O) _
μ(E0)

Now suppose feLι(μ) is a simple function. Let ε > 0 and choose
a simple function φ 6 LXμ) such that || sgn/0 — φ\\«, < ε. (Here sgn/0

is the complex conjugate of sgn/0.) Then T(f) = Γ(/sgn/0 sgn/0) and
II Γ(/) - Γ(/?> sgn/0) || ^ || Γ || || sg5/0 sgn/0 - φ sgn/0 ||x < s || T | | μΩ .
Now select sets Aίt , An e Σ such that

/ = Σ α<5U and ^ = Σ Aχ^ .

Then

i Π

Σ UiβΛAt n
t = l

Letting ε go to zero reveals that

ΆfχEo) = ( fsgϊifodμyo .
J EQ

Since simple functions are dense in L\μ), the equality

τ(fχEo) = fsgnf4μy0
JEQ

obtains for all feL\μ). This proves the first statement.
To prove the second statement, note that if Y is real, then

sgn/0 takes on only the values + 1 or —1. If sgn/0 = 1 on a set
of positive measure E, in the support of /0, take EQ — E and proceed
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as above. If sgn/0 = — 1 almost everywhere in the support of /0,
multiply fQ and yt by —1 and proceed as in the last sentence.

With the help of Lemma 2, the main result becomes nothing
but a straightforward exhaustion argument.

THEOREM 3. Let Y be a strictly convex Banach space. If the
norm attaining members of BiL^O, 1], Y) are dense in B(Lι[Q9 1], Y),
then Y has the Radon-Nikodym property.

Proof. Let T e B(U[Q, 1], Y) and ε > 0 be given. Define a class
of Lebesgue measurable sets ^£ by agreeing that E e ̂ £ if there
exists an essentially bounded Bochner integrable g( = g(E, ε)): [0, 1]—+Y
such that

\τ(fχE)-

Note that if A is Lebesgue measurable and Aa Ee ^ then

ΆfγJ - \ fg((E, έ)dμ) = \τ((fχA)χE) - \ (fχjgdμ
JA 1 JE

Therefore, if Ee^f, every measurable subset of E belongs to ^f.
Now let a — sup {μ{E): Ez^) and let (En) c ^ be a sequence such
t h a t limnμ(En) = a. Write Ax=Elf A2 = E2-Elf •••, A^E^XJ^iE,.

Then the Aι

ns are disjoint, U»=i A* = U?=i ^ a n ( i A« (U»=i ̂ ) ^ <*-
AΛ c ^ and ̂  e ̂ ^C AΛ e Λ€ and there exists a sequence of essentially
bounded functions gn: [0, 1] —• Y, n = 1, 2, , such that for all
/ e i l [ 0 , 1],

^ I! ϊ X / χ . J II + ε l l / χ . J L ^ (II ΓII + e) || / | | t.

Accordingly,

i f9nl

By Lemma A,

ess sup || gnχA% \\ - sup^ j ^ fgndμ

Therefore supΛ ess sup || gn \\ ^ || T \\ + ε. Now define g: [0, 1] —> Y by

(gn(t) for t e AΛ

0 for ί ίU4
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Then ess sup || gr |
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T\\ + e and if /eL'[O, 1],

υA)n - \ fgdμ\\
n

J-\ fgudμ\\

Therefore \Jn An e ^/έ. Next we shall see that μ (\Jn An) — 1. For,
if μ (U. An) < 1, then μ (\Jn En) ^ 1 and a < 1. Set Bo = [0, 1] -
Um Ά» and recall that Lϊ{B0) (Lebesgue integrable functions supported
on BQ) is isometric to Z/[0, 1]. Define 7\: L 1 ^ ) -> Γ by T^f)^
T(fχBQ) for feL\E). Since L 1 ^ ) is isometric to Z^O, 1], there
exists an operator T2: L^BQ) —> Y that attains its norm such that

: c BQ withAn appeal to Lemma 2 produces a ^ G Y and set
0 > 0 such that

Uf) - ( fdμy,

for all feL\B0). Set g' = ^χ^. Then

j ΆfχBl) - \ fg>dμ\\ = || ^ ( / χ ^ ) -
I J Bι j i

Therefore B^^f. Now set fif = gr + #'. If / e L'([0, 1]),

I Άfχ z Λ^BI) - \ - /^di« I

^ Σ Iln/ZA,) - ( fg*dμ I + Γ(/χBl) - ( fg'dύ

^eΣ||/χ
4
J| +ε||/χ

B
J| = \\fχ U^.

USl
|| .

71=1 « = 1

Therefore U» ^» U ̂  = U» ^ U Bx e ^f. But

μ({JEnu B?) = μ (u #„) + M^)

^ lim μ(EJ + ^(-50 = α + μ{B,) > a
n

contradicting the definition of a. Thus μ (\Jn An) = 1 and

\τ{f) - \ fgdμ £ ε I! / |L for all fe Lι[0, 1] .
I J[0,l]

Finally, to check that F has the Radon-Nikodym property, let
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g%: [0, 1] —• Y be a sequence of Bochner integrable essentially bounded
functions such that for all / e Z/[0, 1]

Άf) - [ fgjμ
J[0,l]

for all n. An appeal to Lemma 1 shows that lim%,m ess sup || gn — gm ||L
Hence there exists a Bochner integrable essentially bounded g: [0, 1]—»F
with limΛesssup||flrΛ — g\\ = 0. If / G L ^ O , 1], the dominated con-
vergence theorem guarantees that

T(f) - lim ί fgndμ = \ fgdμ .
n J[0,l] J[0,l]

Thus Y has the Radon-Nikodym property by Lemma B.

The role of strict convexity seems to be crucial in Theorem 3:
for by perturbing co-ordinate functions it is seen easily that norm
attaining operators are dense in B(Lι[Q, 1], c0), B(Lι[Q, 1], I00) or for
that matter B{X, l°°) for any Banach space X See [8, Prop. 3].

On the other hand, the role of strict convexity could be made
even more palatable by an affirmative answer to an old question of
DiestePs: Does every Banach space with the Radon-Nikodym property
have an equivalent strictly convex norm?

COROLLARY 4. If X is a strictly convex renorming of !/[(), 1],
then the norm attaining operators are not dense in B{U-\Q, 1], X).

Proof. Evidently X lacks the Radon-Nikodym property.

This leaves unsolved the question of whether the norm attaining
operators are dense in B(Lι[Q, 1], Z/[0, 1]).

Finally say that a Banach space X has property B if for every
Banach space Y the norm attaining operators are dense in B(Y, X).
Lindenstrauss [8, Proposition 4] has observed that if there is a non-
compact operator in B(cQ, X) and X is strictly convex, then X lacks
property B. It is not difficult to see that if X has the Radon-
Nikodym property, then every operator in B(c0, X) is compact and
that the converse in false. Thus Theorem 3 is a better test for
Property B than [8, Proposition 4]. Of course this brings up a
question that is well beyond the scope of this note. If X is a strictly
convex Banach space, does X has property B if and only if X has
the Radon-Nikodym property?

The author is happy to acknowledge helpful discussions with
Professor J. Diestel and a helpful comment from Professor T. Figiel.
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