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WEIGHTED SIDON SETS

J. W. SANDERS

A weighted generalisation of Sidon sets, PΓ-Sidon sets,
is introduced and studied for compact abelian groups. Firstly
TF-Sidon sets are characterised analogously to Sidon sets and
variations of these characterisations shown to lead back to
Sidon sets. For the circle group PΓ-Sidon sets are constructed
which are not Λ(l) and hence not Sidon. The algebra of all
W'a making a set TΓ-Sidon is investigated and Sidon and
p-Sidon sets cast in terms of it. Finally analytic properties
of TF-Sidon sets are pursued and a necessary condition on
the growth of W2 obtained.

Throughout this paper G denotes a compact abelian Hausdorff
topological group and X denotes its (discrete) dual group. Both are
written multiplicatively with identities e and 1 respectively.

We write (LV(G), || H,) for the Lebesgue space derived from the
normalised Haar measure on G and (C(G), || WJ) for the space of
(complex-valued) functions continuous on G with the supremum norm.
However for A Q X and counting measure on A we denote the Lebesgue
spaces (I*(A), \\ \\p) and use co(A) for the subset of Γ(A) of functions
tending to zero at infinity.

If A and B are sets we write BA for the set of all functions from
A to B) if f e BΛ and C Q A ( c is reserved for strict inclusion) we
write / I C for the restriction of / to C; ξA is the characteristic
function of A; %(A) denotes the set of all finite subsets of A; ^(A)
denotes the power set of A; v(A) is the cardinality of A; and we
write • for the empty set.

The sets of complex numbers, real numbers, integers and natural
numbers will be written (£, 9ϊ, 3, &n(ϊ 31 respectively and we write X
for the topological group of unimodular complex numbers. If c e (£,
c denotes the constant function with value c, whose domain will be
clear from the context.

For A Q X, φ 6 & and A Q & we write φA for {φψ: ψ e A}.
We denote the Fourier transform of fe L\G) by /. If E is a Banach

space we write E' for its dual. Let A(G) = {/ e C(G):fe l\X)} be
normed by | | / | U = ll/lli a n d set the space of pseudomeasures on G,
(PM(G), || | | P J f ), equal to A(G)' so that it contains (M(G), || ||), the
space of measures on G. For π e PM{G) we write ft for its Fourier
transform and spπ for its spectrum, i.e. {X e X: π(χ) Φ 0}. If E £
PM(G) and A Q X we let EΔ = {π e E: spπ £ A} and call its members
J-spectral pseudomeasures. We also write E~ for {ft: π e E).
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The set of trigonometric polynomials on G will be denoted T(G).
A subset Δ of X is called
( i ) a Sidon set iff

sup{Σ*β 4 |?(χ)|:ίeΓ,(G) and | | ί | L ^ 1} < «>, and
(ii) a Λ(p) set, for 0 < p < oo (written Δ e Λ(p)) iff for some r

with 0 < r < p, L%G) = L2(G) The reader is referred to [2] for an
exposition of Sidon and Λ(p) sets.

l W-Sidon sets*

DEFINITIONS 1.0. If Δ Q X and We &J we let

II W\\Δ = BupίΣx.a I mχ)?(χ) | : te Γ,(G) and p | L £ 1}

and say Δ is "FΓ-Sidon iff this is finite. Set

Evidently || W\\ά equals the least constant for which, whenever

The letter W is used to suggest a weight function and W-Sidon
sets should not be confused with p-Sidon sets ([4]) or F-Sidon sets
([13]).

1.1. Taking χeΔ as t above we see || TΓJL ^ || W\\ά. So Δ is
Sidon iff 2S(z/) = Γ(J) and the Sidon constant of Δ equals || l\\ά.

1.2. For any Δ £ X, Z2(J) £ 2B(zί).
For if t e T(G) the Cauchy-Schwarz inequality followed by ParsevaPs

identity shows

Σ l W(χ)t(χ)\ £ | | W\\2\\t\\2 =
χeΔ

Thus IIWH^H W\\2.
In the TF-Sidon theory to follow, sets Δ for which Wel2(Δ)

behave very like finite sets in the Sidon theory. We refer to them
as trivial W-Sidon sets.

Examples of Δ and W for which Wg 12(Δ) yet Δ is W-Sidon and
not Sidon are given in 2.3, and some infinite Δ's which are TF-Sidon
only for We l\Δ) in 3.4.

1.3. In .1.0 we have not referred directly to the group X. The
following result excuses this. Let Xt and X2 be discrete abelian
groups with Δ Q XL and X1 a subgroup of X2.

THEOREM. For We&Δ, Δ is W-Sidon as a subset of Xx iff it
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is W-Sidon as a subset of X2.

Proof. Suppose that Gt is the dual of Xt for i e {1, 2} and define
an equivalence relation a on Gx by (x, y)ea iff χ(x) = χ(y) for all
χeXi. Writing A for {xeG.'.χix) = 1 for all χ e X J , the kernel of
α, A is a closed subgroup of (?! and Gx/A is isomorphic to G2 by
[10], 2.1.

For ί e TΔ{G2) define ί* e TΔ(GJA) by

«*(«(»)) - Σ ?(χ)χ(«)

By definition of a, the map /S: ̂ (Ga) — TΔ(GJA) given by /5(ί) = ί*
is well defined. It is easily seen to be a vector space isomorphism,
[| ll^-isometric and to satisfy

χ) = Hi) for all te TΔ{G2)

Consequently

sup I Σ i ̂ ω % ) I: ί € Γ,(G2) with || ί |

= sup J Σ I TΓ(χ)fi(χ) |: « e TΛ(GJA) with || tt |L ^

and the conclusion follows.

1.4. To see how TΓ-Sidon sets are affected by group operations
on X we extend 1.3 as follows. If φ is a function from one discrete
abelian group X^ to another, X%, (with duals Gt) it induces a map 0*
from T(GJ to Γ(G2) by

When φ* is || lU-isometric, ^ is injective so given Δ Q X and
We (SJ there is a map Ŵ  e E> defined by

T^(ί6(χ))= W(χ) for all Z e J .

THEOREM. // ^* is || W^-isometric, Δ is W-Sidon iff φ{A) is
Wφ-Sidon.

Proof. Now 0* maps T^Gy onto Tφ{Δ){G2) and whenever te TΔ(Gd
and Ze J,

Consequently, using 1.3 to move from the group φ(Xύ to X2,
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o and

= sup { Σ I Wφ(ξ)u(ζ) |: we Tφ{ά){G2) and || u |L ^ l l
\ξeφ(Δ) )

= \ \ W Φ \ \ Φ U ) .

1.5. ( i ) For example take as φ the map TXQ: X-+X (for Xoe.
given by τZo(Z) = X0X. If te T(G),

= I rδr
whence r*0 is || lU-isometric. For any A g= X, χoeX and
provided we define Wo e &°A by Wo(χoχ) = W(χ) for all 1 e A, 1.4
guarantees

(ii) Similarly if we define p: X—+ X by p(χ) = χ"1 then provided
we set FF^eβ^-1 to be WP{χ~ι) = TΓ(χ), 1.4 shows

3BCJ-1) - {TΓ^ We W{A)} .

(iii) Note that for We&*uχ°J, 1.5(i) does not claim A is ΐ^-Sidon
iff χQA is TF-Sidon (and similarly for 1.5(ii)).

If A is an infinite proper subgroup of X (it can be chosen for 3 say)
and χoeX\A then clearly χ0A Π A = •• So we may choose TFG EJuχo^
such that PΓ | J e ί2(z/) yet W\χ0Ae lco(χ0A)ψ(χ0A). A premature glance
at 3.3 now shows, together with 1.5(i), that 3B(z/) = l\Δ) and 2S(χ0^) =
l\χQA). Thus J is PΓ-Sidon yet χ0A is not TF-Sidon (taking restrictions
for granted).

1.6. Suppose E is a Banach space contained in PM(G), with
norm || \\E stronger than || \\PM. For A QX define b:E—*E~\A by
<5(τr) = π\A. Since 3 is a vector space morphism, ker § is a subspace
of i£. This subspace is closed since if π e E and {πn: ne%l} Q ker δ
with || 7Γ - π J U — 0 then \\π - π ^ l U ^ O hence π \ A = 0.

Thus ϋZ/ker δ is a Banach space under the quotient norm. Equiva-
lently, E~ \ A is a Banach space with norm

|| 0 ||δ = inf {|| π \\E: π e E and it | z/ = φ) .

Evidently for all π e E,

(See also 3.7.)
If E is a Banach subalgebra of PM(G) (not necessarily with

identity) then so too is E~\Δ.
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When considering E' rather than E we write δ' in place of 8.

1.7. Our dependence on zf-spectral functions makes the following
result useful. Refer to [7], Chapter 1, (2.10) for the definition of a
homogeneous Banach space on G, replacing % there by G.

Suppose E is a homogeneous Banach space on G and E' is the
dual of E under a pairing </, ψ) (for feE and ψ e E'). If feE'
and χ e X Π E then the Fourier coefficient is defined to be

and satisfies | f (χ) \^\\f \\E> \\ χ \\E.

THEOREM. Let J £ l , let E be a homogeneous Banach space on
G containing A and suppose that, restricted to Δ, \\ \\E is weaker
than || ||^. Then there is a canonical isomorphism from (EΔ)' to
(E'y I A (the latter being normed by || \\δ,) whose norm is less than
or equal to one.

Proof. Since

l l / l U ^ I I / l l i ^ l l / I U , for all feE,

EΔ is a closed subspace of E. So the canonical map

J: (EΔ)' > E'/(EA)°

is an isomorphism of norm less than or equal to 1, where (EΔy} the
annihilator of EΔ, is {ψ e E': ψ(f) = 0 for all feEΔ) (see [8], p. 93).

Now | ^ ( χ ) | ^ H^IU' whenever feE' and χe A thus by 1.6 it
remains to show that (#j)0 = ker 3'. If ψ e (EΔ)° then ψ(χ) = 0 for
all χ e A hence (χ, ψ) = 0 so that ψ \ A — 0 whence ψ e ker S'. Con-
versely if ψ(X) = 0 for all XeA then ψ(t) = 0 for all έespan(J) .
But span(J) is dense in EΔ (by the method of [7], Chapter 1, (2.12))
hence ψ(f) = 0 whenever / e EΔ, whence ψ e (EΔ)\

Consequently (EΔ)' is isomorphic to {E'y \ A under J followed by
the Fourier transform lifted to E'/kerδ'.

COROLLARY 1.8. Let A s X. Then
( i ) if 1 ̂  P < °°, there is α canonical isomorphism from L%G)f

to Lp'(Gy\ A whose norm is dominated by 1,
(ii) there is a canonical isomorphism from CΔ(G)f to M(GY \ A

whose norm is dominated by 1, and

(iii) if 1 ^ p < co, there is a canonical isomorphism from

(LP(GΓ I Δ)9 to LΪ(G).

Proof, (i) and (ii) follow immediately from 1.7.
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If 1 < p < oo, LP

Δ\G), being a closed subspace of the reflexive
space LP'(G), is also reflexive. So by (i) the dual of Lp(Gy | Δ is
canonically isomorphic to LP

Δ\G)", i.e. to LP

Δ{G).
For p = 1 we are forced to resort to the method of 1.7. Any

ψ e (L\Gy I Δ)' lifts to a continuous linear map Ψ: L\G) —> (£ which is
constant on cosets of kerδ ' and which may be identified with an
element of L°°{G)y giving | |?HL ^ IIΉI Consequently if XeX\Δ,

= \ ΨX=\
JG J

so that ΨeL^(G). This yields a map from (!/((?)" \ Δ)f to LΔ(G) and
the method of 1.7 completes the proof.

REMARKS 1.9. ( i ) Obviously AΔ{G)' is isometrically isomorphic
to PM(GΓ M as is L2

Δ{G)' to L2(GΓ \ Δ.
( i i ) In (i) and (iii) above it suffices to take Δ = X to see the

falsity for p = co. However LΔ(G) can still be embedded canonically
in (L°°(Gy I Δ)', as can CΔ(G) in (M(Gf I ̂ X

THEOREM 1.10. Let ΔQX and TFeK J. With the understanding
that the constants in (ii), (iii), (iv) and (v) are the least possible, the
following are equivalent:

( i ) Δ is W-Sidon with ic - \\W\\Δ,
( ii ) feL7(G) implies Σ*e, \W(χ)f(χ) \ £
(iii) /eC,(G) implies Σz.. im%)/(z) I ^
( iv ) for all φ e l°°(Δ) there exists μ e M(G) with μ | Δ = Tf̂

( v ) f o r a l l φ e c o ( Δ ) t h e r e e x i s t s f e U ( G ) w i t h f \ Δ — Wφ a n d

( vi) WLΔ(Gy I Δ £ V{Δ) (see section 0 for product notation),
(vii) WCΔ(Gy I Δ £ l\Δ),
(viii) Wl~(Δ)QM(GT\Δ, and
( i x ) Wco(Δ)QL\GT\Δ.

Proof, (i) => (ii) follows by a straightforward modification of
(a)=>(b) in [10], 5.7.4.

(ii) => (iii) is obvious because CΔ(G) Q L^(G).
(iii) => (iv). By hypothesis the map fv-*Wf\Δ from CΔ(G) to l\Δ)

is linear and bounded by /c. Let K: l°°(Δ)-^M(Gy \Δ denote the
canonical isomorphism of 1.8(ii) composed with the adjoint of this
map-evidently \\K\\ ^ tc. For χe Δ,

Kφ(χ) = Σ Φ(ξ)(W(χ)χ)(ξ) = W(χ)φ(χ),Σ
ξeX

s o g i v e n φ e l°°(Δ), t h e r e i s μ e M ( G ) - n a m e l y μ eδ'^jfiΓ^-with μ \ Δ = Wφ



WEIGHTED SIDON SETS 261

and
(iv)=>(v) follows by an easy alteration of (d)=>(e) in [2], 15.1.4.
(v) => (i). By hypothesis the map φ H-> Wφ from co(A) to !/((?)" \ A

is linear and bounded by tc. Let K: L^(G) —> V{A) denote the com-
position of its adjoint with the canonical isomorphism of 1.8(iii).
Then K is linear and bounded by /c. If χeA and feLj(G) then

(Kf)(χ) = ( W(χ)fχ = W(χ)f(χ)
JGG

hence Kf = Wf\A, so (i) holds.
(ii) => (vi), (iii) => (vii), (iv) => (viii) and (v)=>(ix) are obvious. Since

the converses fall into similar pairs we show only one of each.
(vii) => (iii). In the following lemma take A to be l\A) with a

the canonical injection, B to be CΔ{G) with βf — Wf\A and C to be
& with the product topology. Now (vii) ensures β(B) Q a(A) £ C
so by 1.11 to follow, there is a constant K such that for all/eCj(G),
there is φ e l\A) with Wf \ A - φ and 11 ^ |\, ̂  /c 11 /1U. That is, (iii) holds.

(ix) ==> (v). In the following lemma take A to be L\G) with
a(f) = f\A,B to be cQ(A) with /S(0) = ^ and C to be ©J with the
product topology. Now (ix) assures us that the hypotheses of 1.11
hold and hence (v) results.

1.11. I am indebted to Professor R. E. Edwards for the fol-
lowing statement:

LEMMA. If A and B are Banach spaces, C a Hausdorff topological
vector space, a:A—+C and β:B—+C continuous linear maps and if
β(B) Q a(A) then there is a constant it such that for all beB there
exists aeA with a(a) = β(b) and \\a\\A ^ Λ:|]6||J\B

Proof. Let A = A/ker a and endow it with the quotient topology
in which | | α | | = inf {||c||: c ea) for each aeA. Since C is Hausdorff,
{0} is closed in C and since a is continuous 0 = a'^O}) is closed in
A. Thus A is again a Banach space and a induces a continuous
injection ά: A —> C defined by a(d) = a(a), for a e A.

Define 7: B-+Ά by 7(6) = a~ιoβ{b), for beB. By hypothesis 7
is well defined-it clearly suffices to show it is bounded. Evidently
7 is linear, so it remains to show it has a closed graph. If bn—>0
in B and 7(6J -> a in A then β(bn) -> /9(0) = 0 in C. Thus, since a
is also continuous and linear,

) = \im%β{bn) - a(a)

and so
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0 = lim. β(bn) = a(ά) .

Finally by injectivity of a, a = 0.

1.12. We shall also use this lemma in another direction.

THEOREM. Let A and B be Banach spaces, let J be a set and
suppose (£J has the product topology. Let a: A —> (£J and β: B —* (£J

be continuous and linear with
(i) there is λ > 0 such that for all aeA and all χ e Δ,

a(a)(χ)\ ^ λ | | α | U , and

(ii) there exist {bχ: χeΔ} Q B with

βφz)(ξ) = \l lfJ X , and sup {|| bχ \\B: χ e A) < oo .
(0 otherwise

Suppose finally that f e S j with ψβ{B) £ a(A). Then f e Ϊ°°(J).

Proof. Applying 1.11 there is a constant fc such that for all
b e B , t h e r e e x i s t s a e A w i t h a(a) = ψβ(b) a n d \\a\\A <^ fc\\b\\B. I f
we write αχ for an element of A corresponding to bχ by this process
we have

I ΨiX) I = I Ψ(x)β(h)(χ) I = I *(aχ)(χ) I ̂  λ || α χ |L ^ *λ || 6χ ||B .

Consequently || ^ IU < °° as required.

1.13. The next result is helpful when showing a set is W-Sidon.

THEOREM. // Δ £ X and We & the following are equivalent:
( i ) Δ is W-Sidon,
(ii) / G CΔ{G) with feW implies Σxe, I W(χ)f(χ) | < oo, and
(iii) whenever Φ e Ϊ°°(J) Π 3tx there is μe M{G) with μ \ Δ = Wφ.

Proof, (i) => (ii) and (ii) => (iii) follow from 1.10.
(iii) => (i). If φ e l°°(Δ) we may write φ = ^ + i^2 where, by (iii),

there is μ, e M(G) with μά \Δ = Wφ3- for j e {1, 2}. Thus taking
μ = μγ + ίμ2 gives ^ 6 M(G) and μ\Δ = Wφ, so (i) results by 1.10.

1.14. One important respect in which 1.10 differs from the
analogous result for Sidon sets is that we only claim inclusions like
l.lθ(viii) rather than WΓ(Δ) = M(GΓ | Δ. The reasons for this are
embodied in:

THEOREM. Suppose ΔQX and TFe(£J. Then Δ is Sidon when-
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ever one of the following holds:
( i ) WΓ(Δ) = M{GT \Δ,
( i i )
(iii)
(iv)

Proof. ( i ) Taking the Dirac measure at e we see 1 € Wl°°(Δ).
Thus Γ(Λ) £ WT°(4) £ Γ(Λ) hence Γ(J) - Wl°°(Δ) = M(GΓ \Δ so A is
Sidon.

(ii) By hypothesis we cannot have W(Z) = 0 for any XeΔ, so
W-'&iGT I J = co(Δ). Now in 1.12 we take A = co(4) with norm || |U,
α the canonical injection, B ΞΞ L L ( G ) with norm || Ĥ  ̂ (/) =f\Δ and
^ Ξ TF"1. The hypotheses are readily verified so we conclude that
II W~ι\U < oo. Applying 1.10, whenever te TΔ(G),

Σ
So Δ is Sidon.

(iii) Again, W is never zero so we may apply 1.12 taking
A = C(G), B = Γ(z/), α(/) = /1 J, /3 the canonical injection and ψ = W~\
As in (ii) we deduce that Δ is Sidon.

(iv) Apply the same method as (iii).

NOTE. The converse to each of these assertions is false. Even
if Δ is replaced by Δo == {χ e Δ: W(χ) Φ 0} and Δo is Sidon, these
inclusions are strict if Δo is infinite and Weco(Δ).

THEOREM 1.15. Let A £ X, We & and Δo be as above. Assuming
the constants in (ii), (iii) and (iv) to be the least possible, these are
equivalent:

( i ) Δo is Sidon with constant fc,
(ii) feLKG) implies Σ*e, W(χ)?(χ)χe Aάΰ(G) and

*IIΣz.i W(χ)f(x)x\U
(iii) te TJo(G) implies || FΓίld ^ * || Σχβ4 TΓ(χ)?(χ)χ ||«,
(ivj) f o r a l l φ e l°°(J0) t h e r e i s μ e M(G) s u c h t h a t β \ Λ 0 = Wφ

and | | / £ | | ^ *

Proof, (i) ==> (ii). If / e L^(G) then

so that if Δo is Sidon, (ii) follows.

(ii) ==> (iii) is obvious.
<iii> — (ϊ>. If te Tάo(G) define ue TJo(G) by taking
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= W-\χ)t(χ) f o r a l l χ e J .

They by (iii),

Σ I Hi) I = Σ I W(χ)u(χ) \ ^ K Σ W(χ)u(χ)

so (i) follows.
( ^ ^ ( i v ) . If φel°°(Δ) and T7eSB(J) then φWel~(Δ) hence (iv)

results from (i) and 1.11.
(iv) ^ (i). If ψ e Γ(Λ) and Φ e g(d0) let

o tf χ J ] \Φ ' S° t h a t f*G "o(Λ) #

B y h y p o t h e s i s t h e r e i s μ φ e M(G) w i t h μ φ \ J 0 = WfΦ a n d

Thus {μΦ: Φ e g(z/)} is bounded in M(G) hence by Alaoglu's theorem
it has a weakly convergent subnet. So there is μ e M(G) with
μ I j 0 = ψ9 and Ao must be Sidon.

1.16. Many characterisations of Sidon sets have weighted analogues,
like 1.10. More of these may be found in [11].

2. Thick TF-Sidon sets*

2.0. To find TF-Sidon sets which are not Sidon it suffices, by
1.2, to take A £ X not Sidon and then choose Wel2(A) (such Δ exist
since infinite subgroups are not Sidon). It is the purpose of this
section to exhibit non-Sidon sets Δ which are TF-Sidon for some
Wί l\Δ). These sets are in the dual of the circle group and are not
even Λ((l).

The proof relies on Riesz products and therefore requires a sort
of independence condition on Δ. Recall Δ2 — {χξ: χ, ξ e Δ] whenever
ΔQX.

THEOREM 2.1. Suppose Δ = \J {Δn: n e 31} where 0 < v(Δn) < ^ 0

and
( i ) l ί Λ ,
(i i) Δ~1 = Δnf

(iii) Δn+1 QX\U {Δl«Δϊ Δε

nκ et e {0, 1, 2} for 0 £ i ^ n and at
most one εt equal to 2}, and

(iv) Δl+ι £ I \ U {40^Ίei Δz«\ et e {0, 1} for O^ί^n and
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Define W: A —• (0, 1] to equal v{An)~ι on An. The conclusion is that
A is W-Sidon.

Proof. Suppose φ e 9ΐJ with || Φ IU ̂  1. For n e Sft define tn e T(G)

by

Σtn = (2v(An)r( Σ Φ(χ)(χ + χ)

It is easy to see that

(2.1.1) £π is real-valued

(2.1.2) H U c o ^ l

(2.1.3)

Next for iVe 91 set PN = Π^o (1 +1%) so that P^ = 1 + Σί=o ί + Qiv
where

QN — Σ ^n1̂ w2 + Σ tn£n£n +
(2.1.4) 0£nλ<n2£N 0^1<w2^3^iV

I ^ 0 ^ 1 * * " ^iV

(2.1.5) N o w P N \ A n = t n \ A n i t O ^ n ^ N

provided that whenever 0 ^ n ^ N,

An Q X\[sp(l) U U {Am 0 ^ m ^ iV and m ^ ^} U sp(Q^)] .

Consequently the lemma to follow ensures this for each Ne 5iZ.
By (2.1.1), (2.1.2) and (2.1.3), for each N, if we have

1 g U {Λ: 0 ^ % ̂  JSO U

then

(2.1.6) II P* Hi = ί PN = 1 + Σ ( ί. + ( = 1 .

Again, the lemma assures us of this.
So by (2.1.6), {PN:Ne%l} is bounded in M(G) and thus has a

weak cluster point τ e M(G); let μ — 2r. Then for each % e 9ΐ and

μ(χ) - 2τ(χ) - 2?Λ(χ) by (2.1.5)

= v{AnΓφ{χ) by (2.1.3)

y definition of W.

Thus /ϊ I A = TF^ so by 1.13(iii), J is W-Sidon.
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LEMMA 2.2. Suppose {An: n e 31} £ ^β(X) satisfies conditions (i)
to (iv) of the previous theorem. Then with QN given by (2.1.4), for
each iVeϊϊ,

( i ) 0 ̂  n ̂  N implies

An £ X\[{1] U U {4»: 0 ̂ m^ N and m Φ n] U sp(QN)],

(ii) lίU{Λ:O^n^i^}U

Proof. By (2.1.4) and (2.1.3),

sp(QN) £ U f^o^i1 4 ^ : e, e {0, 1} for 0 £ i ^ N and Σ e<̂  ̂  2 i .

For brevity define

A(iV, w) = {1} U U {4»: 0 ̂  m ^ iSΓ and m ^ n) for 0 ̂  w ^ iSΓ,

and

j) = U {^o^i1 ΛNN' et e {0, 1} and Σ ε, ^ i} for j e {1, 2} .
0

In these terms we have to prove, for each
implies An £ X\[A(N, n) U B{N, 2)], and

1 0 U ίΛ: 0 ̂  n ̂  iV} U 5(iV, 2) .

A straightforward induction, relying heavily on 2.1(ii), completes
the argument.

THEOREM 2.3. There is a subset A of $ which is W-Sidon for
some Wel°°(A)\l2(A) yet which is not A(ϊ).

Proof. Take ra0 Φ 0 and let AQ = {±m0}. Supposing Ao, --Άn have
been defined so as to satisfy the hypotheses of 2.1, let m e 9 ϊ be the
supremum of the finite set

U {ε<A + + εnAn: et e {0, 1, 2} with at most one e< = 2} .

Now if n = 0 set Λ = {±(m + 1)} and if n ̂  1 take

An+1 - {±i(m + 1): 1 ̂  i ^ [(Λ + l)/2]} .

Since J w + 1 + ̂ ίw+1 is also disjoint from the finite set above, it is
disjoint from

U \ε0AQ + + εnAn: e< e {0, 1} with Σ ε, ̂  l i .

Consequently 2.1 shows A ~ \J {An: n 6 51} is W-Sidon where
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so W$l\A).
By construction A contains arbitrarily long arithmetic progres-

sions hence it is not Λ(l) by [9], (4.1).

2.4. Using multiplier notation from 4.2, by 3.3 to follow,

l\A) = (CΔ(G\ AΔ{G))

whenever A is a subgroup of X. If z/CX, ParsevaΓs identity shows

l\A) Q (CΔ(G), AΔ(G)) .

To find A for which this inclusion is strict it suffices to take A
an infinite Sidon set so that 1 e (CΔ(G\ AΔ{G))\l\A). However 2.3 pro-
vides examples of non-Sidon sets A in Q for which the strict inclusion
holds. It also indicates the impossibility of extending [1], Theorem
1 to arbitrary subsets of X.

3* The algebra of weight functions*

3.0. From 1.10 we may read off more expressions for

i = sup{Σ \W(χ)f(χ)\:feCΔ(G) with | | / | L ^ 1}

= mp{mί{\\ f\\t: f eL\G) with f\Δ =Wφ}:φeco(Δ)

= $uv{inΐ\\μ\\:μeM(G) with μ\ A = Wφ}: φ el~(A) and

THEOREM 3.1. 3B(J) is a commutative Banach algebra under
\\Ί\Δ and pointwise operations. It has an identity iff A is Sidon.

Proof. The following straightforward formulae establish that
|| ||j makes 2B(z/) into a commutative normed algebra under pointwise
operations.

Suppose WlfW2e^(A\ O:GE and teTΔ(G) with \\t\U £ 1. Then

^ i (^(Z) +W2(χ))t(χ) I ̂  Σ \WJχ)t(χ) \ + Σ \Wt(χ)t(χ) \Σ . ... _ . ... _
χej χed χeΔ

Σ I aWSχ)ϊ(%) = I α I Σ ! ^ ( X ) % ) \^\a\\\Wί\\Δ;
X e J χeΔ

Σ i ^ ω ^ ω ω i n ^ i U Σ i ω ω i n^iuii^iu by 1.1;
χ e Δ x e Δ

and if \\W\\j = 0 then ||1F|U = 0 hence W = 0.
Suppose {Wn: n e$i} £ SS(zί) is a Cauchy sequence. Then by 1.1

again, 11W.- Wm\U->0 hence there is W e Z~(J) for which \\W- TΓ.IU—0.
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If e > 0, there is Ne 91 such that n ^ N implies, for all t e TΔ{G) with
Hi 1 1 - ^ 1 ,

Letting m—+ °o9 the same inequality holds with W replacing Wm. So
n ^ N implies \\Wn — W\\Δ < ε. Furthermore

W\\Δ-\\WN\\Λ£W -WN\\Λ<*

hence \\W\\Δ < ε + \\WN\\Δ < oo, Thus Wn-+W in 2δ(J).
Finally 2B(J) has an identity iff 1 e 3B(Λ) iff J is Sidon.

3.2. From 1.1 we have: A is Sidon iff 2δ(J) = Γ(z/). Our next
few results consider 2B(J) contained in co(J).

THEOREM. // L\GT | A Q 2S(z/) (in particular, if 2B(J) =
then A is Sidon.

Proof. Suppose feCΔ(G)—we show H/IL < °° by using the
boundedness principle 1.11. Take therein A = l\A) with a the identity,
B = L\G) with β(g) = fg\A and C Ξ E J with the product topology.
Then for some constant tz, for all g e Lι{G), there is ̂ e l\A) such that
φ = fg I A and Σ*β, | ̂ (Z) | ^ Λ: || g ||1# In other words, Σχe

Allowing ^ to vary over an approximate identity,

ΣI/TOK -

as required.

3.3. At the other end of the spectrum we can have equality in
1.2.

THEOREM. If A is a subgroup of X then 3B(J) = l\A).

Proof. Obviously Γ(A) Q 2B(z/) by 1.2.
If We 2B(Λ) then by 1.3 we may suppose A = X. Now by l.lθ(iii)

and [1], 2.1(a), it follows that Wel\A). This completes the proof.

REMARKS 3.4. From 3.3 it follows that if A is cofinite in some
subgroup of X then SB(J) = £2(z/).

Similarly by [10], 8.7.8, if A is cofinite in the positive cone of
the ordered dual of a compact connected abelian group then 2S(z/) =
l\A).
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THEOREM 3.5. For A £ X, 2B(J) is an ideal in M(GT \ Δ which
is improper iff Δ is Sidon. For each TΓG2B(Z/), || W\\δ ̂  || W\\Δ (see
1.6 for notation).

Proof. If We3&(Δ) by applying l.lθ(iv) to ^ = 1, there is
veM(G) with v\Δ = W and || v\\ ^ \\ W\\Δ. So SΏ(zί) £ M(G)Ί Λ and
for all We$8(Δ), \\ W\\δ^ \\ W\\Δ.

Obviously the algebraic operations on these spaces coincide and
if μeM(G), for all te TΔ{G) with p | L ^ 1,

Σ,\W(X)μ(χ)t(X)\^\\β\U\\W\\J.
χeA

Thus Wμ I Δ G 2δ(J) which, by 3.1, is consequently an ideal in
M(GY I Δ which is improper iff A is Sidon.

NOTE. By 3.3, 2B(J) need not be closed in M{GT \ Δ.

3.6. As algebras, for J g l ,

Each is endowed with a norm-they are || ||2, || | | j , \\ \\δ and H-K̂  re-
spectively. When Δ is a subgroup of X, || ||2 and || ||j are actually
equivalent (by 3.3 and the open mapping theorem or [1], (2.1)(b)) on

A different proof of the inequality \\-\\δ <Ξ || ||j (established above)
follows by the method in [10], 1.9.1 which yields the characterisation:
for W e

\\W\\δ = sup{| Σ W(χ)t(χ) \: t e TΔ(G) and || ί |L ̂  1} .
led

This shows why, in 1.0, we kept the modulus signs inside the sum.
We now consider when pairs of these norms are equivalent.

THEOREM 3.7. For Δ Q X these are equivalent:
( i ) Δ is Sidon,

(ii) 11 -1 |oo and \\-\\Δ are equivalent on 2B(Λ),
(iii) || ||a and || ||j are equivalent on M(Gy\Δ,
(vi) || ||δ and H-IU are equivalent on M{G)"\Δ.

Proof, (a) If Δ is Sidon and W e 2δ(J) and t e TΔ{G) with
then

Σ \W(χ)t(χ) I <; \\w|U Σ I ?(χ) I ̂

Thus whenever W
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so the norms are pairwise equivalent.
(b) If Δ is not Sidon then by 3.2, l\Δ) Q m(Δ) c co(Δ). Since

12(Δ) contains all finite linear combinations of characteristic functions
of singleton subsets of Δ and these are dense in cQ(Δ), 2δ(J) cannot
be closed in co(Δ). Thus SB(J) cannot be complete under the restriction
of i|-Hoc. So by 3.1, | |. |U and || ||J cannot be equivalent on 2B(J).

(c) If || - ||, and || ||j are equivalent on M{Gf\ Δ then 2δ(J) =
M(GΓ I Δ hence by 3.5, Δ is Sidon.

(d) If || II, and || |L are equivalent on M{Gf\Δ then it is
complete under || |L and hence co(/ί) S M(G)A | J. So by 1.9(ii),

I Δ Q lι{Δ) and so Δ is Sidon.

REMARKS 3.8. ( i ) As a Banach algebra, 2B(J) is neither separable
nor a i?*-algebra in general. The former follows by 1.1 and the latter
by 3.3.

(ii) Considering CΔ{GT \ Δ as a sequence space, SS(J) is its α-dual
(see [8], § 30). However 3.3 shows that CA{G)~ \ Δ is not, in general,
a perfect sequence space.

3.9. Refer to [4], 1.1 for the definition of a p-Sidon set.

THEOREM. Let Δ £ X and 1 ^ p < 2. Then Δ is p-Sidon iff
V\Δ) Q

Proof. For p = 1 this is just 1.1 (it is trivial when p — 2). If
1 < p < 2 and Δ is p-Sidon then by [4], 1.2(ii), / 6 CΔ{G) implies
f\Δelp{Δ). So if Welp'(Δ), Holder's inequality shows

Σ
hence by 1.10, We$S(Δ).

Conversely if l*\Δ) £ 2S(z/) then by 3.5, Γ(Δ) £ ikί(G)̂  | Δ. So
by [4], 1.2(iv), Δ is p-Sidon.

From this follows, by the Hausdorff-Young theorem, a converse
of 3.2 for p>l.

COROLLARY. Ifl<p<2 and Δ is p-Sidon then LP(GΓ IΔ§2δ(zί).

4* Multipliers and ΫF-Sidon sets*

4.0. When Δ is Sidon, spaces of zί-spectral functions collapse.
Not only is Itf(G) - Λ,(G) but MΔ{G) - f| {-L3(G): 1 ^ P < «>}. In this
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section we investigate analogues for ΐ^-Sidon sets.
In this context it is natural to consider the trigonometric series

Σzej W(χ)μ(χ)χ for μeMΔ(G) (see for instance 1.15.) To ensure such
objects make sense we define, for Δ Q X,

T: l"(Δ) x PMΔ(G) > PMΔ(G)

by

T(Φ, π) = ΣΦ(χ)π(χ)χ

When φ is fixed we shall use the single variable notation Tφ

even for its restriction to some subset of PMΔ(G).
If φ e l°°(Δ) let πφ e PMΔ(G) be given by

^ e χ (φ(χ) if χ e A

Then T(^, TΓ) = π^ * π, for all π ePMΔ(G), so T is just convolution
from PMΔ(G) x PMΔ{G) into PMΔ{G). From this it is evident that T
is bilinear, continuous and behaves nicely under translation and
convolution.

THEOREM 4.1. If A is WSidon and t e TΔ(G) then

(4.1.1) | | Γ w ί | | p ^ 2 | | ΐ 7 | | , ί ) ι / 2 | | ί | | 2 i/ 2 < p < oo

and

(4.1.2) ϋ Γ ^ I I ^

Proof. We modify Rudin's proof for Sidon sets. For an ex-
position of the Rademacher functions {rn: ne^l) refer to [2], Chapter
14. By redefining rn on a set of measure zero so that is is right
continuous at each dyadic rational and left continuous at 1, we ensure
rne{±l}^\

For 16 TΔ{G) let j e X"1 be an injection with sp(t) Q j(3l), and
define B: X~-> {±l}[0>1] by

Irjϊx) if xe
1 (r0 if χ e

Now let /: S x [0, 1] —> (£ be given by

/(x, ^) - Σ, t(χ)Bt(p)χ{x) .

Using single variable notation we have fp e TΔ{G) for all p e [0, 1] and
for all xeG, fx = Σ%e^ t{j{n))j{n)(x)rn which is a Rademacher series.
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Since / is a finite sum of functions which are measurable on G x [0,1]
each dominated by the constant ||ί||oo, / is integrable and we may
use Fubini's theorem.

Suppose ,o e [0, 1]. By l.lθ(iv), there is μpeM(G) such that
βp(X) = W(χ)Rz(p), f o r a l l χ e Δ a n d \\μP\\ ^ \\W\\Δ\\R. (p)\U = \\W\\Λ.
So for χ e Δ,

= W(χ)Rχ(p)t(χ)Rχ(p) = W(χ)t(χ) =(TwtT{χ) :

and if χ e X\Δ,

(Twtnχ) = 0 = Λ(χ) .

T h u s T w t = μP*fP h e n c e \\ T w t \ \ P ^ \\μP\\ \\fP\\P ^ \\W\\ά\\fP\\p.
So when p = 2m (for some m e 3ΐ),

(4.1.3)

But a property of Rademacher series ([2], 14.2.1) ensures that for
all xeG,

So using Fubini's theorem to integrate (4.1.3) along [0, 1],

(4.1.4) ί \TwtΓ ^ \\W\\T(4m)m(^
JG \ieΔ

Now given any p e (2, oo) choose m e 91 such that 2(m — 1) < p ^ 2m
and 1 < m ^ p. Then (4.1.4) guarantees

I! Twt ||p ^ || Γ ^ t ||2m ^ 2 HIT | | , m 1 / 2 p II, ^ 2 | | W | | , p 1 / 2 | | * IU

which yields (4.1.1).
To prove (4.1.2) we argue similarly, except that for t e TΔ(G)

we redefine f(x, p) = Σ*ejW(χ)ΐ(χ)Rx(ρ)χ(x).

NOTATION 4.2. When E, FQPM(G) and AQX we shall write
(EA, FΔ) for the set of all φe&Δ such that πeEΔ implies φπ\ΔeF7\ Δ.
Writing {E, F) for (Ex, Fx) we return to the standard multiplier
notation.

4.3. Exploiting the conclusions of 4.1 we have

THEOREM. If 1 <Ξ pf q ^ oo with p Φ oo and q Φ 1,

( i ) supίllΓ^ίH^ίeΓ^G) a^d | | t | | p ^ 1} < oo,
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(ii) feL%G) implies TwfeLq

Δ(G),
(iii) We(L%G),Lq

Δ(G)), and
(iv)

Proof, (i) => (ii). Let {ta} £ T(G) be an approximate identity
(see [6], (28-53)). If feL%G) then ta*feTΔ(G) hence by (i), for
some tc > 0

By the weak compactness of norm balls in Lq{G) (q Φ 1) there exists
geLg(G) with \\g\\q ^ K \\f\\v and g = Wf. So by the uniqueness
theorem, Twf = geLq

Δ{G).
(ii) ==> (iii) is clear.
(iii) => (iv). By hypothesis and the boundedness result 1.11,

Tw: L%G) ~> Lgj(G) is bounded and linear. So by 1.8 and 1.9 there is
a bounded linear map K: Lq\GY\ Δ—*LVXGY\ A for which, whenever
/ 6 U\G) and χ e A, K(f\ A){χ) = W(χ)f(χ).

(iv) => (i) follows similarly.

4.4. It is usually hard to identify {EΔ, FΔ) even when (E, F) is
known (for E, F g PM(G)) so we pause to combine the approach of
3.1 with the result above.

COROLLARY. Let 1 ^ p, q ^ co with pΦoo and pΦl. Then W e
(L%G), LtG)) iff suv{mί{\\g\\vr.geU\G) and g\A = Wf\A}:feLq'(G)
and\\f\\g^l}^suv{\\Twt\\q:teTΔ(G)with\\t\\P^l}<c. (L%G),LΔ(G))
is a Banach space and when p ^ q it is a commutative Banach algebra
which has an identity iff A e Λ(q).

REMARKS, (i). Although {L%G\ Lq

Δ{G)) is unknown in general,
special cases yield: W e {L%G\ IΛ{G)) iff W e l°°(A); and for 1 ^ p < oo,
We(L%G\ L7(G)) iff WeLp'(GT\A by [2], 16.7.5.

(ii). Conditions sufficient to ensure membership to (LP(Z), Lg(%))
are known and yield:

if Kp ^ 2 <q < oo and W e £ J with

sup {\W(n) \(l + \n \γ/p~υq: neA}<oo

then W 6 {L%%\ Lq

Δ{%))—see [2], 16.4.6(3). More involved conditions
apply when q = p.

4.5. When p = 1, 4.3 can be extended 'at each end'.
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COROLLARY. For 1 < q < °° these are equivalent:
( i ) We(LΔ(G),LΔ(G)),
(ii) WMΔ{GT\ΔQL&GT\A,
(iii) WL-\GT I Δ C LT{GT \ Δ,
(iv)

Proof, (i) => (ii) follows as in 4.3(i) =- (ii).
(ii) => (iii). Since (ii) =» (i), 4.3 implies this.
(iii) =» (iv). If / e L '(G), by [6], (32-30), there exist geLι(G)

and /„ 6 L?'(G) with f=g */0. By (iii) there is &„ 6 L~(G) with
Wf0 \Δ = ίio\Δ. Setting h = g*h0 gives he C(G) and

h\Δ = gh,\Δ = gWf0 \Δ = Wf\Δ

as required.

4.6. More can also be said when p — 2.

THEOREM. For 1 < q ^ », TΓe (LK^), ^(G)) i#/or αW / e

(4.6.1) ( Σ I

for some constant /c.

Proof. (==>) uses the adjoint of Tw as in 4.3(iii) =» (iv).
(<=). ParsevaΓs identity with the hypothesis shows WLq'{GT \ A £

| J hence by 4.3(iv), We{UΔ{G), U{G)).

NOTE. By choosing an approximate identity the method above
shows We(L2j(G),L7(G)) iff Wel\A), as noted in 4.4(i).

Since {UΔ{G)), IrJ(G)) £ (L5(G), i?(G)) we have thus dealt with
the case q = oo of 4.5. Alternatively,

Z2(̂ ) when 1 ^ p ^ 2.

See also 4.8.

4.7. Summarising what we have gleaned about PΓ-Sidon sets by
virtue of 4.1:

COROLLARY. // A is W-Sidon then

( i ) for all μeM,(G)f TwμeUΔ{G) and \\ Twμ\\2 £ 8 || W\\ά \\μ\\,
(ii) for all feLj(G),TwfeL%G) whenever 2 < p < oo and

\\Twf\\p^2\\W\Up»*\\f\\2,
(iii) for all μ e MΔ{G), Twψ e L%G) whenever 2 < p < oo and
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(iv) for all ψe P(A), there is fe C(G) such that f\ A = Wφ and
ί S 8 | | T Γ | U | ^ ( i 2 , and

(v) if 1 < p ^ 2 and fe LP(G) then

W(χ)f(χ) I2)1'2 <£ 2 || W\\Δp^ \\ f

Proof. All are obvious except possibly (iii). If μeMΔ(G) and
2 < p < oo, by (i) and (ii),

^ 2 || W\\Δ v
11* II Γ ĵti ||2

4.8. For which W can l.lθ(vi) be tightened to

(4.8.1) WL%GΓ I Δ Q l\A)

for some p e [ l , oo)? We show that when 1 ̂  p <Ξ 2, (4.8.1) holds
iff J is a trivial TF-Sidon set, and we give a partial answer when
2 < P < oo.

THEOREM. If A Q X then
( i ) 1 ̂  p < oo implies (L%G), AΔ{G)) Q LP'(GΓ \ A,
(ii) l^p^2 implies lp(Δ) Q (L%G), AΔ(G))9

(iii) 2 < p < oo implies l\A) Q (L%G), AΔ{G))9 and
(iv) 2 < j) < - ίmp^βs (L5(G), A4(G)) Π (L5(G), W(G)) £ ί4(^)

Proof. ( i ) This follows by 4.4(i) but may be proved quickly
as follows. If We (L3(G), AΔ(G)) then letting if denote the composition
of the isomorphism of 1.8(i) with TfF, we have K: Γ{A) ^ U'{GT \ A
and whenever ψ e Γ{A) and XeΔ, (Kφ)(X) = W{l)φ{l). Taking φ = l
this gives

(4.8.2) fe LP'{G) with /1 A = W

as required.
(ii) If 1 ̂  p S 2 and feL%G) then by the Hausdorff-Young

theorem and Holder's inequality, whenever Welp(A),

Έ\W(χ)?(χ)\£\\W\\,\\f\\p< - .

(iii) If 2<p<oo and feL%G) then f\Jel\J) hence when

(iv) Continuing from (4.8.2), if 2 < p < oo, 4.6 shows
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(Σ,\W(χ)ήin£2\\W\\Δp
ut\\f\\,.,

so Wel\A).

REMARKS. ( i ) Taking W constant, (4.8.2) shows there can be
no infinite Sidon sets A with LV

Δ(GY \ A Q V(Δ) when 1 ̂  p < oo.
(ii) Results (i) and (ii) above combine to show that trivial

TΓ-Sidon sets are precisely the TΓ-Sidon sets for which (4.8.1) holds
when pe [1, 2].

Results (iii) and (iv) do not interlock in this way but show, thanks
to 4.7(v), that when pe (2, oo), (4.8.1) cannot hold when A is T7-Sidon
and W$l\Δ).

(iii) For comparison, {LP

Δ{G), AΔ{G)) is identified when A is a
subgroup of X in [6], (36-20) via the method of 1.3.

4.9. When W = 1 the inclusions implied by 4.7 for Sidon sets
are, by ParsevaΓs identity, equalities. In fact these are the only
TF-Sidon sets with equality:

THEOREM. A is Sidon whenever it is W-Sidon and one of these
holds.

( i ) l\A)^WMΔ{GT\A,
( i i ) L~(GΓ\AQW12(A),
(iii) C(GΓ\AQW12(A),
(iv) L%GT\ A £ Wl\A), for some pe(2,oo) and
(v) l\A) c WLP(GΓ I A, for some p e (1, 2).

Proof. Theorem 1.12 as used in 1.14 makes short work of these.

4.10. So far we have discussed the behaviour of Twπ when π
is a zί-spectral measure of ZAfunction and A is TF-Sidon. Immediate-
ly from l.lθ(viii) we have: Δ is TΓ-Sidon iff WPMΔ(GY\ A C Λf(G)Ί Δ.
From 1.14(i) this inclusion is proper whenever A is not Sidon.

Evidently TW(PMΔ(G)) £ UΔ{G) iff A is a trivial TF-Sidon set and
if TW(PMΔ(G)) Q MΔ(G) then W e l\Ay

4.11. We now deduce more about those W in 2B(J). Specialising
to X (though (4.11.1) holds in general) we use:

THEOREM. Let Fe&\ If φFe Π {!/(£)": 1 ̂  p < ™} for all
φ 6 cQ(3) then for all a > 0, Σ»*<> I n^Fin) | < oo.

Proof. Successive applications of 1.11 and 1.8 show that if
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Kp<oo, then φFeLP(%Γ for all φ eco(g) implies WLPJ(GΓ| ΔQ l\Δ).
So the hypothesis entails

(4.11.1) for all p e (1, oo) and all g e Lp(%), Σ I F(n)g(n) | < oo .

Now if 0 < α < l then by [2], Exercise 7.8, there exist p e ( l^l-α)" 1 )
and g e LP(Z) such that g(n) = n~a for w ̂  0. If a ;> 1 then the map
w i-> n~a belongs to Z2(3\{0}) hence there is g e L2(Z) with g(n) = w~α

whenever n Φ Q.
In either case, substitution into (4.11.1) yields

ΣlίWn-'K -

as required.

NOTES. ( i ) In [12] we show the converse of this theorem to
be false.

(ii) The sum Σn*o I n~aF(n) \ was first considered by Hardy and
Little wood in [5]. Their results imply that it is finite whenever a > 1/2
and may be infinite otherwise, when Fe Π {Lp(Xy: 1 <̂  p < co}.

4.12. The information this gives about W is:

COROLLARY. If We 3B(J) then for all μe MΔ(Z), if a > 0 then

H< °° .

Proo/. In fact if φ e Γ(3) (not merely c0C8)) and J is PΓ-Sidon
then evidently Δ is T7^1/2-Sidon. Hence by 4.7(ii), whenever μ e MΔ(G),

so the conclusion follows from 4.11.

4.13. Using ϊ°°(3) rather than co(,3) above seems to be stronger.
However in this context they are equivalent.

THEOREM. Let F e &x. Then φF belongs to f| {LP{GT: l^p<^}
for all φ e cQ(X) iff it does for all φ e l°°(X).

Proof. This follows readily upon taking the bidual of the map
K:co(X)-*Lp(G) given by (KφΓ = φF.

4.14. It might be hoped that a tight necessary condition for
W to belong to 2δ(J) follows from 4.12 by eliminating μ somehow
to give a purely combinatorial property. However the zί-spectral
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measures compensate for variations in the thickness of Δ, so we
turn to other means for this.

Refer to [3], 3.1 for the definition of a test family of order m.

THEOREM. If We (L%G), Lq

Δ(G)) where l ^ p ^ 2 and 1 < q < oo,

and % is a test family of order m then for each Φ e $,

Σ l ^ ( % ) I2 = ^2mv(Φ)2/q

χeΦf)J

where /c is the unnamed constant in 4.4.

Proof. This is a routine modification of [3], 3.2 for which details
appear in [11].

COROLLARY 4.15. If Δ is W-Sidon and % is a test family of
order m then for each Φ e % with v(Φ) ̂  3,

χΣf]d\W(χ)\2^Se\\W\\jm\ogv(Φ).

Proof. By hypothesis and 4.7(ii), W e (Ll(G), L%G)) whenever
qe(2, oo) and so by 4.14,

Taking q = 2 log v(Φ) so that q > 2 because v(Φ) ^ 3, this entails the
result.

NOTES. (i). This means that if ε > 0, the number of elements
of Δ in Φ with |W(χ)| > ε remains small as Φ enlarges.

(ii). For q — oo the result above is overshadowed by the note
to 4.6.

The results of this paper appear in [11]. The author is deeply
indebted to his supervisor, Professor R. E. Edwards, for his sugges-
tions and encouragement. He is also grateful to Dr. J. R. McMullen
for a correction to 1.7 and to the referee for several improvements.
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