OSCILLATION PROPERTIES OF CERTAIN SELF-ADJOINT DIFFERENTIAL EQUATIONS OF THE FOURTH ORDER

GARY D. JONES AND SAMUEL M. RANKIN, III

Assuming oscillation, a connection between the decreasing and increasing solutions of

 $(1) \qquad (ry'')'' = py$

is established. With this result, it is shown that if $r \equiv 1$ and p positive and monotone the decreasing solution of (1) is essentially unique. It is also shown that if p > 0 and $r \equiv 1$ the decreasing solution tends to zero.

It will also be assumed that p and r are positive and continuous and at times continuously differentiable on $[a, +\infty)$. By an oscillatory solution of (1) will be meant a solution y(x) such that there is a sequence $\{x_n\}_{n=1}^{\infty}$ diverging to $+\infty$ such that $y(x_n) = 0$ for every n. Equation (1) will be called oscillatory if it has an oscillatory solution.

Equation (1) has been studied previously by Ahmad [1], Hastings and Lazer [3], Leighton and Nehari [8] and Keener [7].

Hastings and Lazer [3] have shown that if p > 0, $r \equiv 1$ and $p' \ge 0$ then (1) has two linearly independent oscillatory solutions which are bounded on $[a, +\infty)$. They further show that if $\lim_{t\to\infty} p(t) = +\infty$ then all oscillatory solutions tend to zero. Our result will show that there is a nonoscillatory solution which goes to zero "faster" than the oscillatory ones.

Keener [7] shows the existence of a solution y of (1) such that $\operatorname{sgn} y = \operatorname{sgn} y'' \neq \operatorname{sgn} y' = \operatorname{sgn} (ry'')'$. Under the additional hypothesis that $\liminf p(t) \neq 0$ he shows that $y(t) \to 0$ as $t \to \infty$. We will give a condition for $y(t) \to 0$ where $\liminf p(t)$ can be zero.

Ahmad [1] shows that if (1) is nonoscillatory then every solution z of (1) with the properties of y above satisfy z = cy for some constant c.

The following lemmas due to Leighton and Nehari [8] will be basic in our investigation.

LEMMA 1. If y is a solution of (1) with $y(c) \ge 0$, $y'(c) \ge 0$, $y''(c) \ge 0$ and $(r(c)y''(c))' \ge 0$ but not all zero for $c \ge a$ then y(x), y'(x), y''(x) and (r(x)y''(x))' are positive for x > c.

LEMMA 2. If y is a solution of (1) with $y(c) \ge 0$, $y''(c) \ge 0$, $y'(c) \le 0$ and $(r(c)y''(c))' \le 0$ but not all zero for $c \ge a$ then y(x) > 0, y''(x) > 0, y'(x) < 0 and (r(x)y''(x))' < 0 for $x \in [a, c)$. We will also use the following theorem of Keener [7].

THEOREM 1. There exists a solution w(x) of (1) which has the following property:

We will first show a connection between the decreasing solution of (1) given by Theorem 1 and the solution that tends to ∞ given by Lemma 1. We will use the fact that if y_1, y_2 and y_3 are solutions of (1) then $r(x)W(y_1, y_2, y_3; x) = r(x) \det(y_i^{j-1}(x))$ (i, j = 1, 2, 3, 4) is a solution of (1). Further we have

LEMMA 3. If y_1, y_2, y_3, y_4 is a basis for the solution space of (1) then $W_{123} = rW(y_1, y_2, y_3)$, $W_{124} = rW(y_1, y_2, y_4)$, $W_{134} = rW(y_1, y_3, y_4)$ and $W_{234} = rW(y_2, y_3, y_4)$ is a basis for the solution space of (1).

Proof. Let

A =	$y_{_1}$	${oldsymbol{y}}_{\scriptscriptstyle 2}$	${oldsymbol{y}}_3$	${y}_{\scriptscriptstyle 4}$
	y'_1	$y_{\scriptscriptstyle 2}'$	$y'_{\scriptscriptstyle 3}$	$egin{array}{c} y_{4} \ y'_{4} \ ry''_{4} \end{array}$
	ry''_1	$ry_{\scriptscriptstyle 2}^{\prime\prime}$	$ry_{\scriptscriptstyle 3}^{\prime\prime}$	ry''_{*}
	$(ry''_1)'$	$(ry_2^{\prime\prime})^\prime$	$(ry_{\scriptscriptstyle 3}^{\prime\prime})^\prime$	$(ry''_4)'$

Then

$$\mathrm{adj}\,A = egin{bmatrix} (r\,W_{234}'')' & -r\,W_{234}'' & W_{234}' & -W_{234} \ -(r\,W_{134}')' & r\,W_{134}' & -W_{134}' & W_{134} \ (r\,W_{124}'')' & -r\,W_{124}'' & W_{124}' & -W_{124} \ -(r\,W_{123}'')' & r\,W_{123}'' & -W_{123}' & W_{123} \ \end{bmatrix} \ = egin{bmatrix} (r\,W_{134}'')' & r\,W_{124}'' & -W_{124} \ (r\,W_{134}'')' & r\,W_{134}'' & W_{134}'' & W_{134} \ (r\,W_{124}'')' & r\,W_{124}'' & W_{124}'' & W_{124} \ (r\,W_{123}'')' & r\,W_{123}'' & W_{123}'' & W_{123}'' \ \end{bmatrix}$$

Thus since det $A \neq 0$, det $\operatorname{adj} A \neq 0$. Consequently W_{123} , W_{124} , W_{134} and W_{234} is a basis for the solution space of (1).

LEMMA 4. Let y_1, y_2, y_3, y_4 be a basis for the solution space of (1). Then there is a basis for the solution space of (1), z_1, z_2, z_3, z_4 such that $W_{123} = rW(z_1, z_2, z_3) = k_1y_1$, $W_{124} = rW(z_1, z_2, z_4) = k_2y_2$, $W_{134} =$ $rW(z_1, z_3, z_4) = k_3y_3$ and $W_{234} = rW(z_2, z_3, z_4) = k_4y_4$ where $k_i \neq 0$, i = 1, 2, 3, 4 is a constant.

Proof. Let u_1, u_2, u_3, u_4 be a basis for the solution space of (1). Then $rW(u_1, u_2, u_3)$, $rW(u_1, u_2, u_4)$, $rW(u_1, u_3, u_4)$, $rW(u_2, u_3, u_4)$ is also a basis for the solution space of (1) by Lemma 3. Thus each y_i is a linear combination of the rW's. Suppose $y = c_1 rW(u_1, u_2, u_3) + c_2 rW(u_1, u_2, u_4) + c_3 rW(u_1, u_3, u_4) + c_4 rW(u_2, u_3, u_4)$ where $c_1 \neq 0$. Letting $v_1 = c_1 u_1 + c_4 u_4$, $v_2 = c_2 u_2 - c_2 u_4$, $v_3 = c_1 u_3 + c_2 u_4$ and $v_4 = u_4$, we have $W(v_1, v_2, v_3) = c_1^2 [c_1 W(u_1, u_2, u_3) + c_2 W(u_1, u_2, u_4) + c_3 W(u_1, u_3, u_4) + c_4 W(u_2, u_3, u_4)]$, $W(v_1, v_2, v_3, u_4)$], $W(v_1, v_2, v_3, u_4) = c_1^2 W(u_2, u_3, u_4)$. Repeating the argument three times gives the desired result.

LEMMA 5. Let z be a nonoscillatory solution of (1). Then the solution space of

(2)
$$z(ry'')' - z'ry'' + z''ry' - (rz'')'y = 0$$

is a three dimensional subspace of (1). Further, if z satisfies the conditions of Lemma 1 or Theorem 1 then (2) is oscillatory if and only if (1) is oscillatory.

Proof. Using Lemma 4, choose solutions y_1 , y_2 , y_3 of (1) such that $kz = rW(y_1, y_2, y_3)$, where $k \neq 0$. Then

$$egin{array}{c|ccccc} y_1 & y_2 & y_3 & y \ y_1' & y_2' & y_3' & y' \ ry_1'' & ry_2'' & ry_3'' & ry'' \ (ry_1'')' & (ry_2'')' & (ry_3'')' & (ry'')' \end{array} = 0$$

is equivalent to (2). Thus, the first part of the lemma follows. It follows from Lemma 1 that if z satisfies the conclusion of the lemma and if y is a solution of (2) such that y(d) = y'(d) = 0, r(d)y''(d) = 1where d > c, then y(x) > 0 for x > d, or using the definition of Hanan [2], (2) is C_{II} . In the same way it follows from Lemma 2 that if y is a solution of (2) where z satisfies (P) such that y(d) =y'(d) = 0, r(d)y''(d) = 1 then y(x) > 0 for $x \in [a, d)$, i.e. (2) is C_I [2]. Writing (2) is the form

$$(3) \qquad (ry''/z)' + rz''y'/z^2 - (rz'')'y/z^2 = 0,$$

we have by [4, Theorem 3, p. 338] that (3) is $C_I(C_{II})$ if and only if

$$(4) \qquad \qquad [(ry'/z)' + rz''y'/z^2]' = -(rz'')'y/z^2$$

is $C_{II}(C_I)$. It then follows, using the methods of Hanan [2] that (3) is oscillatory if and only if (4) is oscillatory. Since z satisfies (2), choose a basis for the solution space of (2) of the form z, u_1, u_2 . Then $zu'_1 - u_1z'$ and $zu'_2 - u_2z'$ satisfy (4) and

$$(5) \qquad (ry'/z^2) + [2rz''/z^3]y = 0 \; .$$

But Leighton and Nehari [8, p. 335, 3.4] show that (5) is oscillatory if and only if (1) is oscillatory. Thus the result follows.

THEOREM 2. Suppose (1) is oscillatory. If there exist two linearly independent solutions n_1 and n_2 of (1) which satisfy (P), then there is a $c \ge a$ and an oscillatory solution u of (1) such that u + Nis oscillatory, where N is the solution defined by N(c) = N'(c) =N''(c) = 0, (r(c)N''(c))' = 1.

Proof. Consider the equation

(6i)
$$n_i(ry'')' - n'_iry'' + n''_iry' - (rn''_i)y = 0$$
, $i = 1, 2$.

By Lemma 5, each of the equations (6) are oscillatory and C_i . Since n_1 and n_2 are linearly independent, we can choose $c \ge a$ such that $n'_1(c)n_2(c) - n'_2(c)n_1(c) \ne 0$. Let u_i be the solution of (6i) defined by $u_i(c) = u'_i(c) = 0$, $r(c)u''_i = 1$ for i = 1, 2. Since (6i) is C_i and $u_i(c) = 0$, it follows that u_1 and u_2 are oscillatory solutions of (1). But $u_1(c) - u_2(c) = u'_1(c) - u'_2(c) = u''_1(c) - u''_2(c) = 0$, $(r(c)u''_1(c))' - (r(c)u''_2(c))' = n'_1(c)/n_1(c) - n'_2(c)/n_2(c) \ne 0$. Thus $u_1 - u_2$ is a multiple of N and the result follows.

THEOREM 3. Suppose (1) is oscillatory. If there is a $c \ge a$ and an oscillatory solution u of (1) such that u + N is oscillatory, where N is the solution of (1) defined by N(c) = N'(c) = N''(c) = 0, (r(c)N''(c))' = 1 then (1) has a basis for the solution space with all oscillatory elements.

Proof. Let z be a solution of (1) that satisfies (P). Then (2) is C_{I} and oscillatory. Thus there is a basis for the solution space of (2), say $\{u_{1}, u_{2}, u_{3}\}$, with all oscillatory elements [5]. Since N does not satisfy (2), there is a constant 0 < k < 1 such that u + kN is not in the solution space of (2). Since u + N is oscillatory, u + kN is oscillatory. Thus $\{u + kN, u_{1}, u_{2}, u_{3}\}$ is a basis for the solution space of (1).

THEOREM 4. Suppose (1) has a basis for its solution space with all oscillatory elements. Then there are two linearly independent solutions n_1 and n_2 of (1) which satisfy (P).

Proof. Suppose $\{y_1, y_2, y_3, y_4\}$ is a basis for the solution space of (1) with all oscillatory elements. By Lemma 4 there is a basis $\{z_1, z_2, z_3, z_4\}$ of (1) such that $W_{123} = k_1y_1$, $W_{124} = k_2y_2$, $W_{134} = k_3y_3$, $W_{234} = k_4y_4$ where $k_i \neq 0$ for i = 1, 2, 3, 4. Since y_1 is oscillatory, there is a sequence $\{x_i\} \rightarrow \infty$ such that $y_1(x_i) = 0$ for every *i*. Since $W_{123} = k_1y_1$, for every x_i there are constants c_{ij} for j = 1, 2, 3 such that $c_{i_1}^2 + c_{i_2}^2 + c_{i_3}^2 = 1$ and

$$u_i \equiv c_{i_1} z_1 + c_{i_2} z_2 + c_{i_3} z_3$$

has a triple zero at x_i . Since $\{c_{i_j}\}_{i=1}^{\infty}$ are bounded for i = 1, 2, 3, we can assume without loss of generality that

$$\lim c_{ij}=c_j \hspace{1.5cm} ext{for} \hspace{1.5cm} j=1$$
, 2, 3 .

Hence using Lemma 2 and an argument such as in [7, p. 281]

$$W_{\scriptscriptstyle 1} = c_{\scriptscriptstyle 1} z_{\scriptscriptstyle 1} + c_{\scriptscriptstyle 2} z_{\scriptscriptstyle 2} + c_{\scriptscriptstyle 3} z_{\scriptscriptstyle 3}$$

satisfies (P). In the same way there are constants d_{ij} , i = 2, 3, 4; j = 1, 2, 3, such that

$$egin{array}{lll} W_2 &\equiv d_{2_1} z_1 + d_{2_2} z_3 + d_{2_3} z_4 \ W_3 &\equiv d_{3_1} z_1 + d_{3_2} z_2 + d_{3_3} z_4 \ W_4 &\equiv d_{4_1} z_2 + d_{4_2} z_3 + d_{4_3} z_4 \end{array}$$

satisfy the (P). Clearly at least two of W_1 , W_2 , W_3 , W_4 are linearly independent.

We will now use the above theorems to prove the following results for

$$(6) y^{iv} = p(x)y .$$

THEOREM 5. Suppose (6) is oscillatory, $p \in C'[a, +\infty)$ and p is monotone. Then there is a unique solution of (6) (up to constant multiples) which satisfies (P). Further, a basis for the solution space of (1) has at most three oscillatory elements.

Proof. Suppose there are two solutions of (6) that satisfy (P) and are linearly independent. Then by Theorem 1, there is a $c \ge a$ and an oscillatory solution u of (6) such that u + N is oscillatory, where N is the solution defined by N(c) = N'(c) = N''(c) = 0, N'''(c) = 1. By Lemma 1, N(x), N'(x), N''(x), and N'''(x) are positive for $x > c \ge a$. Thus N, N' and N'' are unbounded. Multiplying (6) by y' where y

is a solution of (6) and integrating from a to x, we obtain

$$egin{aligned} G[y(x)] &= y^{\prime\prime 2}(x) - 2y^{\prime}(x)y^{\prime\prime\prime}(x) + p(x)y^2(x) \ &= G[y(a)] + \int_a^x p^{\prime}(t)y^2(t)dt \ . \end{aligned}$$

Assuming that $p'(x) \leq 0$, G[y(x)] is bounded. Let $\{x_n\}_{n=1}^{\infty}$ be the sequence of maximum points of u''(x). Then $u''^2(x_n) \leq u''^2(x_n) + p(x_n)u^2(x_n) = G[u(x_n)]$. But since u + N is oscillatory and N'' is unbounded, u''^2 is unbounded, contradicting the boundedness of G[y(x)]. The second part of the conclusion follows from Theorem 4.

If $p'(x) \ge 0$, Lazer and Hastings [3] have shown that all oscillatory solutions are bounded. The results then follow from the above theorems.

Whether or not the conclusion of Theorem 5 is true without the monotone condition on p is an open question.

We conclude with the following observation.

THEOREM 6. If n(x) is a solution of (6) satisfying the conditions of Theorem 1 where (6) is oscillatory, then $\lim_{n\to\infty} n(x) = 0$

Proof. Equation (6) is oscillatory if and only if

(7)
$$(y'/n^2)' + (2n''/n^3)y = 0$$

is oscillatory. But, as in [6] it can be shown that $\lim_{x\to\infty} x^2 n''(x) = 0$. Thus if $\lim_{x\to\infty} n(x) = c > 0$ (7) is nonoscillatory.

REFERENCES

1. S. Ahmad, On the oscillation of solutions of a class of linear fourth order differential equations, Pacific J. Math., 43 (1970), 289-299.

2. M. Hanan, Oscillation criteria for third-order linear differntial equations, Pacific J. Math., 11 (1961), 919-944.

- 3. S. P. Hastings and A. C. Lazer, On the asymptotic behavior of solutions of the differential equation $y^{(4)} = p(t)y$, Czechoslovak Math. J., **18** (1968), 224-229.
- 4. G. D. Jones, Oscillation properties of y'' + p(x)y = f(x), Accademia Nazionale dei Lincei, 5 (1974), 337-341.

5. _____, Oscillation properties of third order differential equations, Rocky Mountain J. Math., 3 (1972), 507-517.

6. _____, An asymptotic property of solutions of y''' + py' + qy = 0, Pacific J. Math., **48** (1973), 135-138.

7. M. S. Keener, On solutions of certain self-adjoint differential equations of fourth order, J. Math. Anal. Appl., **33** (1971), 278-305.

8. W. Leighton and Z. Nehari, On the oscillations of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc., **89** (1958), 325-377.

Received November 13, 1975

MURRAY STATE UNIVERSITY