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INTERPOLATING SEQUENCES FOR FUNCTIONS
SATISFYING A LIPSCHITZ CONDITION

ERIC P. KRONSTADT

Let D be the unit disk in C, Lip (D) the space of func-
tions, /, holomorphic in D, continuous on D and satisfying a
Lipschitz condition:

\f{z) - f(w) \SM\z-w\ Vz,weD

If S = {αJΓ=i € D is a discrete sequence with no accumulation
points in D, let Lip (S) be the set of functions, g, defined on
S satisfying

I g(at) ~ g{a:) \ ^ M \ a i - a j \ Vί, i = 1,2,

We say S is a Lip (D) interpolating {LI) sequence if the re-
striction mapping from Lip (D) to Lip (S) given by / —> /1S is
surjective. Our aim is to describe some of the properties of
such sequences and to give some examples. Specifically we
show that an LI sequence must either be a uniformly separ-
ated sequence, or the union of two such sequences which
approach one another as they tend to 3D.

If/eLip(D) let Mf = Inf {Λf: \f(z)-f(w) \ ̂  M\z - w\Vz, weD}.
Mf is a pseudo-norm on Lip (D). If E is a closed subset of 5, let
LipsίD) = {/6 Lip (D):f(E) = 0}. Mf becomes a norm on Lip^(D)
which makes it a Banach space. Let H°°(D) be the space of bounded
analytic function on D, for feH°°(D), let | | / | | = Sup {|/(s)|: seD}.

is related to L ipφ) by the following:

( 1 ) / 6 Lip (D) iff / ' G H°°{D) in which case Mf = \\f'\\ .

If S c 5 is a set with no interior, define

= {f:S >C:lMs.t. \f(z)~f(w)\ ^ M\z - w\Vz, weS} .

If E is a closed subset of S, let Lip£ (S) = {/eLip (S):/(«)->0 as
^ £ in S). If /G Lip (S) define Jlf> = Inf {M: \f(z) - f(w) \ ^
M \z — w\ Vz, weS}. Again we see that Mf makes Lip^Oί?) into a
Banach space. We will say S is a Lip (D) interpolating (LI) set if
the restriction map, R:f—+f\S is a surjection from Lip(Z>) onto
Lip (5). Similarly if EczS is closed, S will be called a Li$E(D) in-
terpolating (LEI) set if ϋ? is a surjection from Lip£(D) onto Lip^ (S).
Clearly if S is an LI set, then S is an LI set and S is an LEI set
for all closed E c S. If # is finite, then 5 is an LI set iff S is an
LEI set.

PROPOSITION 1. If S is an LI set, there exists a constant ms > 0
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such that for every F e Lip (S) there exists f e Lip (D) such Mf ^ msMF

and f\S = F.

Proof. Since LipUo} S and Lip{Zo} D are Banach spaces, the open
mapping theorem gives such an ms for L{ZQ]I sets. If jFeLip(S)
then F — F(z0) e LipUo} S and MF_F{ZQ) = MF. Therefore there exists
g e LipUo> (D) Mg ̂  msMF and g \ S = F - F(«o). Let / - g + F(ίj0).

Taylor and Williams [5] and (independently) Korenblum [4] char-
acterized the zero sets of Lip (D), showing that there exists fe Lip (D)
such that S = {zeD: f(z) = 0} if and only if

( 2 ) P log (d{eiθ))dθ > - oo where d(eiθ) is the
Jo

(Euclidean) distance from eiθ to S

and

(3 ) S Π D = {̂ }Γ=i where Σ 1 - | ̂  | < oo .
ΐ l

PROPOSITION 2. // £ is LI £ft<m 3/eLip(Z)) such that / ί θ
/(S) Ξ 0. fierce S satisfies (2) and (3).

Proof. Let 20 6 5\S then the distance, d(z0, S), between z0 and S
must be bounded away from zero. Consequently F{z) = l/(z — z0) e
Lip (S). So there exists g e Lip (D) s.t. g(z) = l/(z — «0) for all zeS.
Clearly if f(z) = 1 ~ (z - zo)g(z), then /eLip(Z>), /(^0) = 1, while
f(S) = 0.

We are interested primarily in the case where S = {at}ΐLί is a
sequence in D, and from now on we will always assume S is such
a sequence. We relate LI sequences to interpolating sequences for

If z, weD, we define the pseudo-hyperbolic distance, p(z, w) =
\(z — w)/(l — zw)\. If S = {αJΓ=i, let JŜ  be the Blaschke product
with zeros precisely at at = 1, 2 . S is interpolating for H°°(D) if
the evaluation mapping from iϊ°°(Z)) to Z00 given by /—•{/(αi)}<Li is
surjective. A well known theorem of L. Carleson [1] is that S is
interpolating for H°°(D) iff it is uniformly separated (US), i.e., there
exists a constant m such that

Π p(aif ad) > — for all j .

We call the constant m in the above definition, a US bound on S.
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THEOREM 1. // S is LI then either
(a) S is US or
(b) S is not US but S = St U S2 where

S, = {6JΓ=i, S2 = {cJΓ=i are both US and Inf. {p(bιy c,): δ< Φ c j = 0.

REMARKS. In case (b) we allow for the possibility that b% = c{

for some (possibly infinitely many) but not all indeces i.

Lemma 1. Suppose T = {ώ;}JLi and suppose there exists a non-
zero function /eLip(Z?) which vanishes on T then

\f(z) l^ -dAl Bτ/{dj](z) I Vj = 1, 2,

Proof. feH°°(D) so / = FBT where FeH~(D). Now fix j .

1/(2) I - 1/(2) - f(dj) \ £ M f \ z - dj I V ^ G D i . e . ,

VzeD .

= 1 almost everywhere on

1 —

Since F(z)/(1 — d5z) e H°°(D) and | jBΓ/{di}(^) |
3D (here we are using (2)) it follows that

F(z)

i.e. \f(z) \

1 - d

Bτ(z) \\l~

VzeD

B T / { d j ] ( z ) \\z-dj

Proof of Theorem. If S is LI, Proposition 1 implies the exist-
ence of a constant ms and function fl9 f2, , e Lip (D) such that
Mfι ^ ms and

0 if j Φ i

InίWa,-ak\:Vk.kΦ i) if i = j .

Now fix i, and let T — S\{αJ then Lemma 1 gives

( 4) \fi(a>i) I ̂  w 5 I j?n{αy}(α,) I | at - αy | for all j Φ i .

Choose α, so that | at — a3- \ ̂  2 !/*(&*) |. Then by (4)

( 5 ) l/2ms ^ Π mp{β%, o>k)

If Inf {ρ(ait ak): i Φ k) = ε > 0, then by (5),

I I Py&iy &3') =

so that S is
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Otherwise Inf {p(aif aά): Vί, j , i Φ j} = 0. In that case S is clearly
not US.

If i and j are such that p(aif a/) < l/(2ms) then (5) implies
p(ai9 ak) ^ l/(2ms)f p(ajy ak) ;> l/(2m5) for k Φ i, j . Consequently the
relation, at ~ a5 iff p(au a/) < l/(2ms) is an equivalence relation on
S which partitions S into a collection, C, of equivalence classes of
no more than two elements each. Let

S, = {ah: lj2 ^ j \ s.t. {ah9 ah) e C}

S2 = {ah: ij\ ^ j2 s.t. {αilf αi2} 6 C} .

Then for a = 1, 2, if α io e Sβ, (5) yields

Π P(ak, ad0) ^ -7-7

Consequently S1 and S2 are both C7S. Renaming the points: St =
{δJίLi, S2 = {cjs=i so that {bif cj 6 C, we get the desired decomposition.

There remains the question of whether any LI sequences exist.
For example, it is possible to construct a US sequence, converging
to only one point on D, but violating (2). Hence US need not imply
LI. Theorem 2 and its corollary give some conditions under which
US does imply LI.

For fixed t, 0 < t < 1, define the nontangential wedge, Wt =
{z e D: (1 — | z21)/| 1 — z2 \ > t). Wt is the region lying between two
distinct circles with centers on the imaginary axis, which intersect
one another at ± 1 . Let Wt = D U [(5\ΐίζ)*] where (") means closure
and * means reflection across the unit circle. Let σ(z) = (1 — z)/(l + z).
σ maps D into the right half-plane. It takes Wt onto the region
lying to the right of both lines, y = ±(τ/l — t*/t)x, and it takes

onto the region lying between the two lines.

PROPOSITION 3. Suppose 0 < t < 1 and S = {αX=1 c Wt is US.
Then if g(z) = (1 - z2)Bs(z), g e Lip (D).

We require the following elementary facts:

Lemma 2. // ΩaC is open, and feH^iΩ), then for zeΩ,
\f'(z)\ ^ il/IIMfe 3i2), where d(z, dΩ) is the Euclidean distance from
z to dΩ, and \\f\\ = Sup { |/(s) | : s e f l } .

This is proved by applying the Cauchy Integral Formula around
circles centered at z with radii ^ d(z, dΩ).

LEMMA 3 (Theorem 1 of [2]). // S is US with US bound 1/δ,
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then there exists a constant β9 0 < β < 1, depending only on δ, such
that if p(z, an) > δ/2 for all n, \ Bs(z) | ^ β.

LEMMA 4. For any t, 0 < t < 1, and any ε, 0 < ε < 1, there
exists s > 0 such that Uε( Wt) = {zeD'.lwe Wt with p(z, w) < ε} c W8.

Proof of Proposition 3. Assume S has US bound, 1/δ. We will
show g' 6 H°°(D). Upon differentiating #, we see that it will be suffi-
cient to show (1 — z2)Bs\z) is bounded in D.

Take 8 as in Lemma 4, so that Uδ( Wt) c TΓ,, whereby | Bs(z) | ^ /9
for zeD\Ws by Lemma 3. Now if zeC\S, Bs(z*) = (B5(«))* (* still
means reflection across 3D). Hence by the definition of Ws, | .85(2) | ^
1//3 for « e WS\D. Since | JB5(^) | ^ 1 for zeD, it follows that £* e
H-(WS), and, by Lemma 2, 15^)1^1/(^(^,31^.)) for all ^eΐF,.
The proposition will be proved once we show d(z, d Ws) ^ k \ 1 — z2 \
for all ze D and some constant, k.

If zeD, let ^ e 3 # 3 be such that | wz — z \ = rf(«, 3 TFS). Clearly,
if Re («) ^ 0, then Re (wβ) ^ 0. Recalling the map σ(z) = (1 - «)/(! + «),
we see that

2| 3 - w. I ̂  I σ(«) - σ(wz) I ̂  sin θ \ σ(z) \

where θ is the angle between the lines y = ± ( τ / l — s2/s)x and the
imaginary axis. In fact, sin θ = i / l — s2. Therefore, if z 6 D and
Re (z) ^ 0,

- z2

Since W'β and D are symmetric about Re (z) — 0 the desired inequality
holds for all zeD.

COROLLARY. If S19 S2 c Wt and S, and S2 are both US then

(l-z2)BSl,S2(z)eUv(D).

THEOREM 2. Suppose 0 < t < 1, S = {an}n=ι c T7i, α^d S is US.
Then

(a) S is LI.
(b) There exists a sequence St = {6%}?=i such that St is US,

S \J S1 is LI, and p(an, bn)—>0 as n —+ 00
(c) If he Lip (S) and {λ }̂̂ =1 e I00 then there exists f e Lip (D) such

that f\S = h and f'(an) — Xn for all n.

The first of the folloging two lemmas is a straightforward cal-
culation with infinite products; the second is due to J. P. Earl.
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LEMMA 5. Suppose S = {αX=1 cD is US with US bound 1/5.
If P{<*>n, z») < 1/35, then {zn}^=1 is US, and there exists a constant,
Cδ such that \ Bs{zn) | ^ C§ρ(an, zn).

LEMMA 6 (see [3]). Suppose S = {αΛ}»=1 c D is US, then there
exists a constant η0 > 0 such that for any η, 0 < ΎJ < τj0, and any
sequence {λn}£=1 € l°°, there exists a (US) sequence, S' — {«»}£U c D and
a complex constant, Q, such that p{an, zn) < fj and QBs,(an) — Xn for
all n.

Proof of Theorem 2. Assume S has US bound 1/5.
a) It is sufficient to show S is L±ίL So let AeLip ± 1 S. This

implies | h(an) |/| 1 - a\ | ^ Mh. If η < Min {1/35, ηQ} (where ηQ is as in
Lemma 6), there exists a complex number Q and a C/S sequence
S' = K}SU such that ρ{an, cn) < η and QBs,{an) = A(αΛ)/(l - αϊ) for
all w. By Lemma 4 and proposition 3, if f(z) = Q(l — z2)BS/(z),
fe Lip (D) and / | S = h. Therefore, S is LI.

b) Define δ% as follows. If 1 — | an \ < 5/3, choose bn so that
I K - an\ ^ 1/2(1 - I an |)2. Otherwise, let bn = αΛ.

( 6 ) |0(α», 6.) ^ | 6 . - α j / ( l - | an | ) < 1 - | α j .

Moreover, | l±bn \ ̂  | l ± α Λ | - | an - b n\ ^ 1/2(1 ~ | an |).
So 11 - bl I ̂  1/4(1 - aj ^ 12 | an - bn |.
Consequently,

( 7 ) K-an\ _ 11 - I 6J 2 + 6.(6. - an)
p(an, 6n) 11 - 6i I

Now (6) and Lemmas 4 and 5 imply Sx = {K}^ι is f/S, Sx c Ws

for some s > 0, and p{an, bn) —> 0, so S U St is not Z7S.
If h 6 Lip±1 (S U SJ, by part (a), we have .FeLiptZ?) such that

F | S = h\S. " Let A1 = A - ί τ | ( S U i S 1 ) . Then | ̂ (6J | = | }φ J -
fc^αj I ̂  MΛl I αn - &n i. Lemma 5 and (7) give | h,(K) |/| (1 - 6i)B5(6J I ^
SMhJCδ. By Lemmas 4, 5, and 6, there is a constant Q' and a US
sequence, S3 contained in a wedge, such that QrBsJ{bn) — fei(6J/(l —
6^)^(6 J for all n. Let /(«) = F(z) + Q;(l - ^2)5^3U,(^). Then fe
Lip(D) and / | (SUSO - h.

c) We note that B's(an) - Bfi\{αn,(α )/(1 - I an |
2)

so that if {7J-=1 e ί- and Γ - Sup. | 7 j , then | Ύj(l - ai)BK»») I ̂  Π«.
Applying Lemmas 4, 5, and 6 and the corollary to Proposition 3, we
have a constant Q", a US sequence S" (contained in a wedge) such
that if g(z) = Q"(l - z2)BS{JS»(z), geLiv(D), g(an) = 0, and g\an) = Ύn

for all n.
Finally, if h e Lip (S) and {λ%}̂ =1 e ?°°, by part (a) there exists
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GeLip(D) such that G\S = h. Letting Ίn = λn - G'(aJ, and obtain-
ing g as above, we see that f — G + g performs the desired inter-
polation.

We note that for 0 < t < 1, if Φt = σ((σ(z))a), where a = (2/π)
arccos (£), Φt:D—+Wt and Φt: WS~>D for an appropriately chosen s.

COROLLARY. Suppose S = {α»}£U c D and there exists t, 0 < t < 1,
that Φt(S) = {^(αJJϊU is C7S. Γftβn S is LI.

Proof. The hypothesis guarantees that 3D f] S c {±l} and S is
ίJS. Let A G Lip±1 JS, then h(an)/(l — al) e l°° so there exists a constant
Q and a C7S sequence of points, S', near Φ^S) such that QBs{Φt(an)) —
h(an)/(l — al). A straight forward calculation, or an appeal to Lemma
2, shows that if f(z) = (1 - z2)Q£s, °Φ*(s), then /eLip(D). Clearly
f(an) - Λ(α.).

REMARKS. (1) Call any region in D which lies between two
circular arcs that intersect twice on 3D a nontangential wedge. Any
such wedge can be mapped into one of the form Wt by a Mobious
transformation. Since composition with Mobious transformations pre-
serves Lip (D), it follows that Theorem 2 remains true for sequences
contained in a finite union of arbitrary nontangential wedges.

(2) By noting that S is H°° interpolating for Wt in Theorem 2,
and applying Lemma 2, we can eliminate the need for Lemma 6,
simplifying (slightly) the proof of Theorem 2. On the other hand,
the argument presented here shows that as in the H™ case, Lipschitz
interpolation can be performed by (somewhat modified) Blaschke
products.

(3) The corollary to Theorem 2 enables one to construct tan-
gential LI sequences by taking a US sequence Sλ c Wt which is con-
tained in no Ws for s > t, and letting S = Φ

For certain types of tangential sequences we can obtain con-
ditions b) and c) of Theorem 2.

DEFINITION. If 0 < c < oo, let Ωc = {z e D: (1 - \z |2)/| 1 - z |2 > c).

Ωc is a disk in D, tangent to dD at 1 (with radius 1/1 + c).

THEOREM 3. Suppose S = {αJ~=1 c ΩCl\ΩC2 is US (0 < cι < c2).
Then

(a) If S is LI, statements b) and c) of Theorem 2 hold.
Otherwise,

(b) There exists a sequence S1 — {bn}t=i with p(an, bn) —• 0, such
that if he Lip^ (S1U S), there exists fe Lip (D) such that f\(Sί\jS) = h.
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(c) // {Xn}n=i £ l°° there exists /eLip(Z)) such that f(an) = 0 and
f'(an) = Xn for all n.

The proof of Theorem 3 is essentially the same as that of parts
(b) and (c) of Theorem 2, once we have the following.

LEMMA 4a. For fixed c > 0 and e > 0, there exists d, 0 < d < c,
such that Uε(Ωc) = {ze D:3w e Ωc with p(z, w) < e} Q Ωd.

PROPOSITION 3a. // S1 and S2 c Ωe are US then (1 - z)2BSl[JS2(z) e
Lip(D).

Proof. It is sufficient to show (1 - z)2BSj(z) e Lip (D) for j = 1, 2.
Lemmas 3 and 4a enable us to take d < c such that | BSj(z) | > β for
z e D\Ωd. Since composition with Mobious transformation preserves
Lip (D), we may as well assume that d = 1. If Ω1 is the half-plane,
{z: Re(z) < 1}, it is clear that U\D = (D\Ωt)*. Simple arithematic
shows that for ^eD, d(z, dΩJ ^ 1/2 11 - z \\ The arguments of
Proposition 3 can now be applied.

Finally, we note that the problem of describing LI sequences
can be broken into two parts: describing LI sets on 3D, and describ-
ing sequences, S9 which are L sΠdDI sequences.

PROPOSITION 4. Let S = {an}n=ι c D and let E = S f) 3D. Then
S is an LI sequence iff S is an LEI sequence and E is an LI set.

Proof. Suppose S is LI. Then S is clearly LEI. Let F e Lip (E).
By a theorem of Valentine (see [6]), F can be extended to G e Lip (S).
Hence there exists g e Lip (D) such that g \ S — G \ S. Since g is
uniformly continuous, it is clear that g\ E = F.

Conversely, if S is an LEI sequence, and E is an LI set, let
fee Lip (S). h can be extended to FeLip(S). Hence there exists
g e Lip (D) such that g\E = F\E. If H = h - g \ S, then He Lip^S)
and there exists G e Lip (£>) such that G\S = H. (G + g) e Lip (D)
and (G + 0) | S = h.

REMARKS. (1) Theorems 1 and 2 should be compared with the
results of S. A. Vinogradov [7] which deal with nontangential se-
quences for functions with derivatives in H\D). In this case, US
is necessary and sufficient for the appropriate interpolation problem.

(2) We are indebted to the referee whose remarks resulted in
greatly simplified proofs of Propositions 3 and 3a. He also pointed
out the existence of tangential LI sequences.
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