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FUNDAMENTAL UNITS AND CYCLES IN THE
PERIOD OF REAL QUADRATIC
NUMBER FIELDS

LEON BERNSTEIN
ParT 1

0. Introduction. In this paper we introduce the concept
of ““Cycles in the Period’’ of the simple continued fraction
expansion of a real quadratic irrational. This is expressed
in the

DeriniTION. Let M, D, d be positive rational integers, M
sequare free, M = D*+ d,d <2D. Let k, a,s be nonnegative
rational integers, 0<a <k —1; let f=f(k, a,s;d, D) be a
polynomial with rational integral coefficients. For a fixed s,
the finite sequence of polynomials

(0¢1) F)s) =f(ky a, S; d! D)’ f(k’ a+ 11 S; dy D), )
fk,a+k—1,s;d, D)

will be called ‘“Cycle in the Period’’ of the simple continued

fraction expansion of v I if, for s, > 1, this expansion has
the form

\/Hz [b07 bl, Tty F(O)y Tty F(so_l)yf(kr @, So; d; -D)y )
(0~2) f(ky a-+ br Soy dy D)’ ] f(ky a, S, dy D)s F’(so_ 1)7 )
F,(O)y f(k, a— 17 0; dr D)y ) bly 2b0]

b=1;b<k—1;k is the length of the cycle; F’(s) means
that the order of the f — s must be reversed.

In the first part of this paper, the main result is the
construction of infinitely many classes of quadratic fields
Q(v' M), each containing infinitely many M of a simple stru-
cture. Among the various classes thus constructed, there are
a few in whose expansion of VI cycles in the period sur-
prisingly have the length <12. Functions f(k, a, s; d, D),
fk,a+1,s;d, D), --- are of course stated explicitly; hence
we are able to construct numbers v M such that the primitive
period of their expansion has any given length m which is
a function of the parameter k.

Expansions of VM which have the structure of cycles in the
period were generally not known up to now. In a recent paper Y.
Yamamoto [6] has given a few numerical examples of expantions of
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38 LEON BERNSTEIN

real quadratic irrationals in which cycles of length two appear. The
present paper, which generalizes this concept, was, however, developed
independently of Yamoto’s beautiful discovery.

It is an old dream of mathematicians to find infinite classes of
real quadratic number fields Q(v/M) for which the continued fraction
expansion can be stated explicitly as a function of M. Very little
knowledge in this direction was available up to now. The bit of it
that was there is based on a theorem by Th. Muir [4], and in his
“encyclopedia” of continued fractions O. Perron [5] has given a few
demonstrations of Muire’s theorem which the author does not believe
to be of great practical significance. The most that can be achieved
with Muir’s theorem, is the explicitly stated expansion of certain
classes of 1M with a primitive period up to length six. In a recent
paper [2] the author has given the following infinite classes of 1M
whose continued fraction expansion has a primitive period of lengths
10, 12 and 8 respectively; these are

VD + 4d
0.3) =[D, 2dy"(D —d), 1,1,2°(D — 1), 2d™'D, 27(D — 1) ,
1, 1, 2d) (D — d), 2D]
d|D;d>1 Dodd; D> d
VD' —4d
0.4) =[D—-1,1, 2d) (D — 3d), 2, 27D — 3), 1, 2d"(D — d) »
1, 274D — 3), 2, (2d)"(D — 3d), 1, 2b,]
d|D;d>1, Dodd; b, = D — 1; D* — 4d squarefree .
V94 — 4d
(0.5) =1[8d —1,3,3(d —1)27%, 1, 4, 1, 3(d — 1)27, 3, 2(8d — 1)]

d>1,dodd.

This is a special case of of (0.9)

For d =1, the primitive period in the above expansions has
length at most half of the original one, as the reader verify easily.
Then author constructed these expansions in order to find the well-
known fundamental unit of G. Degert [3] in the corresponding
quadratic field by an approach different from Degert’s.

We shall recall the basic rules of expanding VM for further

references:

VM=w=2,=w+ P)Ri'=b, + a7 P,=0; Q= 1; b,

(0.6) — ] .
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e = (W + PR = b, + wits P = b @iy — Pieys Qii@Qs

0.7
©.7) =w—Psb. =[x k=12, ---).
From P, + P,_, = b,_.Q;_,, w* — P} = Q;_,Q,, we derive the formula

(0.8) (w + P_)(w + P,) = Qi(Qr + b_i(w + P))
k=1,2+--).

With m denoting the length of the primitive period of VM as
a periodic continued fraction expansion, the following rules hold:

Let m = 2k; then P, = P,,,, and vice versa; also b,_, =

0.9

(©.9) bivis (1 =1, « -+, k); by, = 25 .

(0.10) Let m = 2k + 1; then @, = @,.,, and vice versa; also

' b, = bkﬂ; b = bk+i+1('i = 1, Tty k— 1)§ b2k+1 = 2b, .

(0.11) If ’m': 2k, then P,_, = P, (1 =0, -+, bk — 1); @4y, =
Qe =1, -+, k).

(0.12) If m=2k+ '1, then P,_;, =P, (0 =0, -+, k —1);
Qi = Qurins(t =0, -+, k).

(0.13) Q,>2v=12--+). Only if m = 2k, Q, = 2 is possible

(then P, = P,,)).

In Part II (later in this volume) the fundamental unit of Q(V/'M), M
square free, is stated explicitly, being calculated from the periodie
expansion of /M.

The explicit representation of this expansion is therefore a primary
issue. Units of algebraic number fields of any degree have been
recently investigated by H. Zassenhaus [7]. This author also thinks
that the calculation of units from the periodic expansion of a basis
of the field, generally by Jacobi-Perron algorithm, is a most suitable
tool.

In the following chapters w? is squarefree.

1. Expansion of w = V[(2a + 1)* + a]* + 2a + 1; @,k = 1. The
formula holds

1.1) w*= A%+ 20A* + (e + 1) =(A*+a)+ A, A=2a+1.
(1.2) [wl]=A*+a;w=A"+a+7r; 0<r<l.

The reader will easily verify the following expansion for k = 2.

(1'3) w—:Ak+a’+i‘;Pl_:Ak+a;Q1:A;

1
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k
(1.4) Mﬁﬂ =24t 4 Lo p o AF g Q= dadr 4 1.

Lo

s wEtA —ae_4 . 1.p (A _arqgt1Q =24,

fad 11 z
(Lg) WA =—DAT o+l _ 4 3 Lip g (g4 1);
2A4%1 x,
Q4:Az-
.7 wr A —(e+1) g g4 L,
A s

We now prove the formulas

(i) Py, = A" —[A° — (¢ + D]; Qay = 2(4° — 1AM
—[4" = 2(a — D]; by =1

(ii) P, = (A° —2)A* " + (@ + 1); Qs = 2A¥ % by, = A* — 1

(iii) Puoy = A* — (@ + 1); Qupuy = A byyey = 24K — 1,

(1.8)

Proof by idduction. Formulas (1.8) are correct for s =1, as
can be easily verified from (1.3) to (1.7). We prove: (1.8) is true
for s being replaced by s + 1. We obtain from (1.8), (iii), presuming
1<s+1=Z4k,

‘w4 A* — (e + 1) = 2AF TN 1 4 1 3 Puis

j At Lystz
(1-9) = AF—[A* — (a + 1)]

Qst — 2(As¢1 _ 1)Ak—(s+1) — [As+1 - 2(0, + 1)] .

Since
QAR — 1 4 2A%2
1<1+ Qo —x3s+2<1+2Ak_2Ak_l_Ak
2
=14+ —<2
(2a — DA

we obtain
w+ AP — A+ (@ + 1) —14 1 .
(1.10)  {2A4F — 24 G+ — AT 4 2(q + 1) Laoss

Prvy = (A7 = DA 4 (@ + 15 Quus = 247
Since, for k& = 2,

AT =1 <A =1+ 2111:-(3:) = Wy <A =14 2A%fs+1) =47,
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we obtain

w+Ak_"2Ai‘_(s+l)+a+1:As+1_1+ 1 ;
(1.11) 24P sy

P, ,= A" —(a + 1); Qssy = A°*.

Since

1+As+2_"1+7'

2Ak—(s+2) —_ 1 < 2Ak—(3+2) — A3+2

= L3s+4 < 2Ak-(s+2) - 1 + 1 )

we have
(1.12) bygyy = 2AF D — 7|

With formulas (1.9)-(1.12) formulas (1.8), with s replaced by
s + 1 are verified. Since, as can easily be verified from (1.8), no
P, equals P,,,, and no @, equals @,,, in the cycle {P,,_, P, P}
and {Qs_y, @i, Qs+i). We look for the the possibility that some
@, = 2. This happens for

(1.13) Q=2.
We now obtain from (1.8), (ii), and from (1.2)

(1.14) 2 2 Tagt
P3k+l = Ak + a — 1= bO - 1 - ng .

The length of the primitive period of the expansion of w thus
equals 1 + 6(k — 1) + 8 + 2 = 6k, and we can state.

THEOREM 1. Let a, k be natural numbers, a =1, k=2 w*=
(A* + a) + A, A = 2a + 1, w® squarefree. The expansion of w as a
periodic continued fraction has a primitive period of length 6k and
the form

w = [bO’ bly ctty b38—17 b3sy bss+1; ) bak—ly bsk; b3k—19 R bn 2bo]
(1.15) 4b, = A* + a; b, =24 by, =1, by, = b, — 1
bsmy = 15 b3s = A" -1 b33+1 =24t -1 s = 1—, tey E—-1.

For k£ = 1, we obtain by a special calculation that

(1.16) V9% +8 +2=1[3a+21,38qa,1,2, 6a+2].

2. Expansion of w=1V(A4* —af + A;A=2a + 1,0, k= 1.
The formulas hold
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2.1 w = A% — 2¢A* + (a + 1)*.
2.2) [wl=4*—a;w=4"—a+7r,0<r<1.

The reader will easily verify the following

THEOREM 2. Let a, k be natural numbers, o =1, k= 2, w* =
(A — a) + A, A = 2a + 1, w® squarefree. The expansion of w as a
periodic continued fraction has o primitive period of length 6k — 2
and the form

(2'3) w = [bm ) bss—zy b33—1; bsx; ttty bak—z; bsk—u b3k—2; Tty blr 2b0]

bo =A% — a; b3k—1 = bo -1 b3k—2 =1

(2.4)
byys =24 — 1, by, = A°— 1, b,=1;8=1, -+, k—1.

For k = 1, we obtain the expansion

(2.5) Ve +4a+2=[a+11 a1 2a+1)].

(2.6) is obtained from 1Va*+ 4a + 2 = V/(a + 2)* — 2, for which the
author has found (2.6) in [1].

3. Expansionof w =1V (A4*+a + 1 —A; A=2a+ 10, k= 1.
The formulas hold

3.1) w? = A + 2(a + 1)A* + o*;
3.2) [wl=4*+a;,w=A"+a+r0<r<1.

The reader will easily verify the following

THEOREM 3. Let a, k be matural numbers, a =1, k= 2; w* =
(A* +a + 1) — A; A = 2a + 1, w® squarefree. The expansion of w
as a periodic continued fraction has a primitive period of length
4k + 2 and the form

w = [bo; M) b23—1’ bzs, tt b2k+1; bzk; ) bly 2b0]
(3.3) by = by = A* + a; by, = A7 by, = 24
s=1, .-, k.

For k¥ =1 we obtain the expansion

V9% + 106 +3=[8¢+1,1,23a+1,2 1 6a +2].

4. Expansionof w = V[A*—(a+ 1D — 4 A=2a+1,a,k=2.
The formulas hold

(4.1) wt = A% — 2(a + 1)A* + @
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[w] = A* — (a + 2);

(4.2)
w=A"—a—-2+7r0<r<1.

The reader will easily verify the following:

THEOREM 4. Let a, k = 1 be natural numbers, w® = [A* — (¢ + 1)]* —
A, A =20+ 1, w* squarefree. The expansion of w, as a periodic
continued fraction, has a primitive period of length 42k — 1) and
the form

W = [by, by, by, -+, ey, bug, Disrry bygin, =,

ba—sy Dub—sy Dut—sy Dur—sy Dirs, * =+, by, by, 2b,]
by=A*—(a +2);b6,=1,0,=24**—3
byor =L b, = A* — 20,0, = 15 b,y = 2(AF 71— 1)
§s=1,2 k-2 k=3,0a=2;
bues = 15 by = A¥™F — 2, by = 25 by_y = by .

4.3) A

For k= 2, a = 1 the expansion holds
1 (4a* + 3a)* — 2a + 1)
(4.4) =[4a*+ 8¢ —1,1,40 —1,1,2¢0 — 1,2, 40+ 3a — 1,2,
20 —1,1,4a — 1, 1, 8a® + 6a — 2] .

For £ =1, @ = 4, the expansion holds

(4.5) Ve —20—1=[a—21,a—38,1,2(a — 2)].

5. Expansion of w = V[A* + (A —1)P +44; A=2%,b odd =
1;d>1; k= 2. The formulas hold (d and b not both equal 1)

w? = A% + 2(A — 1)A* + (A + 1)% [w]

5.1
6-1) =A*+A—-Lw=[wl+nr0<r<1.

The reader will easily verify the following:

THEOREM 5. Let A = 2%, bodd =1, d=2, k=2 be natural
numbers, w* = [A* + (A — D]® + 4A squarefree. If k=3 1is odd,
then the expamsion of w, as a periodic continued fraction has a
primitive period of length 5k — 6. The expansion has the form

w = [bO; bl’ ) b53—39 bs:—z, bﬁs—lr b5sy bbs+1r "ty

b1/2(5k—11)r b1/2(5k—9)y buz(sk—m b1/2(5k—7>; b1/2(5k—9)y ) bu 2bo]
(i) by=A*+ A —1;b, = 2¢HA*?
(i1) bg_s = 2; by, = 297DA*™ — 1; by, = by, = 1; bg,y
(5.2) = 2i-pAkt — 1,
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s=1,2,---,—;—(lc—3),kg5.

b1/2(5k—u) =2,

_ ©9d—1ph A1/2(k~3

(i) {biswe-e = 2°7DA =1,
b1/2(5k—7) =1

For k = 8, the expansibn has the form

VA + (A — 1] + 44
(5.3) =[A+a—1,2"04,2, 27 —1,1,1, 27
—1,2, 2704, 2(A° + A — 1)]

If = 2 is even, the expansion of w, as a periodic continued
fraction has a primitive period of length 5% — 6. The expansion has
the form

w = [bOy bl) ct bﬁs—s’ bss-z, b5s-19 bss, b5s+19 b
b53+1, b5sy bss—ly b5s—2r b5a—3y ) bl) 2b0]

s=1,2,---,%(k—2);kg4.

b

(5.4)

bo, bl, b53—37 b5s-—2y bbs—ly bﬁs, b53+1 as in (5’17), (i)’ (ii) .

For k& = 2, the expansion has the form

VAT (A -DF + 44

(6.5) — A+ A— 1,772, 25, A& T A1)

ExamMpLE 1. For d =2,b =1, A =4, we obtain from (5.18)

V4505 = [67,8,2,1, 1, 1, 1, 2, 8, 134] .

ExaMpPLE 2. For d =2,b=1, A = 4, we obtain from (5.20)
V37T = [19, 2, 2, 2, 38] .

The reader should note that for %k = 1, we obtain the known
expansion V4A4* + 1 = [24, 44].

As is known in the case of an odd period of length 2r + 1, the
formulas hold

(5.6) w= P}, + Q.

In our case 5k — 6 = 2» + 1, hence

(.7) r+1=—2-(k—1),
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and so we obtain

(5.8) Qisi-y + Piog-y =[A* + (A - 1) + 44.

We obtain from (5.8), (iv), for s = 1/2(k — 1),
Qs—ny = (AVPETH 4 1)AFVE=D — [AVRETDH 4 1(A 4+ 1)],
Py = A0 4 glmnrdt
Py = 2A%% Qg = AP — (A + 1) .

(5.9) Indeed:
Py + Qfpi-n = 44* + A% — 2(A + 1)A* + (A + 1
= A% + 2(A — DA* + (A + 1)’ = w*,
by (56.1) .

6. Expansionof w =1[A* — (A -1} +44, A=2%d=1b=
1 odd, # = 2. The formulas hold (d and b not both equal 1)

w = A% — 2(4A — A" + (4 + 15 [w] = A* — (4 - 1);

(6.1)
w=[w]+r0<r<l.

The reader will easily verify the following

THEOREM 6. Let A= 2%,bodd =1, d = 2, be natural numbers,
w' = [A* — (A — 1) + 44 squarefree. If k=3 is odd, then the ex-
pansion of w as a periodic continued fraction has a primitive period
of length 5(k — 1). The expansion has the form

w = [bo; ) b5s+ly b5s+2y b53+3, b5s+47 b5s+5! N bl/z(sk—w)y b1/2(5k—11) ’

b1/2(5k~9); b1/2(5k—~7); b1/2(5k-5)r b1/2(5k—7)1 b1/2(5k—-9)7 Tt Zbo]
bosi = 217DARE — 1
bssrz = 1;
bz =15
(6.2) [)5s+4 = 2¢-1pA® 1 :

b53+5=2; 8:0’ 1; ""-;—(k_s);

— od— - . _ 1 .
buz(sk—xs) =2 leUZ(k b— 17 b1/2(5k—u) - bz(sk—gy =1 i
biai-n = 27DAETS — 15 by s = 2.
b= A* — (4 — 1).

For k¥ — 3, w has the expansion
VA — (A — 1] + 44
(6.3) =[4*—A4+1274A —1,1,1,2"% — 1,2 2%
—1,1,1, 24 — 1, 2(4* — A + 1)].
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If k= 4 is even then the expansion of w as a periodic continued
fraction has a primitive period of length 5k — 5. The expansion has
the form

w = [by, a1, Dsgizy Dosizy Dssisy Doy = o,
buz(sk—sn 1, 1, b1/2(5k—8)’ Tt 2bo]
b= A* — (A — 1);

Bayisy Dsosay Bsossy Boosey Duvss 25 in (6.12); 5 = 0,1, +-+, %(k — 1),

(6.4)

buassy = 27DAD — 1.

For & = 2, the expansion of w is

VA=A -DF + 44
—[A*— A+1,27%—1,1,1,2° 6 — 1, %A — A + D).

(6.5) {
By formula (5.21) we obtain here

(Pgs'w + Q§3+3 = wzy 8§ = ’l_(k - 2): P1/2(5k—4) = 2A1/2k ’
(6.6) i 2
A pi-n = AP — (A + 1).

Indeed:
A%y +[A* - A+ 1P =4"—-2A-DA* + (A + 1) =w.

7. Expansion of w = V[A* + (A + 1)} — 44, A =2%, b odd = 1;
d=1 k=1 We can eliminate the case k£ = 1, for then

w = VAT + 1 = [24, 44] .
The formulas hold (d and b not both equal 1)

(' = A% + 2(A + DA* + (A — 15 [w] = 4" + 4;

7.1
(T.1) lw=A"+A4+r0<r<1.

The reader will easily verify the following

THEOREM 7. Let A =2%,bodd =1, d =2 be natural numbers,
w*=[A* + (A + 1)) — 44, k = 1, w* squarefree. The length of the
primitive pertod im the expanmsion of w as a periodic continued
fraction equals 6(k — 1) + 1. If k is even = 4, the expansion has
the form

w = [by, * -+, besiay Ogsra bss3y Dossy Dests, bes+s, cee,
b3k—57 b3k—4, 17 17 b3k~4; b3k—5, ct 260]
(7'2) \bo:Ak_"A;
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Oeors = 15 bgepp = 2970AF 2 — 1; Bgyis = bgeiy = 15
Bosss = 2°DA" — Libpos = 138 =0, 1, -+ -, .;_(k — 4
Bos = 1; by, = 20D AYED

If £ is odd = 5, the expansion has the form

w = [b09 tt b63+17 bﬁs+2y b63+3y b63+4, b83+57 b65+6y ctty

byi—s, bsi—1, bsic—sy Dsi—sy bsi—sy » 1, 1, bsi—s bsis
b3k~6’ b3k—7, bsk—s, ] 2bo]

b,=A*+ A,

(7'3) bﬁs-H =1 st+2 = 2970 ATE —~ 15 b63+3 = b63+4 =1;

Basrs = 27 BAT — 13 byis = 138 =0, 1, e, %(k —5).

by = 15 by = 247D AN — 15 bys = bys =1
b%_4 = Q41 A12k—9 _ 1 |

For k = 2 we obtain the expansion

V(A + A+ 1F — 44
=[A+ A, 71,25 —1,1, 1,27 — 1, 1, 2(A* + 4)].

(7.4) {

For k£ = 3 we obtain the expansion

V& ¥ A+ 1y —4A
—[A*+ AT 27hA—1,1,1,2°b—1,1,20°—1,1,1,
| 294 — 1, 1, 2(4° + 4)].

(7.5)

The formula P2., + @Q%., = w* is also verified easily, with 2r + 1 =
6(k — 1) + 1.

For d =2,b=1, A = 4, formula (7.14) does not hold, for in this
case w® = 425 and is not squarefree.

8. Expansion of w=V[A*+ (A + 1) —44; A =2%,b odd =
1;d > 1; k= 2. The formulas hold (for b and d not both equal 1)
w* = A% — 2(A + 1)A* + (A — 1% [w] = AF — A - 2;

(8.1)
w=A*— A4 -2+ r0<r<1.

The reader will verify easily the following

THEOREM 8. Let A = 2%,bodd = 1,d = 1, be natural numbers,
w* = [A* — A + 1)]* — 4A squarefree. If k=4 is even, the length of
the primitive period in the expansion of w as a periodic continued
fraction equals 4k — 2, and the expamsion has the form
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(W = [by, by by +*y ity busy Disisy Dugiay =0y 2, + ¢y Dytirnr—as »
bo(k + 1)_se—ty Dotktv—ss—2y Dotirni—ss—sy =+, by by 2] ;

bp=A*— A —2;b,=1;b, = 27DA*"* — 2,

by = 25 by — 270A ™ — 15 by = 25 by = 247AF2 — 1

(8.2)
1

=12 ... —(k — 2).

s=1,2, ,2( )

For k = 2, we obtain the expansion

VZE—A—-1If—44
(8.3) —[A*— A—2T1 27 —2 2 275 —2 1, A — 4 — 2)]
(A>4).

If & = 5 is odd, the length of the primitive period in the expansion
of w as a periodic continued fraction also equals 4k — 2, and the
expansion has the form

w = [bOv bl’ be ) b4s—17 b4s; b4s+u b4x+2v ) bzk—3, bzk—z; 27 bzk—z ’
bzk—3y be bl! 2b0]

(8-4) boy bu bz, bu—u bu, b43+1, b43+2 from (8.13); s = 1’ 2’ ee, —%—(k _ 3) ;
~b2k—3 = 2,' bz,c_2 = Qd-ip AVet=n _ 1 |

For &k = 3, we obtain the expansion

V@ —A-1F—44
(8.5) (A~ A—-2 T 2764 -2,2 2761227512,
oA — 2, 1, HA — A — )] .

9. Expansion of w = V[(4A)* + (A — D)]* + 44; A = 2%, b odd;
d = 2. Though, at a first glance, the structure of w looks similar
to that of the §§5-8, there are surprising restrictions on the choice
of A, and k. The reader will verify easily the following expansion
and formulas.

W= (AAYF + 2(A — 1)(4AY + (A + 1) ;

®-1) {['w]=(4A)"+A——1;w=(4A)"+A—1+1~;O<r<1.

9.2) w=(AF+A—1=1;P = @A)+ A—1;,Q =44.
X

1

= + =
4A (44) @,

P, = (44) — (A — 1); Q. = 4(A — 1)4A) + 1.

(9.3)
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w+ (4AF — (A —1) _ 1

(9.4) {4(A —Dady 1 2w
P, = 4(A — 2)(AA) + (A + 1); Qs = 16(4A)+" .
Wt AA — DAV 4 (AT D) oy g, L
05 16(4A4)** x,’
OB Vp 44 — 244y — (A + 1); @, = 4(A — 1)AA)—
A — (A + 1),
wt (44 —8(4AY" —(A+1) _ | . 1
9.6) | @AY — 44y + [& — (A + 1)] Py
P, = 4(AA) + A% Q, — 4(A + D)(AAY — [4* + (4 + 1)].
, w + AAAY 4 AP .t
©0.7) @A) T 4AA) " — [A* + (A + D] o
P, = (44)F — [24° + (A + D)]; @, — 44°
08 W UAF 24+ @D gy g 1

4 A2 X
The reader will now verify by induction the following formulas.

(1) Pie = (44) — 24" — (A + D] ;
Qooiy = 47(A™ — 1(4A) 7 — [A™ — (A + D] 5
bysis = 2 ;
(i1) Piyys = £°7Y(A° — 2)AA) ™+ (A + 1) ;
Qisrs = 4 T(4A) 7Y by, = 247DA° — 1
(iii) Py = £H(AT — 2)4A) ™ — (A + 1) ;
Qyers = LA™ — D)(4A) 4+ [A* — (4 + D] ;
byeey =1
(iv) Py, = £°PAA + A2
Qssrs = ATH(AT + D(QAY = — [A + (4 + 1)];
byrs = 15
(V) Poso = (44)° — [24°7 + (A + DI Quers = 44" by
= 2.4 (4A)~2 — 1.,
s=201, -.-.

9.9)

Formulas (9.9) are correct for s = 0, in virtue of formulas (9.3)-
(9.8); then it proved that they are correct if s is replaced by s + 1.
Comparing successive P, — s, we see that the only possibility of
equality is

(9-10) (I) P53+2 = Pas+3 .
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This implies
(9.11) 4 = APeTE A =20 b =1,
From (9.11) we obtain 2k = d[2(s + 1) — k], hence
(9.12) k(d + 2) = 2d(s + 1) .

Solving the Diophantine equation (9.12), we obtain all possible
solutions as follows.

(@) k=2ud;s=uld+2)—Lu=12 ---;

(b) =2ut;d=2t;s=0C+Du—1;t,u=12 -+
(9.13) 1
() k=Qu+1d;s= 3 (d+2)2u + 1) — 1; d = 0(mod 2) ;
(d) 2k = (2u + 1)d; 4s = (d + 2)(2u + 1) — 4; d = 2(mod 4) .

The reader should note the following procedure: after k& and d

have been chosen from (9.13), (a)-(d), s is a function of %, d; for
constant k%, d, we shall denote

(9.14) 8, = F'(k,, d,) .

The length of the primitive period in the expansion of w for
any choice of (k, d) from (9.13) then becomes m = 10s, + 4.

Comparing successive @, — s, we see that the only possibility of
equality is

(9.15) (1) Qus s = Qsos -
This implies
(9.16) 4t =A@ A =2% b =1.
From (9.16) we obtain 2k = d(2s + 3 — 1), hence
(9.17) kE(d + 2) = d(2s + 3) .

Solving the Diophantine equation (9.17), we obtain all possible
solutions as follows

(@) k=ud, 25 +3=ul2+d),u d=12);

9.18
(9.18) d) k=ut;d=2t2s +3 =wu(t+1); u=12);t=002).

We again denote s, = F(k,, d,), for any choice of fixed k¥ and d
from (9.18). The length of the primitive period in the expansion
of w for anyc hoice of (k, d) from (9.18) then becomes m = 10s, + g.
For d =1, (b=1), we obtain w = 1V/(8 + 1)’ + 8, which is easily
expanded and is left to the reader. We can now state.
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THEOREM 9. Let A = 2¢, d =2, w* = [(44)* + (4 — 1)]* + 44 square-
free. If (k, dy, s,) s any solution vector of the Diophantine equation
(9.12), given by the wvalue Table (9.13), (a)-(d), then the primitive
period in the expansion of w as a periodic continued fraction has
length m = 10,, + 4, (s, = 1), and the form

w = [bo, bu Ty b53+2, b.’:s-)—a’ bbs+4, bss+a; b58+6) Tty 2, .- ) bb(so—s)-H ’

b5(ao—s)’ bﬁ(ao—s)—ly ba(so—s)—z; bb(so—-s)-—s, ) bu 2bo]
(9.19) <b, = (44) + A — 1; b, = 2(4A4) " ;
bysre = 25 bygrs = 297 A° — 1, byers = byers = 15
Bopro = 2-4°7(4A)0*2 — 1. §=10,1, -+, 5 — 1.

If (k,, s, d,) is any solution vector of the Diophantine equation
(9.17), given by the value table (9.18), (a), (b), then the primitive
period in the expansion of w as a periodic continued fraction has
length m = 10s, + 9, and the form

w = [bo, bl; ) b5s+2; b53+3, b5s+4, bﬁs+5, b53+6) ) 2’ 2907 A%N — 1 ’
1,1, 2%7pA% — 1, 2, ---, b, 2b,]

where the b, b, bspy, - *+, bs.s are the same as in (9.19),
s=0,1,---,s,—1.

10. Exapansion of w = V[(44)* + A + 1]? — 44; A = 2%, b odd,
d = 2. The reader will verify easily the following formulas and
expansions
w? = (4A)* + 2(4 + 1)(4A4) + (A — 1)% [w] = 4A) + A
w=HdA)Y +A+r0<r<1.

(9.20)

(10.1)
(10.2) w = (4A¥ + A + -i—; P, = (4A) + A; Q, = 2(4A4)* — (24 — 1)

w+ (@A +A 11 p AV (34— 1) O = 4A .
(10.3) A GA—TD " L+ P (44) — (34 — 1); @, = 44

4A X
Py=(44) — (A + 1) Q=44 + 1)(44)" - 1.

w+ (44 —(A+1 4 1.
(10.5) { (4A)* + 4(4A)* — 1 x,’

P, = 4(4A) + 4; Q, = 4(A — 1)(4AY + (24 — 1).

( wrddAy"+A 1.
(10.6) i(4A)" —AdAY T F 24— 1 .

P, = 4(A — 2)(4A) + A — 1; Q, = 16(4A)* .

(10.4)
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w+ 4A—-2)44) P+ A -1 _ 9d-1p _ 1

107 16(44)- Lt 7
) P = 4A — 2)4A) 7 — (A — 1); Qs = 4A — 1)4A)*

+ 42— (4 —1)].

w+ (44} — 844 —(A—1) _ 1
(10.8)] (44)* — 4(4A) + [A® — (A — 1)] z,
P, = 4(4A) + A% Q, = 4(A + 1)4A) — [A4* + (A — 1)] .
w4 4(AA) + A2 a1
(10.9) (AA) + 4(4AY — [A* + (4 — 1)] s

P, = (4A) — [2A% + (A — 1)]; Qs = 4A4°.

We now prove by induction the following formulas as before;
they are correct for the parameter s = 0, and it is then proved that
they are correct for substituting s by s + 1:

(1) Powo = (44) — 24" + (A — D] Qoeso = 4477 by
= 2. 4(4A)" — 1;

(ii) P = (4A) — 24" — (4 - 1)];
Qs = £°7(A + DAy — [A7 = (A - D]
bz = 1

(iii) Pyy, = 4T A+ A%
Qoors = 47H(A — 1)(4A) T + [AM + (A —1);
besrs = 1;

(iv) Pouy = 4774 — 2)44) ™ + A —1;
Qo5 s = 4 7H(4A) 7Y boys = 270A° — 1

(V) Posg = 47(A —2)44) ™ = (A —-1);
Qoo = 4°TH(AT — 1)(4A) 1 + [A — (A — 1)] ;
besis = 1;

(Vi) Py = LAY + A%
Qosir = 4(A + DAA)y ™ — [A" + (A -1
bsir=1;8=0,1, ---.

(10.10)

Comparing successive P, — s and @, — s, we obtain the cases
(10.11) (I) Qos s = Qo -

This implies
(10.12) 4 = Atk A =25 p =1,

From (10.12) we obtain 2k = d[2(s + 1) — k],
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(10.13) (d + 20k = 2d(s + 1) .

(10.18) is the same equation as (9.12) and its solutions are given by
(9.18). If (k,, d,, s,) is a solution vector of (10.13), then the length
of the primitive period in the expansion of w equals m = 10s, + 7.

(10.14) (1) Qesrs = Qosr -
This implies
(10.15) 4 = A¥PF A =25b=1.
From (10.15) we obtain 2k = d(2s + 3 — k),
(10.16) k(d + 2) = d(2s + 3) .

Equation (10.16) is equation (9.17), and its solutions are given
by (9.18), (a), (b). If (k, d,, s,) is a solution vector of (10.16), then
the length of the primitive period in the expansion of w equals m =
10s, + 13. The restriction on d = 2 results from the value of b, =
2471 — 11in (10.7). If d = 1, we would have b, = 0, which is impossible.
The case d =1, A = 2, yields w = /(8 + 8y — 8, and the expansion
of this w is left to the reader. We can now state.

THEOREM 10. Let A = 2¢ d = 2, w* = [(44)" + (A + 1] — 44
squarefree. If (k, d, s,) ts any solution wvector of the Diophantine
equation (10.13), given by the wvalue table (9.13), (a)-(d), then the
primitive period im the expansion of w as a periodic continued
fraction has length m = 10s, + 7, and the form

w = [bo, bn N b63+2, b63+37 b63+4) b6s+5, b6s+s, bss+7, sy eee
2 A(dAyT T — 1,1, 1, 2- &0 dA) T, <+, b, 2b,]
(10.17) {b, = (4A) + A; b, = 1,
Bosss = 2-4°(4AY O — 15 byysy = bpyrs = 1 ;
Bosss = 297A° — 1; byyrs = bgpsy = 1 .

If (k,, d, s,) is any solution vector of the Diophantine equation
(10.16), given by the value table (9.18), (a), (b), then the primitive
period in the expansion of w as a periodic continued fraction has
length m = 10s, + 13, and the form

w = [bo, bu Tty b63+2’ b63+31 b63+4y b63+5y b6s+6y bss+7y )
2 AN(dAyo ot —1,1,1, 20 A% — 1, 1, 1, 2% 'A% — 1,
ly 1; 2'480(4A)k0—80—1 - 1) ) bb 2b0]

by, by, besis *+ ¢, bggyr from (10.17),5=0,1, .-+, 5, — 1.

(10.18)

11. Expansion of w =1V [4A* + (A — 1) +44; A=2b+1;d =
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1; b odd. This expansion is remarkable in the sense that the cycles of

the period are of length eleven; so are the cycles in the next two

sections, while in the last section the length of the cycle is even twelve.
We obtain the formulas

W= A% 4 2(A — 1)A% + (A + 1% [w] = A* + A — 1; w

11.1
(11.1) =A"+A-14+7m0<r<1.

The reader will easily verify the following:

THEOREM 11. Let A=2%+1,d=1, bodd, w*=[4A*+(A— 1) +
4A squarefree; let further k = 4(mod 6), k = 4, s, = (1/6)(k — 4). Then
the length of the primitive period in the expansion of w as a periodic
continued fraction equals 1/3(11k — 14), and the expamsion has the
form, for k= 10,

W = [by, by, ~+, Birsre Durersr * = s Durstszs = * s Dirsgrar Duisgros Drnogrs s
2, biigyrar bigyra Disggras * 0y by, 20]

by=A*+ A —1; b, =2DA4_5 bisyro = 1; byyypis = 24247 — 15

Oiisgrs = “T0A pkss bigrs = 15 byypus = 247 — 15

(11.2) bisre = 20 A _si610)5 buigrs = 25 Diygrs = 2770 Ay ;

Dijgrr = 2AF3CTD — 15 b vs = 15 bigre = 2970 A5, 5

Digito = Digsyr — 15 byperre = 297D AL _sen—2 — 23

s=0,1 -, -1 4, =A-1)*"A4A*""*—-1)u=01,---;

A, =1.

If k¥ =4, the expansion of w has the form

VIA+A-DDP+44A=[A*"+ A -1, 2 pA"+ A+ 1), 1,
(11.3) 424 — 1, 2%7%, 2, 29, 24 — 1,1, 2*7p(A*+ A + 1),
2(A* + A —1)]
If & =38, the expansion has the form

’-‘/[As -+ (A - 1)]2 +44A = [bO, bu Yy b12y b13’ bu; blZy % bu 2b0]

by= A+ A—1;b =204+ 1) b,=1;b,=24 — 1;

by = 27; by = 2; b, = 2°B(A + 1); b, = by = ;

by =2 B(AT + A) + A —1; b, = 24 + L; b, = ;
by=2"—1b;=b,=1.

(11.4)

The length of the primitive period in the expansion of w for
k = 3 equals 27. Let further be k = 1(mod 6), £ =17, s, = (1/6)(k — 7).
Then the length of the period in the expansion of w as a periodic
continued fraction equals 1/3(11k — 14), and the expansion has the
form, for &k = 13,
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w = [by, by, + <, Disgray biyorsy =+ Duisrany =00y Buisgazy Duigyis o0,

b11s0+97 1, 1, b11s0+9y b11s0+s, ) b11s0+2, ) bb Zbo]
by=A"A —1;b, = 20A, 55 biyyo = 15 by s = 2AET — 15
(11-5) '<b11s0~‘4 = zd_leuz(k 09 b11s0+5 = 2; bllso+6 = 2d_1bA1/z(k-5> ;
buso+7 = 240 — 1 b11s0+8 =1;
b1130+9 = zd—leuz(k—:z) —-1;
b113+27 blls+3’ Yy b118+12 as in (11'19); 8§ = O, 1, So - 1 .

It is left to the reader to find the expansion of w for the cases
k=5,6,1T.

12. Expansion of w = V[A* — (A — 1) + 44; A =2% + 1; d |V
1; b odd. We use the notation, as before,
At —1=(A-1DA,;u=01, ---; 4,
(12.1) = 1; __1_(Au+1 — 1) = 2¢1pA
2 “

The following formulas hold:

w' = A% — %A — 1)A* + (A + 1) [w] = A" — A4 + 1;

12.2
(12.2) =A"—A+1+7r0<r<l.

The reader will easily verify the following

THEOREM 12. Let A =2%+1,d =1, b odd, w* = [A* — (A — D] +
4A squarefree; let further k =1(mod6), k =7, s, = (1/6)(k — 7). Then
the length of the primitive period in the expansion of w as ¢ periodic
continued fraction equals 11/3(k — 1), and the expansion has the
form, for k = 18,

w = [bm %y blls+19 bns+2y Tty bus+m ) buso-x—u b11s0+29 Tty

T N TN
bigsy = 297D A _ge_s; byigrp = 2A¥T — 1
biisis = busis = bisio = bigis = 15 buyory = 2970 A, 5y — 1
bioir = 29D A50, — 15 byye = 2AF73D — 1
(12.8) ¢ byeio = 2970 Ay, by = AF — A + 15 by = 2770 A, 500 5
rigge = 2AYFT — 15 by1y005 = brisges = bigpes = 15
bigges = 20A, sy — 1 bisgir = 27A, p5ms — 1;
biggrs = ZAVEEY — 15 by vio = 2770A, s Diprn = 2.
s=0,1,--,5-—1L A =A-1)A"—1D,u=01 ---;
A, =1.
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For k = 7, the expansion has the form

V[A7—(A _1)]2 +4A= [bo; bu b2, Tty b10y 2; blO! Tty bz’ b17 2bo] ’
bp=A"— A+ 1;b, =204, b,=24 —1;

by =b;=b;,=b;=1; b, =2DA, — 1; b, = 2 A, — 1;

b, = 24* — 1; b, = 297DA, .

Let further be k& = 4 (mod 6); s, = (1/6)(k — 4); k = 4. Then the

length of the primitive period in the expansion of w equals 11/3(k — 1),
and the expansion has the form, for % = 10,

(12.4)

w = [bo, Yy bns-Hy blls+2) M) bns+m Tty b1180+1y bus0+z ’

b1130+3’ buso—H’ 1; 1, buso+49 bnso+3, bllso+2’ buso-H’ Ty 2bo]

Boy Dirsity Drrsray ** %y Digryy  as in (12.18) ;

biisyrs = 29D A, o5 byyggre = 2AETR — 1

b1130+3 =1 byyyyis = 20A, pp—y — 1.
s=0,1,---,8 —1; A, asin (12.18).

12.5)

For k = 4, the expansion has the form

'I/[A4 - (A - 1)]2 + 44 = [bO! bl; bz: b3) bu 1; 19 b4v bSy bz; bly 2b0]
(12.6) {6, = A* — A+ 1; b, = 20 A,; b, = 24 — 1; b, = 1;
b, =2A, — 1.

13. Expansion of wV/(A* + A + 1 —44; A=2%+1;d=1;b
odd.

THEOREM 18. Let A=2% +1,d=1,bodd, w*=(A*+ A + 1)* —
4A squarefree; let further k = 4 (mod 6), k = 4; s, = 1/6(k — 4). Then
the length of the primitive period in the expansion of w as a con-
tinued fraction equals 1/3(10k — T), and the expansion has the form,
for k = 10,

w = [bm bu ) b103+2; b10s+s, ] b10s+11; Tt bws0+2y b1030+3y b1080+4 ’
1, 1, b1030+4’ bmo -+ 3; bms0+2, T bu 2bo]

b, = A"+ A; b, = 1; b1130+2 = 247D A, 5 b1030+3 = 24%7

bloao+4 = 2d_le1/2(k—2); bise = 270 A, ss

biosrs = 2A%H bigers = 2970 AL 501 5

biosts = Diosrs = Digsrio = biogrss = 15 biggir = 2770 A5, ;

biosrs = 2AFTEN; by = 2770 A540 5
s=0,1 4,8 —L A" -1=A—-1DA ,u=12 ---.

(13.1)

For k = 4, the expansion has the form
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(13 2) -l/(A4 =+ A + 1)2 - 4A = [bOy bb b27 b3y bb 17 1) bb b3> bz» bb 2b0] ’
b, = A+ A; b, = 1; b, = 2970 A,; b, = 24; b, = 277B(A + 1) .

Let further £ =1 (mod 6), s = 7, s, = (1/6)(k — 7). Then the length
of the primitive period in the expansion of w as a periodic continued
fraction equals 1/3(10k — 7), and the expansion has the form, for
k=13,

w = [by, by, ==, bigergy Digoray =+ =y bigguryy == -, b10s0+2y bws0+3; Tty
b1030+97 17 1, b1030+97 b1050+81 ) b1030+27 Tty bu 2bo]
bo; bly blOs-f—zy b103+2y M) bws—.‘»n as in (1317)7 §=0,,1-- ’
(13.3) 45, — L; b1030+z = 27704, 5405 bmso-‘rs = 24207
‘1611)30*74 = 2DA, 505 bu;sofs = bmso»'rs =1;
b1050+7 = 27A, pn; b1050+8 = 24V
b1030+9 = 2d_1bA1/2(k—3) .

For k = 7, the expansion of w has the form

V(A7 +A+ 1)2 —4A = [bOy bl’ bzr Y bQ’ 17 1y bQ; Tt bz; bly 2b0]
(13.4) b, = A"+ A; b, = 1; b, = 2 'DA,; b; = 24; b, = 297'bA,;
b, = b, = 1; b, = 2970 A,; by = 24% b, = 297'BA, .

14. Expansion of w = V[A* — (A + D] —44; A=2% +1;d =
1;6 =1 odd. This case is the most interesting of all treated in this
part of the paper, since the length of the cycle is greater than any
previous one, namely 12. With the previous notation, A** —1 =
(A—-1DA, v=0,1,--+; A, =1, the reader will easily verify the
following expansions and formulas.

W= A% — 2(A + 1)A* - (A — 1) [w] = AF — A — 2;

14.1
( ){w:A"~A~2+¢,O<r<1.

(14.2) w=A*—A—2+ 1P — A~ (A +2); @ — 24" + 324 + 1) .
X

1

w4+ AP — A — 2 1

14.3 =1+ = P,=A* — (BA + 1); Q, = 44 .
(14.3) 2AF — 64 — 3 +x2 (64 + 1@
w+ A* — 54 — 1 _ 1
= 2074, , — 2+ —; P,= AF — (BA — 1) ;
(14.4) 44 ’ T ( )
Q= (24 — 1A —2(3A —1).
w+ A —B5A + 1 1 _
=1+ =P =(A—-1)A"*— (4 —-1);
(14.5) {24% — A** — 64 + 2 + x, ( ) 4-1
Q= A,
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w+ AP — A — A+ 1 1
2=(A4A—-1 =
(14.6) Akt ( )+ x5

Py=(A—1)A"+ (A —1); Q= (24 — 1) A — 2[24* — (A —1)] .

wtA AT+ A1 4 1,
(14.7) 2A4F — A _ 224" — (A —1)] v
Py = AF — [44* — (A — 1)]; @, = 44° .
w+ AP —4A P+ A—1 _ . 1
= 201p4, , — 1+ L
(14.8) 4A° e b @
Po= A" 24+ (A—1)]; Q = (A — A —[A + (A—1)] ;
w A 24— A+l _, 1.
(14.9) A — A — A — A+ 1 s
Py= (A — 2)AF2 — (A — 1); Q, = 44+ ;
w4+ AF — 245 — (A — 1)
4Ak-2
10 —zena, —1+ L =@ - 94+ a- 1 @
9
= 2(A* — 2)AF* — [A® — 2(4 — 1)] ;
w+ AF — 44 + (A — 1)
2AF — 44" — A + 2(A — 1
(14.11) . 2 )
=14 2 Py= A — [~ (A— DL Q= 4';
w4+ AP — A3+ A —1 =2Ak—3__2+_1__.
14.12 A 2
M) i p =4 44— 1)
Qu = 2(4° — 2)AF° — [A® + 2(A — 1)] ;
wA A A —A-1) 1.
(14.13) {ZA" — 44 — A* — 2(A — 1) T,
Po= (A° — A — (A — 1); Q, = 44+ ;
wt AP AAT (A1) = _giyy, 14 L,
14.14) a4t s
I, = @ — 24+ - 15
Q= (4 — DA™ — [A' = (4 - D]
wA A - 24 (A1) o 1
(14.15) AF — AFF — A+ (A - 1) P
P, = A* — [24* — (A — 1)]; Q. = 44*;
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(1a.16) WFA 24 A (A-Dggyy g4 L
4A 15

We now prove the formulas:

Pavia = A% — [44% + (4 = 1)];
Qurrs = (2474 — 1) A7 — 2[24% £ (A — D); bypyo = 15
P123+4 = (Aasﬂ - 1)Ak—38_1 - (A - 1) ’
Quzore = AV by = 2A%H — 25
Py = (A¥T — DA 4+ (A - 1);
Quzers = (24% — 1)AF %1 — 2[24%%2 — (A — 1)]; b5 = 15
Ppo = AF — [44° — (A — 1)];
Quzors = 4A% Y% bipyie = 2970 A, 50y — 1
Pyg = A% — [24%7 + (A - 1)] ;
Quoesr = (A% — 1)Ak—3'_2 — [A%* + (A = 1]; biyeir = 25
Py = (A% — 2)A %2 — (4 — 1) ;
Qupers = 4AY 7% byypps = 2970 A5, — 1
Py = (A" — A + (A - 1) ;
(4.17) & Quauye = 2(A%+ — 2) AR — [AH) — 2(A — 1)]; byyyro = 1;
Pipiig = AP — [A**0 — (A = 1)] 5
Quosirg = A™Y] bipigg = 2AFTCTD — 25
Py, = AF — [A%™ 4+ (4 - 1)];
Quusiny = 2(ACHY — 2) A0 [436+0 4 9(4 — 1)] ;
b =13
Py = (AMHD — g)AF36+0 (4 — 1) ;
Quusye = 4A¥ T by = 2970 A4, — 15
P123+13 — (A3(3+1) —_ 2)Ak-3(8+1) + (A — 1) ;
Quosiis = (A0 — 1)AF-30tD _ [A36+0 _ (4 — 1)] ;
bigeris = 25
Py = A — [243¢0% — (A — 1)]; Qoerr = 4A3HIH
Diosire = 297 A 54y — 1.
§=0,1, ---.

Comparison of successive P, —s and @, — s shows that equality
takes place in the following cases:

P,..; = P, implying k = 2(3s + 2); k = 4(mod 6) ;

(14.18) 802%(10_4).
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Pygris = Py implying k = 6(s + 1) + 1; &k = 1(mod 6) ;

1
0:__]‘;._7.
8 6( )

(14.19)

The length of the primitive period in the expansion of w equals,
in case (14.18), m = 4 + 24-1/6(k — 4) + 8 + 2 = 4k — 2; in case (14.19)
the length of the primitive period equals m = 4 + 24-(1/6)(k — 7) +
20 + 2 =4k — 2. We can now state.

THEOREM 14. Let A=2%+1,d =1, bodd, w*=[A* — (A + 1) —
4A squarefree; let further k = 4(mod 6), k = 4, s, = (1/6)(k — 4). Then
the length of the primitive period in the expansion of w as a periodic
continued fraction equals 4k — 2, and the expansion has the form
k= 10,

w = [bo’ bl) bz’ ) b123+39 b128+47 M) b123+14y tt b1230+39 bl230+4 ’

b1230+57 b1230+87 2: b1230+6y b1230+5; blZso+4’ b1230+3’ t bz, bly 260]
by = A" — A —2,b,=1; b, =24, , — 2; bissyrs = bizegrs=1;
b1230+4 = 247D — bmo+s = 2d-—1bA1/2(k—2) ’
(14.20) bisers = Digors = ";—bm-w = Digere = Diorns = _;—'blzs—(—l.’i =1;
biosis = 2457 — 25 biyeps = 2770 A L 5y — 1
b12s+8 = 2d_1bA3s+1 - 1; b123+10 = 24736 — 2 5
b128+12 = 2d_1bA3s+z -1 b123+14 = zd—lek_33_5 —1.
s =0, 1, "',80—1;Au+1—1=(A—l)Au;u:O,1’ -
Ay =1.

For k = 4, we obtain the expansion

VI[A*— (A + 1) — 44
(14.21) { =[A*— A —2 1,274, — 2,1, 24 — 2,1, 274, 2,
2971pA, 1,24 — 2,1, 29704, — 2,1, 2(A* — A — 2)] .
Let further & = 1(mod 6); ¥k = 7, s, = 1/6(k — 7). Then the length

of the period in the expansion of w as a periodic continued fraction
equals 4% — 2, and the expansion has the form

W = [by, by by =+, bigersy Dizgrsy * 7y Dizgrrsy * v, bi2sg+s 5

b1230+4) ) b1230+12’ 2, b1210+12, % b1230+47 b1230+39 Ty bz; bu 2b0]
bo: bly bz» b123+3y b123+4’ M) b123+14 as in (14'20)7 8§ = 0, 1’ Tty
ss—1.

lb1230+3 = bigegrs = ’_b1230+7 = bissgre = b1330+11 =1;

2
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— 12(k~5 . — 9d—- .
b1230+4 = 2AFTY — 2 b1230+6 = 27704, pgey — 15
— 9d- . _ ; .
b1zso+s = 27704 p0e — L5 b12s0+1o = 24" — 2
— 9d-
blZso+12 = 27D A g — 1.

The reader will have no difficulty to formulate the theorem for
the case k = T.
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