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ROOTS OF THE EULER POLYNOMIALS

F. T. HOWARD

In this paper we prove some new theorems about the real
and complex roots of the Euler polynomials. For each n we show
how the real roots of En(x) are distributed in the closed interval
[1, 3]. We also show how the real roots of En(x) are distributed
in the arbitrary interval [m, m + 1] for n sufficiently large.
Finally, we prove that if a and b are nonzero rational numbers
and c is a square-free integer, then En{x) has no roots of the
form aVc, c^ 1, or a + b\/c,c even, or a + bi, a and b
integers.

1. Introduction. The Euler polynomial En(x) degree n can
be defined as the unique polynomial satisfying

(1.1)

These polynomials have been extensively studied; see [3, Chapter VI]
and [4, Chapter II] for example. The first fifteen Euler polynomials are
listed in [5, p. 477].

In this paper we are primarily concerned with the real roots of En(x),
though we also prove a few results about the complex roots. It is well
known that if n is even, n > 0, then the only real roots of En{x) in the
closed interval [0, 1] are 0 and 1, while if n is odd the only real root in
[0, 1] is 1/2. Brillhart [1] has pointed out that these are the only complex
roots in the "critical strip" of all complex numbers x + /y, 0 ^ x ^ 1. In
the same paper Brillhart proved that E5(x) is the only Euler polynomial
with a multiple root and that the Euler polynomials have no rational
roots other than 0, 1, 1/2.

The main results in this paper are:
(1) On the closed interval [1, 3] we show how the real roots of

En(x) are distributed for each n.
(2) On each interval [m, m + 1], m > 0, we show how the real roots

of En(x) are distributed for n sufficiently large.
(3) Let a and b be nonzero rational numbers and let c and d be

square-free integers. The polynomial JBn(x) has no roots of the form
aVc, (c^l) , a + bVc (c even), aVd^ b\/c i (c and d of different
parity); or a 4- bi (α, b integers).

It is pointed out that results similar to (3) are also true for the
Bernoulli polynomials.
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2. Preliminaries. Throughout this paper we use the notation
of Nόrlund [4]. The following are well-known identities:

(2.1)

(2.2)

(2.3)

where

E'n(x)=nEn.1(x) (n

En(l-x) = (-l)Έn(x),

s = 0 \S /

In formula (2.3), Bs is the s'th Bernoulli number (see [4, pp. 17-23]). If s
is odd, s > 1, then Bs = 0. Us is even, s > 0, then the denominator of Bs

is even and square-free.
The Euler polynomials are related to, and often studied in conjunc-

tion with, the Bernoulli polynomials Bn(x) [3, Chapter V], [4, Chapter
II]. The Euler and Bernoulli polynomials are related by

(2.4) n E , _ l ( x ) = 2"

The numbers E2k defined by

(2-5) E2k=22kE2k(l/2)

are known as the Euler numbers and have the following properties:

(2-6) {-\)kE2k >0,

(2.7) ( - iγ(2π)2k+Έ2k = 24l+3(2fc)! J ( - l)"(2n + I)"2*-'.

The first sixty Euler numbers, as well as the first sixty Bernoulli numbers
and the first fifteen Bernoulli polynomials are listed in [5, pp. 477-479].

From (2.7) and inequalities proved in [3, pp. 294-295, 302], it follows
that for k > 0

(2.8) (2k - 1)! /42k~ι < I £ 2 t.,(0)| < 2(2k - 1)! /32*"\

(2.9) ( 2 f c ) ! / 2 " < | E 2 i | ,

(2.10) (2ττ)2\E2k\>l6(2k)(2k-
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Finally, we shall use the following formulas which are derived by
expanding En(x) into a series about x = a and then using (2.3).

(2.11) E2k{a + bVd)/(2k)\

= ΣΣ dkrb2k-2ra2rsCJ2s(2k -2r)\s\(2r - s)\

k-\ 2r+ί

ΣI
= 0 s =

Σ dk-Γ-ιb2k-2r-1a2r+ι-sCJ2s(2k - 2r - 1)! s! (2r

(2.12) E2k+ι(a + bVd)/(2k + 1)!

= Σ S dk-'b2k-2ra2r+λ-sCJ2s(2k - 2r)\ s! (2r + 1 - s)\

Σ

The numbers Cs in (2.11) and (2.12) are defined by (2.3).

3. Distribution of the real roots of En (x ). Inkeri [2] has
shown how the positive real roots of the Bernoulli polynomials are
distributed outside of the interval [0, 1]. To the author's knowledge this
has not been attempted for the Euler polynomials. By (2.2), if we restrict
our attention to the positive real roots we can determine how all the
roots are distributed. Thus we shall only consider the positive real roots
and we shall use (1.1), which tells us that if En(a) < 0 then En(l + a) > 0.

First we note that if m is a positive integer we have, by (1.1),

(3.1) En(m) = (-l)mEn(0) " 'Σ
k=0

(3.2) En (m + 1/2) = (- !)-£„ (1/2) + 2 Σ (~ l)k (m - k - 1/2)".
fc=0

Since En(0) = 0 if n is even and f±n(l/2) = 0 if n is odd, we see that

(3.3) En(m)>0 if n is even,

(3.4) £ n ( m + l / 2 ) > 0 if n is odd.

Furthermore, by (2.3) and (3.1),

(3.5) E4 f c + 1(m)>0 if m is odd,
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(3.6) E4k+3(m)>0 if m is even.

By (2.6) and (3.2), we see that

(3.7) E4k+2(m + l / 2 ) > 0 if m is odd,

(3.8) E4k+4(m + l/2)>0 if m is even.

THEOREM 3.1. Let k > 0 . 77ιen E4fc(jt) /*αs exactly one real root ax

in the open interval (1,2) and 3/2 < αj < 2;
E4fc+](jc) has exactly one real root ct2 in (1,2) and 3 / 2 < a 2 < 2 ;
E4k+2(jc) ^#s no rea/ rooίs in (1,2);
£4fc+3(jc) /las exactly one real root a3 in (1,2) and 1 < a 3 <3/2.

Proof. The proof for £4 f c(x) is due to Brillhart [1]. By (3.1), (3.3)
and (3.8), we know that E 4 k ( l ) = 0, E4 k(2) = 2, £ 4 f c(3/2)<0. Further-
more, since E4k-2(x) < 0 for 0 < x < 1, we know E4k_2(x) > 0 for 1 < x <
2. Thus, by (2.1), E4k(x) is concave up for 1 < x < 2 and has exactly one
real root ax in (1,2), 3/2 < ax < 2.

Now the theorem is true for E5(x) = (x - 1/2) (x2- x - I)2, so we
examine E4k+](x) for fc ^ 2. We know that £4 f c + 1(l) > 0, E4k+ι(3/2) > 0 and
£4fc+1(2) = 2 + £4,+ 1(0). Since by (2.3) E 4 k + 1 (0)<0 and since E9(0) =
- 15.5, we see from (2.8) that E4k+ι(2) < 0. We know there is exactly one
number ax in (1,2) such that E'4k+X(ax) = 0. Hence E4k+ι(x) has exactly one
real root α2 in (1,2) and α 2 >3/2.

We know E4k+2(x) > 0 for 1 < x < 2 since E4k+2(x) < 0 for 0 < x < 1.
We know £ 4 f c + 3 ( l )<0, E4*+ 3(3/2)>0, E 4 , + 3 (2)>0. Also E; fc+3(jc)>0

for 1 < x < 2 . Hence fj4k+3(jc) has exactly one real root α3 in (1,2) and
α 3 <3/2.

It is clear from this proof that α 3 < a2< ax.

THEOREM 3.2. Let k ^ 4. T/ien E4k+X(x) has exactly one real root
αu/c+i in the closed interval [2,3] and 2 < a4k+x < 5/2;

£4/c+2(*) ^α5 exactly two real roots a(

4k\2, a$+2 in [2,3] and a(

4k\2<
5/2<a?U

E4k+3(x) has exactly one real root aAk+3 in [2,3] and 5/2<aAk+3;
E4k+4(x)>0 for 2 ^ x ^ 3 .

Furthermore, a{

4k\2 < a4k+x < 5/2 < a4k+3 < afk\2.

Proof. We know £ 4 f e + 1 (2)<0, JB4Jk+i(5/2) > 0, E4 f c + 1(3)>0. By
Theorem 3.1 we know that E4k{x)< 0 for 1 < x < ax and thus E'4k+X{x)>
0 for 2 < x < 1 4- ΘLX. Since £4fe+1(x) < 0 for a2 < x ^ 2 and since α2 < au

we see that E4k+X(x) > 0 for 1 + ax < x ^ 3. Thus E4 / C + 1(JC) has exactly one
real root α 4 k + 1 in [2,3]rand 2 < α 4 k + ] < 5/2.

We know that f?4fc+2(2)>0, £ 4 f c + 2 (3)>0 and we now show that for
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k ^ 3, E4k+2(5/2) < 0. We shall use (3.2) and (2.10). We first observe that
- El4 = 199,360,981 > 2 314, so E14(5/2) < 0. Now by (2.10) we see that if
I E2t I > 2(32ί - 1) then | E2t+2 \ > 2(32'+2 - 1). Thus we have E4fc+2(5/2) < 0 for
k ^ 3. Now since Er

4k+2(x)<0 for 2 < x < a4k+x and E'4k+2(x)>0 for
a4k+ι < x < 3, we see that £j4fc+2(jc) has exactly two real roots a$+2, ot^Li in
[2, 3] and αi?+2 < a4k+ι < 5/2 < afk\2.

We know that £ 4 f c + 3 (2)>0, E4 f c + 3(5/2)>0, and we now show that
E4k+3(3) < 0 for k ^ 4. We shall use (3.1) and (2.8). We first note (by
using tables) that J519(0) > 220, so by (3.1) J519(3) < 0. For k = 5 we use (2.8)
and we see that |£ 2 3 (0) | >2 2 4 , and it is clear that for k > 5 we have
|B4k+3(0)| >Tk+\ Thus by (3.1) we see that E 4 k + 3 (3)<0 for k^A. We
know that £ 4 k + 3 ( jc)>0 for 2 < x < a$+2 and for afk

}

+2< x < 3, while
E4k+3(x) < 0 for αiV+2 < x < a?ϊ+2. It follows that E4k+3(x) has exactly one
real root a4k+3 in [2,3] and 5/2 < α 4 f c + 3< a{

4k\2.
We know E 4 k + 4 (2)>0, £ 4 k + 4 (5/2)>0, £ 4 k + 4 ( 3 ) > 0 . Furthermore

E4k+4(x)>Q for 2 < x < a4k+3 and E4k+4(x)<0 for a 4 k + 3 < x < 3. It follows
that £4fe+4(jc) > 0 for 2 ^ x ^ 3.

Since we assume fe ^ 4 in Theorem 3.2, we now look at the Euler
polynomials En(x) for 2 ^ x ^ 3 and rc < 17. If n ^ 8, En(x) is a positive
increasing function on [2, oo). With the aid of (2.1), (3.1)—(3.8) and an
electronic calculator, we have the following results for 9 ^ n ^ 16 and the
interval [2,3]:

E9(x) has one real root a < 5/2 and is a positive, increasing function
for x > a.

Em(x) has two real roots α, β such that a < β < 5/2 and JB10(x) is a
positive increasing function for x > β.

Eu(x)>0 and is a positive, increasing function for x >5/2.
JB12(JC) is a positive, increasing function for x ^ 2.
£ 1 3(JC) has one real root α < 5/2 and is a positive, increasing function

for x > a.
El4(x) has two real roots a, β such that a < 5/2 < β and El4(x) is a

positive increasing function for x > β.
El5(x) has two real roots α, β such that 5/2 < a < β and Eι5(x) is a

positive, increasing function for x > β.
El6(x)>0 and is a positive, increasing function for x > 3 .
In examining the real roots of En(x) on a fixed positive interval

[m, m +1] we shall use the fact that if n is sufficiently large, En(0) and
En(l/2) dominate (3.1) and (3.2).

THEOREM 3.3. If k > m2, then on the interval [m, m + 1]:
E4k+ι(x) has exactly one real root a4k+ι(a4k+ι < m + 1/2) // m is even.

E4k+ι(x) has exactly one real root β4k+] (m + 1/2 < β4k+ι) if m is odd.
E4k+2(x) has exactly two real roots a{

4k\2, α $ + 2 (a{

4k\2<m + l / 2 <
a?k+2) if tn is even. E4k+2(x)>0 if m is odd.
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E4k+3(x) has exactly one real root a4k+3 (m 4-1/2 < a4k+3) if m is

even. JB4fe+3(x) has exactly one real root β4k+3 (m 4- 1/2 < β4k+3) if m is

odd.

E4k+4(x)>0 if m is even. E4k+4(x) has exactly two real roots β{

4}ί+4,

β{

4kK4 (βi

4k\4<m 4-1/2 < βfk\4) if m is odd. Furthermore, a(

4

ι

k

)

+2< a4k+ι <

a4k+3 < afi+2 and β$+Λ < β4k+3 < β4k+ι < βfl

Proof. We have proved the theorem for m =2. Assume the
theorem is true for any integer t such that 2 ^ t < m.

Case 1. m odd. We first examine the interval [m - l , m ] ; since
k > m2, it is clear that k - 1 > (m - I)2. Thus, by our induction
hypothesis, E4k-3(x) has one real root a4k-3 in [m - l , m ] and a4k-3<
m - 1/2. Also JB4 k_3(m)>0, so E4k-3{m - l ) < 0 . Hence E 4 k _ 3 (x)>0 for
m ^ x ^ l + α4jk_3. Also by our induction hypothesis, i?4/c_2(x) has two
real roots α$_ 2 , αg_2 in [m - 1, m] such that αi 1

k

) - 2

< «4fc-3< m - 1/2 <
αi?-2, and since £ 4 k - 2 ( m ) > 0 , £4 k_2(m - l ) > 0 , we have jE4fc_2(x)>0 for
14- α$_ 2 ̂  x ^ 1 4- αS?-2. Also by our induction hypothesis, EAk-x(x) has
one real root aAk-\ in [m - 1, m] such that m - 1/2 < a4k-λ < α$_ 2. Also,
H4/ci(m - l ) > 0 , so E4k-](m)<0. Thus £'4 f c_1(x)>0 for 1 + α4k_i ^ x ^
m + 1. Furthermore, E^-^x) is concave up for m ^ Λ: ̂  1 4- α4 k-3 and is
increasing for 1 4- α$_ 2 ̂  x ^ 14- α4

2

fc

)_2 with α$_ 2 < α4fc-3 < α4k-i < «42fc-2
Hence E4k_j(x) has exactly one real root β4k-ί in [m, m 4-1] and ^S4Λ_, <
m + 1/2. Also, E4k-i(jc) < 0 for m^x<β4k-u E4k^(x)>0 for j84fc-!<
JC ̂  m + 1.

Now that we know the behavior of E4k-λ{x) on [ra, m 4-1] we are
ready to prove the theorem. We know that E4\ (m) > 0, E4k (m + 1) > 0
and by (3.2) and (2.9) we have E4k(m + 1/2) < 0. This last inequality
follows from the fact that if k S m 2 then (4/c)! >2(4m) 4 \ which can be
proved in a straightforward elementary way. Also E4k(x) < 0 for m ^ x <
β4k-ι and E4k(x)>0 for j34fc_, < x ^ m 4-1. It follows that E4k(x) has
exactly two real roots β% β{?k such that β(

4k

}< β4k-{ < m 4-1/2 < β g .
We now continue in the same way for E4k+λ(x). We have E4k+ι(m)>

0, E4k+ι(m 4-1/2) > 0 and E4k+ι(m + 1) < 0. Also E'Ak+ι(x) > 0 for m ^ x <
j8$ and β$<x^m+l9 while E 4 f c + 1 (x)<0 for βΛ

ιi<x < βfi. Thus
£4fc+1(jc) has exactly one real root β4k+] in [m, m 4-1] and m 4-1/2 <
β4k+ι<βfl We know that £ 4 f c + 2 ( m ) > 0 , E4k+2(m +1/2) > 0 ,
£4fc+2(m + 1) > 0, EI fc+2(x) > 0 for m ^ x < j84fc+1, £^ + 2 (x) < 0 for /34k+1 <
x ^ m 4-1. Thus £4 f c + 2(x) > 0 for m ^ x ^ m + 1. We know that
£ 4 f c + 3 (m)<0, £4k+3(m + 1 / 2 ) > 0 , £ 4 k + 3 (m + l ) > 0 , JB4fc+3(jc)>0 for m ^
x ^ m 4-1. Thus E4k+3(x) has exactly one real root β4k+3 in [m, m + 1] and
j84k+3 < m 4-1/2. We know E4k+4(m) > 0, £4fc+4(m + 1/2) < 0,
£4fc+4(m 4-1) >0, £4 f c + 4(x) < 0 for m ^ x < β,k^ Ef

4k+4(x) > 0 for β4k+3 <
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j c ^ m + 1. Hence E4k+4(x) has exactly two real roots β$+4, β?k+4 in
[m, m + 1] and j8#+4 < /34fc+3 < m + 1/2 < jβ4fc+1 < 0 $ .

2. m even. In this case we first prove the theorem for
E4k+λ(x), treating E4 k + 1(x) in exactly the same way we treated E4k~x(x)
when m was odd. The rest of the proof is entirely analogous to the
proof of Case 1. That is, we first examine E4k-ι(x) and E4k(x) on the
interval [ m - l , m ] and then show E4k+ι(x) satisfies the theorem on
[m, m +1]. Once we know the behavior of E4k+ι on [m, m + 1] we can
easily determine the behavior of E4k+2(x), E4k+3(x) and E4k+4(x) on
[m, m +1],

It is known that En(x) is a positive increasing function when x is
sufficiently large, i.e., x > xo The next theorem gives us an upper
bound for x0.

THEOREM 3.4. The polynomials E4k+S(x), s = 1,2,3,4, are positive
increasing functions on [k + I, 0 0 ) .

Proof. We have seen that the theorem is true for k = 1,2,3.
Assume it is true for all m < fc, and suppose k is even. By (3.3) and (3.5)
we see that E4k+S(k + l ) > O f o r s = 1,2,4 and we are assuming J34k(fc + 1)
is a positive increasing function on [A:, oo). Thus the only difficulty is to
show that E4k+3(k + l ) > 0 . We shall use (3.1), inequality (2.8) and the
inequality

2(fc - l ) 4 f e + 3 < 2 Σ (- l)Γ(fc - r)Ak+\

Thus if we can show that

(3.9) (4k + 3)! < [3(k - l)]4k+\ k g 4,

then it follows that E4k+3(k + 1) > 0. We prove (3.9) by first verifying the
case k = 4 from tables and then observing that

(3fc - 2 + a)(k + 6 - a) < (3k - 3)2

for a = 0,1, , fc + 5, with fc g 5. The proof for ft odd is very similar.
Theorem 3.4 can almost certainly be improved. In fact we conjecture

that the polynomials Esk+S(x), 1 ̂  s ^ 8, are positive, increasing functions
on [k +2,oo).

Because of (2.4), we see that if Bn(x) has no root in (m,oo) then
En-λ(x) has no root in (2m, oo). Inkeri [2] has shown that if (M, M + 1) is
the largest interval in which Bn(x) has real roots then M - n/2eπ as n
approaches oo.
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4. Restrictions on the roots of En (x ). Inkeri [2] has shown
that the only possible rational roots of En(x) are 0, 1, and 1/2. In this
section we show that other types of real and complex numbers cannot be
roots of En(x). We shall use the following lemma.

LEMMA 4.1. Suppose f(x) is a polynomial and

f ( a + b V c ) = ( α , + + a k ) + V c ( 6 , + ••• + &*),

where each at and b, is a rational number and c is a square-free integer,
c>lorc<0. Suppose there is a prime number p and positive integers j and
m such that either

(a) pma,f^0 (modp) and pmah = 0 (mod p) for h^ j
or

(b) pmbj ^ 0 (mod p) and pmbh = 0 ( m o d p ) for h/ j .
Then we can conclude that f(a + bVc) ^ 0.

THEOREM 4.1. If a isa nonzero rational number and c is a nonzero
integer, c^l, then En(aVc)^0.

Proof Brillhart [1] has proved that En(x) has no roots of the form
ai where a is real, so we may assume | c | > 1. By (2.3) we see that if n is
even the only nonzero term of En(x) with an even exponent is
xn. Dividing En(aVc) into its rational and irrational parts, we see that
the rational part is ancn/2^0. If n is odd, then xn is the only term of
En(x) with an odd exponent and in this case the irrational part of

V

THEOREM 4.2. // a and b are nonzero rational numbers and c is an
even square-free integer, then En(a + bVc)^ 0.

Proof First suppose c > 0 . If n = 2k we use (2.11) to break
E2k(a + bVc)/(2/c)! into its rational and irrational parts. Let b2c =
bjb22

q, a = aι/a22\ g.c.d. (bu b2) = 1 = g.c.d. (α b a2) (a negative value of q
or z indicates a power of 2 in the numerator). Note that q must be
odd. We now use Lemma 4.1 with p = 2.

Case 1. z < 0, q < 0. From (2.11) we see that the maximum power
of 2 occurs in the denominator of the irrational part of

E 2 k ( a + bV~c)/(2k)\ w h e n r = k - 1, s = 2 k - l .

To see this, first replace Cs in (2.11) by 2S+1 (1 - 2s+ι)Bs+J(s + 1), keeping
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in mind that 2B2m = 1 (mod 2) for m > 0 . Since q and z are both
negative, we see that (b2c)kr and a2r+1~s contribute the smallest possible
power of 2 to the numerator when r = k - 1 and s = 2k - 1. Notice that
in this case the power of 2 dividing the product (s + 1)! (2k - 2r - 1)!
(2r + 1 - 5)! in the denominator is maximum. This is the kind of
reasoning we use in the remaining two cases and in Theorems 4.3 and 4.4.

Case 2. z > 0, 2z > q. The maximum power of 2 occurs in the
denominator of the rational part when r = fc, 5 = 0.

Case 3. q > 0 , q >2z. The maximum power of 2 occurs in the
denominator of the rational part when r = 0, 5 = 0.

When n = 2k + 1 we use the irrational part of (2.12) and the proof is
similar. If c < 0 we divide En(a 4- b\ί c)ln\ into its real and imaginary
parts and proceed as before.

THEOREM 4.3. Suppose c is an odd square-free integer, c^ 1, and
suppose a and b are rational numbers reduced to their lowest terms,
a = aja29 b = bι\b1. If En(a + bVc) = 0 then a2 = b2 and g.c.d. (α2, c) =
l = g.c.d.(62,c).

We shall use the notation px\\y to mean p* divides y while
p*+ 1 does not divide y. First suppose n = 2/c. Suppose p is a prime
number and pz\\a2, z>0. We want to show that pz\\b2 and g.c.d.
(α2, c) = 1. Suppose pq || 62C"1. We shall show that q = 2z, so p does not
divide c.

1. 2z >_q. Using (2.11), we examine the rational (or real)
part of E2k(a + bVc)/(2k)l, and we see that the maximum power of p in
the denominator occurs when r = k, 5 = 0. Note that in this case if
pm\\(2k)\ t h e n pm\\(s +1)1 (2k-2r)\ (2r-s)\. If /?Λ | |2fc + l , t h e r e a re
some terms having the property that if pm ||(2fc + 1)! then pm \\(s + 1)!
(2/c - 2r)! (2r - 5)! For terms of this type the highest power of p in the
denominator occurs when r = fc, 5 = ph - 1, but this power of p is still less
than the power occurring when r = k, 5 = 0.

Case 2. g > 2z. The maximum power of p occurs in the de-
nominator of the rational (or real) part of E2k(a + bVc)/(2k)\ when
r = 0, 5 = 0.

Thus, by Lemma 4.1, if pz || α2, z > 0, we must have g.c.d. (α2, c) =
1. Also we have shown that pz\\b2. Now suppose pq\\b2c~1 q>
0. We want to show pq || a2.

Case 1. 2z > q. The maximum power of p in the denominator of
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the rational (or real) part of E2k(a + b\/c)/(2k)\ occurs when r = k,
5 = 0.

Case 2. q > 2z. The maximum power of p in the denominator of
the rational (or real) part of Ek(a + bVc)/(2k)\ occurs when r = 0,
5 = 0. Thus by Lemma 4.1 we must have z = q. If n = 2fc + 1 we
examine the irrational (or complex) part of E2k+](a + bVc)/(2k + 1)! and
the proof is similar.

It is perhaps worth noting that E3(x) has the roots (1 ±λ/3)/2 and
E4(x) and E5(x) both have the roots (1 ± V5)/2. Thus there are polyno-
mials En(x) having roots of the form a + ftVc, c odd.

THEOREM 4.4. If a and b are nonzero integers then En(a + bi)^ 0.

Proof. Suppose E2k(a + bi) = 0 and let a = α,2% fe = bx2\ ax and bj
odd. Again we use Lemma 4.1.

Case 1. g = 0. We can assume z > 0 by (2.2). Examining the real
part of E2k(a + bi)/(2k)\, we see that the highest power of 2 occurs in the
denominator when r = 0, 5 = 0.

Case 2. q >0. Again, by (2.2), we can assume z >0. We look at
the imaginary part of E2/c(# + bi)/(2k)\ and the highest power of 2 occurs
in the denominator when r = k - 1, s = 2fc - 1. The proof for
E2k+ι(a + ]W) is similar.

Using the same method, we can prove the following theorem.

THEOREM 4.5. // a and b are rational numbers and c and d are
square-free positive integers of different parity, then En(a\^dJr bX^ci)^ 0.

It should be pointed out that Theorems 4.1, 4.2, 4.4 and 4.5 also hold
for the Bernoulli polynomials Bn(x). The proofs are entirely analogous
to the proofs in this paper.

Of course many questions remain unanswered. We have not been
able to determine, for example, whether or not a + bi can be a root of
En{x) if a and b are rational numbers. The writer also feels that Theorem
3.4 and the lower bound m2 in Theorem 3.3 can both be improved. It
would also be interesting to know how the roots of En(x) are distributed
in the last interval for which it has real roots.
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helpful suggestions. In particular, he has pointed out that the paper
"Computation of tangent, Euler, and Bernoulli numbers" by D. E.
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