GENERALIZED DEDEKIND ψ-FUNCTIONS WITH RESPECT TO A POLYNOMIAL II

J. Chidambaraswamy

For a given polynomial $f=f(x)$ of positive degree with integer coefficients and for given positive integers u, v, and t, the arithmetical function $\psi_{f, t}^{u, v}(n)$ is defined and some of its arithmetical properties are obtained in addition to its average order. $\psi_{x, 1}^{k, 1}(n)$ reduces to the function $\psi_{(k)}^{\prime}(n)$ studied recently by D. Suryanarayana and $\psi_{f, t}^{1, k}(n)$ to $\psi_{f, t}^{(k)}(n)$ studied more recently by the author.

Introduction. The Dedekind's ψ-function

$$
\begin{equation*}
\psi(n)=\sum_{d \mid n} \frac{d \phi(g)}{g}, \quad g=\left(d, \frac{n}{d}\right), \tag{1.1}
\end{equation*}
$$

$\phi(n)$ being Euler's totient function is well known. He used this function in his study of elliptic modular functions [4]. As generalizations of this function, recently D. Suryanarayana [8] defined and studied the functions $\Psi_{k}(n), \psi_{k}(n)$ and $\psi_{(k)}(n)$ all giving the function $\psi(n)$ for $k=1$. The functions $\Psi_{k}(n)$ and $\psi_{k}(n)$ are defined respectively (see [8]) as the Dirichlet's convolution of a certain function with Klee's [6] totient function and as a sum similar to (1.1) using Cohen's [3] totient function, while $\psi_{(k)}(n)$ is defined as a multiplicative function whose values at prime powers p^{α} are given by

$$
\begin{equation*}
\psi_{(k)}\left(p^{\alpha}\right)=\sum_{j=0}^{\alpha}\binom{k-1}{j} \psi\left(p^{\alpha-j}\right) \tag{1.2}
\end{equation*}
$$

where for any nonnegative integers s and t

$$
\begin{equation*}
\binom{s}{t}=\frac{s(s-1)(s-t+1)}{1.2 .3 \cdots t} ;\binom{s}{0} \equiv 1 \tag{1.3}
\end{equation*}
$$

We recall the Dirichlet convolution $(a * b)(n)$ of the arithmetical functions $a(n)$ and $b(n)$ is defined by

$$
\begin{equation*}
(a * b)(n)=\sum_{d \mid n} a(d) b\left(\frac{n}{d}\right) . \tag{1.4}
\end{equation*}
$$

In [2], using totient function $\Phi_{f, t}^{(k)}(n)$, (see [1]; the notation for $\Phi_{f, t}^{(k)}(n)$ is slightly different in [1]) $f=f(x)$ being a given polynomial of positive degree with integer coefficients, t and k being given positive integers, which includes as special cases when $f(x)=x$ and special values of k and t all the familiar totient functions, the
author defined and studied the functions $\Psi_{f, t}^{(k)}(n)$ and $\psi_{f, t}^{(k)}(n)$ as generalizations of $\Psi_{k}(n)$ and $\psi_{k}(n)$ respectively and among other things extended all the results in [8] regarding $\Psi_{k}(n)$ and $\psi_{k}(n)$ to $\Psi_{f, t}^{(k)}(n)$ and $\psi_{f, t}^{(k)}(n)$. In fact

$$
\begin{align*}
\mathrm{i}, & \Psi_{x, 1}^{(k)}(n)=\Psi_{k}(n), \\
\mathrm{ii}, & \psi_{x, 1}^{(k)}(n)=\psi_{k}(n), \quad \text { and } \tag{1.5}\\
\mathrm{iii}, & \Psi_{f, t}^{(k)}\left(n^{k}\right)=\psi_{f, t}^{(k)}(n) .
\end{align*}
$$

In this paper, we define an arithmetical function $\psi_{f, t}^{u, v}(n)$ which includes as special cases not only the function $\psi_{(k)}(n)$ but also $\psi_{f, t}^{(k)}(n)$ (and hence also the function $\psi_{k}(n)$). In $\S 2$, the function $\psi_{f, t}^{u, v}(n)$ is defined and all the results in [8] concerning $\psi_{(k)}(n)$ are extended to this function and in $\S 3$ we obtain its average order subject to

$$
\begin{equation*}
N_{f}(n)=0\left(n^{\varepsilon}\right), \quad 0<\varepsilon<\frac{1}{u} \tag{1.6}
\end{equation*}
$$

where $N_{f}(n)$ is the number of solutions $(\bmod n)$ of

$$
\begin{equation*}
f(x) \equiv 0(\bmod n) . \tag{1.7}
\end{equation*}
$$

We note in passing that when $f(x)=x, N_{f}(n)=1$ and that (1.6) is always satisfied if $f(x)$ is a primitive integral polynomial with descriminant $\neq 0$. (cf. Theorem 54 of [7]).

We need the following results about $\psi_{f, t}^{(k)}(n)$ which have been obtained in [2].

$$
\begin{align*}
\text { i, } & \psi_{f, t}^{(k)}(n) \text { is a multiplicative function of } n \\
\text { ii, } & \psi_{f, t}^{(k)}\left(p^{\alpha}\right)=p^{\alpha k t}\left\{1+\frac{N_{f}^{t}\left(p^{k}\right)}{p^{k t}}\right\} \tag{1.8}\\
\text { iii, } & \psi_{f, t}^{(k)}(n)=n^{k t} \prod_{p \mid n}\left\{1+\frac{N_{f}^{t}\left(p^{k}\right)}{p^{k t}}\right\}=n^{k t} \sum_{d \mid n} \frac{\mu^{2}(d) N_{f}^{t}\left(d^{k}\right)}{d^{k t}},
\end{align*}
$$

where $\mu(n)$ is the Mobius function and for any arithmetical function $g(n), g^{r}(n)=(g(n))^{r}$.

We shall use the symbol $p^{\alpha} \| n$ to mean that p^{α} is the highest power of p that divides n.
2. For a given polynomial f and for given positive integers u, v and t we define the arithmetical function $\psi_{f, t}^{u, v}(n)$ as a multiplicative function whose values at prime powers p^{α} are given by

$$
\begin{equation*}
\psi_{f, t}^{u, v}\left(p^{\alpha}\right)=\sum_{j=0}^{\alpha}\binom{u-1}{j} N_{f}^{j t}\left(p^{v}\right) \psi_{f, t}^{(v)}\left(p^{\alpha-j}\right) . \tag{2.1}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\psi_{f, t}^{1, k}(n)=\psi_{f, t}^{(k)}(n) \tag{2.2}
\end{equation*}
$$

and from (ii) of (1.5) for $k=1$ and (1.2)

$$
\begin{equation*}
\psi_{x, 1}^{k, 1}(n)=\psi_{(k)}(n) \tag{2.3}
\end{equation*}
$$

Using (1.8), writing N for $N_{f}\left(p^{v}\right)$, and observing

$$
\begin{aligned}
\binom{s}{t}+\binom{s}{t+1} & =\binom{s+1}{t+1}, \quad \text { we get the r.h.s. of (2.1) is } \\
& =\sum_{j=0}^{\alpha-1}\binom{u-1}{j} N^{j t}\left\{p^{(\alpha-j) v t}+p^{(\alpha-j-1) v t} N^{t}\right\}+\binom{u-1}{\alpha} N^{\alpha t} \\
& =p^{\alpha \nu t}+\sum_{j=1}^{a}\left\{\binom{u-1}{j-1}+\binom{u-1}{j}\right\} N^{j t} p^{(\alpha-j) v t} \\
& =p^{\alpha \nu t}+\sum_{j=1}^{\alpha}\binom{u}{j} N^{j t} p^{(\alpha-j) v t}, \text { for } \alpha>0
\end{aligned}
$$

and is 1 for $\alpha=0$; consequently, we have since $\psi_{f, t}^{u, v}(n)$ is by definition multiplicative,

Theorem 2.1.

$$
\psi_{f, t}^{u, v}(n)=\prod_{p^{\alpha} \| \mid n}\left\{\sum_{j=0}^{\alpha}\binom{u}{j} N_{f}^{j t}\left(p^{v}\right) p^{(\alpha-j) v t}\right\} .
$$

We observe that Theorem 2.1, (2.2), and the observations $\binom{s}{t}=0$ for $t>s$ give (3 of (2.18) of [2])

$$
\begin{equation*}
\dot{\psi}_{f, t}^{(k)}(n)=n^{k t} \prod_{p \mid n}\left\{1+\frac{N_{f}^{t}\left(p^{k}\right)}{p^{k t}}\right\} \tag{2.4}
\end{equation*}
$$

and Theorem 2.1 and (2.3) give (Theorem 3.3 of [8])

$$
\begin{equation*}
\psi_{(k)}(n)=\prod_{p^{\alpha} \mid n n} \sum_{j=0}^{\alpha}\binom{k}{j} p^{\alpha-j} \tag{2.5}
\end{equation*}
$$

We define the function $\rho_{f, t}^{u, v}(n)$ as a multiplicative function whose values at prime powers p^{α} are given by

$$
\begin{equation*}
\rho_{f, t}^{u, v}\left(p^{\alpha}\right)=\binom{u}{\alpha} N_{f}^{\alpha t}\left(p^{v}\right), \tag{2.6}
\end{equation*}
$$

so that,

$$
\begin{equation*}
\rho_{f, t}^{u, v}(n)=\prod_{p^{\alpha}| | n}\binom{u}{\alpha} N_{f}^{\alpha t}\left(p^{v}\right) . \tag{2.7}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\rho_{x, 1}^{k, 1}(n)=\prod_{p^{\alpha} \mid n n}\binom{k}{\alpha}=\rho_{(k)}(n) ; \tag{2.8}
\end{equation*}
$$

the function $\rho_{(k)}(n)$ is defined in [8]. Furthermore, it is easily seen that

$$
\begin{equation*}
\rho_{f, t}^{1, k}(n)=\prod_{p^{\alpha} \mid \backslash n}\binom{1}{\alpha} N_{f}^{\alpha t}\left(p^{k}\right)=\mu^{2}(n) N_{f}^{t}\left(n^{k}\right) . \tag{2.9}
\end{equation*}
$$

Since, by (2.6) and Theorem 2.1,

$$
\sum_{d \mid p^{\alpha}} \rho_{f, t}^{u, v}(d)\left(\frac{n}{d}\right)^{v t}=\sum_{j=0}^{\alpha}\binom{u}{j} N_{f}^{j t}\left(p^{v}\right) p^{(\alpha-j) v t}=\psi_{f, t}^{u, v}\left(p^{\alpha}\right)
$$

and since two multiplicative functions which agree at prime powers agree for all positive integers n, we have

Theorem 2.2.

$$
\psi_{f, t}^{u, v}(n)=\sum_{d \mid n} \rho_{f, t}^{u, v}(d)\left(\frac{n}{d}\right)^{v t}=\left(\rho_{f, t}^{u, v} * \lambda_{v t}\right)(n)
$$

where the arithmetical function $\lambda_{r}(n)$ is defined by

$$
\begin{equation*}
\lambda_{r}(n)=n^{r} . \tag{2.10}
\end{equation*}
$$

We note that Theorem 2.2, (2.2), and (2.9) give (3, of (2.18) of [2])

$$
\begin{equation*}
\psi_{f, t}^{(k)}(n)=n^{k t} \sum_{d \backslash n} \frac{\mu^{2}(d) N_{f}^{t}\left(d^{k}\right)}{d^{k t}} \tag{2.11}
\end{equation*}
$$

and Theorem 2.2, (2.3) and (2.8) give (Theorem 3.9 of [8])

$$
\begin{equation*}
\psi_{(k)}(n)=n \sum_{d \mid n} \frac{\rho_{(k)}(d)}{d} . \tag{2.12}
\end{equation*}
$$

Theorem 2.3. For $u \geqq 2$

$$
\psi_{f, t}^{u, v}(n)=\left(\rho_{f, t}^{1, v} * \psi_{f, t}^{u-1, v}\right)(n)=\left(\rho_{f, t}^{u-1, v} * \psi_{f, t}^{1, v}\right)(n) .
$$

For the proof of Theorem 2.3, we need
Lemma 2.1. For $u \geqq 2$,

$$
\rho_{f, t}^{u, v}(n)=\left(\rho_{f, t}^{1, v} * \rho_{f, t}^{u-1, v}\right)(n)=\left(\rho_{f, t}^{u-1, v} * \rho_{f, t}^{1, v}\right)(n) .
$$

Proof. The second equality is obvious since Dirichlet convolu-
tion is commutative. To prove the first equality it is enough to verify when $n=p^{\alpha}, \alpha \geqq 0, p$ a prime. If $\alpha=0$, both sides are 1 and if $\alpha>0$ by (2.6)

$$
\begin{gathered}
\sum_{d \mid p^{\alpha}} \rho_{f, t}^{1, v}(d) \rho_{f, t}^{u-1, v}\left(\frac{p^{\alpha}}{d}\right)=\binom{u-1}{\alpha} N_{f}^{\alpha t}\left(p^{v}\right)+\binom{1}{1} N_{f}^{t}\left(p^{v}\right)\binom{u-1}{\alpha-1} N_{f}^{(\alpha-1) t}\left(p^{v}\right) \\
\quad=N_{f}^{\alpha t}\left(p^{v}\right)\left\{\binom{u-1}{\alpha}+\binom{u-1}{\alpha-1}\right\}=\binom{u}{\alpha} N_{f}^{\alpha t}\left(p^{v}\right)=\rho_{f, t}^{u, v}\left(p^{\alpha}\right)
\end{gathered}
$$

and the proof of the lemma is complete.
We observe, Lemmas 2.1, 2.8, and (2.9) give (Theorem 3.12 of [8])

$$
\begin{equation*}
\rho_{(k)}(n)=\sum_{d \mid n} \mu^{2}(d) \rho_{(k-1)}\left(\frac{n}{d}\right), \quad k \geqq 2 \tag{2.13}
\end{equation*}
$$

Proof of Theorem 2.3. We first prove first equality. It is enough to verify this when $n=p^{\alpha}, p$ a prime and $\alpha \geqq 0$. If $\alpha=0$, both sides are 1 while if $\alpha>0$

$$
\begin{aligned}
\sum_{d \mid p^{\alpha}} & \rho_{f, t}^{1, v}(d) \psi_{f, t}^{u-1, v}\left(\frac{p^{\alpha}}{d}\right) \quad \text { (by (2.9) and Theorem 2.1) } \\
& =\rho_{f, t}^{1, v}(1) \psi_{f, t}^{u-1, v}\left(p^{\alpha}\right)+\rho_{f, t}^{1, v}(p) \psi_{f, t}^{u-1, v}\left(p^{\alpha-1}\right) \\
& =\sum_{j=0}^{\alpha}\binom{u-1}{j} N_{f}^{j t}\left(p^{v}\right) p^{(\alpha-j) v t}+N_{f}^{t}\left(p^{v}\right) \sum_{j=0}^{\alpha-1}\binom{u-1}{j} N_{f}^{j t}\left(p^{v}\right) p^{(\alpha-j-1) v t} \\
& =p^{\alpha v t}+\sum_{j=1}^{\alpha}\left\{\binom{u-1}{j-1}+\binom{u-1}{j}\right\} N_{f}^{j t}\left(p^{v}\right) p^{(\alpha-j) v t} \\
& =\sum_{j=0}^{\alpha}\binom{u}{j} N_{f}^{j t}\left(p^{v}\right) p^{(\alpha-j) v t}=\psi_{f, t}^{u, v}\left(p^{\alpha}\right)
\end{aligned}
$$

and the proof of the first equality is complete.
To complete the proof of the theorem, we have by Theorem 2.2 the associativity of Dirichlet convolution, and Lemma 2.1,

$$
\begin{aligned}
\rho_{f, t}^{u-1, v} * \psi_{f, t}^{1, v} & =\rho_{f, t}^{u-1, v} *\left(\rho_{f, t}^{1, v} * \lambda_{v t}\right)=\left(\rho_{f, t}^{u-1, v} * \rho_{f, t}^{1, v}\right) * \lambda_{v t} \\
& =\rho_{f, t}^{u, v} * \lambda_{v t}=\psi_{f, t}^{u, v},
\end{aligned}
$$

and the proof is complete.
Theorem 2.3, (2.3), and (2.9) give Theorems 3.10 and 3.11 of [8]

$$
\begin{equation*}
\psi_{(k)}(n)=\sum_{d \backslash n} \mu^{2}(d) \psi_{(k-1)}\left(\frac{n}{d}\right), \quad k \geqq 2 ; \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{(k)}(n)=\sum_{d \mid n} \rho_{(k-1)}(d) \psi\left(\frac{n}{d}\right), \quad k \geqq 2 \tag{2.15}
\end{equation*}
$$

3. We obtain in this section, the average order of $\psi_{f_{f, t}^{u, v}(n)}$ subject to (1.6).

Lemma 3.1.
i, $\rho_{f, t}^{u, v}(n)=0$ if n is not $(u+1)$ free
ii, $\quad \rho_{f, t}^{u, v}(n)<2^{u w(n)} N_{f}^{u t}\left(\gamma^{v}(n)\right) \quad$ if n is $u+1$-free
where $w(n)$ is the number of distinct prime factors of n and $\gamma(n)$ is the largest square free divisor of n.

Proof. If n is not $u+1$-free, there is a prime p such that $p^{\alpha} \| n, \alpha \geqq u+1$ and so $\binom{u}{\alpha}=0$ and hence (2.7) implies $\rho_{f, t}^{u, v}(n)=0$.

If n is $u+1$-free, then $p^{\alpha} \| n$ implies $\alpha \leqq u$ and hence by (2.7), using the facts that $\binom{n}{\alpha} \leqq 2^{u}$ and $N_{f}(n)$ is a multiplicative function of n, we have

$$
\rho_{f, t}^{u, v}(n)=\prod_{p^{\alpha} \mid n n}\binom{u}{\alpha} N_{f}^{\alpha t}\left(p^{v}\right) \leqq 2^{u v(n)} N_{f}^{u t}\left(\gamma^{v}(n)\right)
$$

and the proof of the lemma is complete.
We also need the following elementary estimates

$$
\begin{aligned}
& \text { i, } \quad \sum_{n \leqq x} n^{r}=\frac{x^{r+1}}{r+1}+0\left(x^{r}\right), \quad r>0, \quad x \geqq 1 ; \\
& \text { ii, } \quad \sum_{n \leqq x} \frac{1}{n^{r}}=0\left(x^{1-r}\right), \quad 0<r<1, \quad x \geqq 1 ; \\
& \text { iii, } \quad \sum_{n>x} \frac{1}{n^{r}}=0\left(x^{1-r}\right), \quad r>1, \quad x \geqq 1 .
\end{aligned}
$$

Lemma 3.2. Under the hypothesis (1.6), $\sum_{n=1}^{\infty} \rho_{f, t}^{u, v}(n) / n^{v t+1}$ converges and

$$
\begin{equation*}
c=\sum_{n=1}^{\infty} \frac{\rho_{f, t}^{u, v}(n)}{n^{v t+1}}=\left(\prod_{p}\left\{1+\frac{N_{f}^{t}\left(p^{v}\right)}{n^{v t+1}}\right\}\right)^{n} . \tag{3.2}
\end{equation*}
$$

Proof. If $d(n)$ is the number of divisors of n, we have (cf. Theorem 315 of [5]) $d(n)=0\left(n^{\theta}\right)$ for every $\theta>0$ and hence

$$
2^{u w(n)}=\left(2^{w(n)}\right)^{u} \leqq(d(n))^{u}=0\left(n^{u \theta}\right) \quad \text { for every } \quad \theta>0
$$

where the constant in the 0 -relation depends on u but not on n. Now, (1.6) and Lemma 3.1 give

$$
\begin{equation*}
\rho_{f, t}^{u, v}(n)=0\left(n^{u v t \varepsilon+u \theta}\right), \tag{3.3}
\end{equation*}
$$

where the constant in the 0 -relation is independent of n. Hence

$$
\begin{equation*}
\frac{\rho_{f ; t}^{u, v}(n)}{n^{v t+1}}=0\left(\frac{1}{n^{1}+v t(1-u \varepsilon)-u \theta}\right) . \tag{3.4}
\end{equation*}
$$

The first part of the lemma is clear since by (1.6) $1-u \varepsilon>0$ and we can choose θ so small that

$$
\begin{equation*}
v t(1-u \varepsilon)-u \theta>0 \tag{3.5}
\end{equation*}
$$

Since $\rho_{f, t}^{u, v}(n) / n^{v t+1}$ is multiplicative we can express the sum of the series as an infinite product of Euler type and so we have

$$
\sum_{n=1}^{\infty} \frac{\rho_{f, t}^{u, v}(n)}{n^{v t+1}} \prod_{p}\left\{\sum_{m=0}^{\infty} \frac{\rho_{f, t}^{u, v}\left(p^{m}\right)}{\left(p^{m}\right)^{v t+1}}\right\}
$$

and this by (2.6) and the fact $\binom{u}{\alpha}=0$ for $\alpha>u$ is

$$
\begin{aligned}
& =\prod_{p}\left\{\sum_{m=0}^{u} \frac{\binom{u}{m} N_{f}^{m t}\left(p^{v}\right)}{\left(p^{v t+1}\right)^{m}}\right\} \\
& =\prod_{p}\left\{1+\frac{N_{f}^{t}\left(p^{v}\right)}{p^{v t+1}}\right\}^{u}
\end{aligned}
$$

and the proof of Lemma 3.2 is complete.
Theorem 3.1. Under the hypothesis (1.6),

$$
\sum_{n \leqq x} \psi_{f, t}^{u, v}(n)=c \frac{x^{v t+1}}{v t+1}+E(x)
$$

where

$$
\begin{aligned}
E(x) & =0\left(x^{v t}\right) \text { if } \quad v t(1-u \varepsilon)>1 \\
& =0\left(x^{1+u \theta+u v t \varepsilon}\right) \quad \text { for every } \quad \theta<\frac{v t(1-u \varepsilon)}{u}
\end{aligned}
$$

if $v t(1-u \varepsilon) \leqq 1$.
Proof. We have by Theorem 2.2,

$$
\begin{aligned}
& \sum_{n \leqq x} \psi_{f, t}^{u, v}(n)=\sum_{n \leq x} \sum_{d i=n} \rho_{f, t}^{u, v}(d) \delta^{v t} \\
& \quad=\sum_{d \leq x} \rho_{f, t}^{u, v}(d) \delta^{v t}=\sum_{d \leq x} \rho_{f, t}^{u, v}(d) \sum_{\delta \leq x \mid d} \delta^{v t}
\end{aligned}
$$

and this by i, of (3.1) is

$$
\sum_{d \leq x} \rho_{f, t}^{u, v}(d)\left\{\frac{1}{v t+1}\left(\frac{x}{d}\right)^{v t+1}+0\left(\left(\frac{x}{d}\right)^{v t}\right)\right\}
$$

which by Lemma 3.2 is equal to

$$
\begin{equation*}
c \frac{x^{v t+1}}{v t+1}+0\left(x^{v t+1} \sum_{n>x} \frac{\rho_{f, t}^{u, v}(n)}{n^{v t+1}}\right)+0\left(x^{v t} \sum_{n \leqq x} \frac{\rho_{f, t}^{u, v}(n)}{n^{v t}}\right) . \tag{3.6}
\end{equation*}
$$

Let $\theta>0$ be so chosen that

$$
\begin{cases}u \theta<v t(1-u \varepsilon)-1, & \text { if } \quad v t(1-u \varepsilon)>1 \tag{3.7}\\ u \theta<v t(1-u \varepsilon), & \text { if } \quad v t(1-u \varepsilon) \leqq 1\end{cases}
$$

In any case $u \theta<v t(1-u \varepsilon)$. By (3.4) and (iii) of (3.1),

$$
\begin{aligned}
\sum_{n>x} \frac{\rho_{f, t}^{u, v}(n)}{n^{v t+1}} & =0\left(\sum_{n>x} \frac{1}{n^{1+v t(1-u \varepsilon)-u \theta}}\right) \\
& =0\left(x^{-v t(1-u \varepsilon)+u \theta}\right)
\end{aligned}
$$

and so, the second term in (3.6) is $0\left(x^{1+u \theta+u v t s}\right)$.
Similarly,

$$
\sum_{n \leq x} \frac{\rho_{f, t}^{u, v}}{n^{v t}}=0\left(\sum_{n \leq x}\left(\frac{1}{n^{v t(1-u \epsilon)-u \theta}}\right)\right)
$$

and hence the third term in (3.6) is $0\left(x^{v t}\right)$ or $0\left(x^{1+u \theta+u v t s}\right)$ according as $v t(1-u \varepsilon)>1$ or $v t(1-u \varepsilon) \leqq 1$. Since $u \theta<v t(1-u \varepsilon)-1$ implies $1+u \theta+u v t \varepsilon<v t$, the theorem is clear. Clearly, Theorem 3.1 can be stated as

Theorem 3.1'. Under the hypothesis (1.6), the average order of $\psi_{f, t}^{u, v}(n)$ is $c n^{v t}$, where c is given by (3.2).

Since $\psi_{(k)}(n)=\psi_{x, 1}^{k, 1}(n), N_{x}(n)=1$, the r.h.s. of (3.2) in this case is

$$
\left\{\prod_{p}\left(1+\frac{1}{p^{2}}\right)\right\}^{k}=\left\{\prod_{p} \frac{\left(1+p^{-2}\right)\left(1-p^{-2}\right)}{1-p^{-2}}\right\}^{k}=\frac{\zeta^{k}(2)}{\zeta^{k}(4)}, \quad \zeta(s)
$$

being the Riemann's ζ-function, and so from Theorem 3.1, we have
Corollary 3.1.1. (Theorem 4.4 of [7].)
The average order of $\psi_{(k)}(n)$ is $n\left(\zeta^{k}(2) / \zeta^{k}(4)\right)=n\left(15 / \pi^{2}\right)^{k}$.
Similarly, Theorem 3.1, (2.2) and (2.9) give
Corollary 3.1.2. ((3.5) of [2].)
The average order of $\psi_{f, t}^{(k)}(n)$ is $\left\{\sum_{n=1}^{\infty}\left(\mu^{2}(n) N_{f}^{t}\left(n^{k}\right) / n^{k t+1}\right)\right\} n^{k t}$.

References

1. J. Chidambaraswamy, Totients with respect to a polynomial, Indian J. Pure and Applied Math., 5 (1974), 601-608.
2. cepted for publication, Indian J. Math.
3. Eckford Cohen, Some totient functions, Duke Math. J., 23 (1956), 515-522.
4. R. Dedekind, Schreiben an Heren Borchardt über die Theorie der elliplischen Modulfunklionen, J. fur reine und angewandte Math., Bd83, 265-292 (1877) (Mathematische Werke-Dedekind, vol 1, Chelsea 1969).
5. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Oxford, 1960.
6. V.L. Klee, A generalization of Euler's function, Amer. Math. Monthly, 55 (1948), 358-359.
7. T. Nagell, Introduction to Number Theory, John Wiley \& Sons, New York, 1951.
8. D. Suryanarayana, Extensions of Dedekind's ψ-function, Math. Scand., 26 (1970), 107-118.
9. ——, A remark on extensions of Dedekind's ϕ-function, Math. Scand,(30) (1972) 337-338.

Received April 17, 1975 and in revised form January 27, 1976.
The University of Toledo

