THE FUNDAMENTAL DIVISOR OF NORMAL DOUBLE POINTS OF SURFACES

David Joseph Dixon

Abstract

Let W be a surface with a normal singular point w. Consider the minimal resolution of that singularity, $\pi: W^{\prime} \rightarrow W$. Let $\pi^{-1}(w)=Y=Y_{1} \cdots Y_{d}$, where the Y_{i} are distinct irreducible curves on W^{\prime}. We are interested in two divisors on W^{\prime} both of which have support on Y. These divisors are Z, the fundamental divisor, and M, the divisor of the maximal ideal. In general $Z \leqq M$. In this thesis we show that if w is a double point singularity which satisfies certain conditions, then $Z=M$.

Introduction. Let A denote a normal, two-dimensional local ring. For simplicity assume that the residue field, k, of A is algebraically closed. Let $\pi: Y \rightarrow \operatorname{Spec}(A)$ be a birational proper map with Y regular, i.e., a resolution of the singularity $\operatorname{Spec}(A)$. Denote by m^{\prime} the maximal ideal of A. Let $\pi^{-1}\left(m^{\prime}\right)=Y_{1} \cup \cdots \cup Y_{d}$, where the Y_{i} are distinct irreducible curves on Y. Then, according to Artin [1, page 132] there is a unique smallest positive divisor Z, with support $\bigcup_{i=1}^{d} Y_{i}$, such that $Z \cdot Y_{i} \leqq 0$ for all i. Z is called the fundamental divisor. We also have the divisor of the maximal ideal, M, given by

$$
M=\sum_{i=1}^{d} m_{i} Y_{i}
$$

where $m_{i}=\min _{t \in m^{\prime}}\left\{w_{i}(t)\right\}$ and w_{i} is the valuation determined by $Y_{i} \subseteq Y$. In general $Z \leqq M$. Artin [1, Theorem 4] shows that if $\operatorname{Spec}(A)$ has a rational singularity, then $Z=M$ on every resolution. Laufer [4, Theorem 3.13] proves that if $\operatorname{Spec}(A)$ has a minimally elliptic double point singularity, then $Z=M$ on every resolution. Laufer also gives examples of double point singularities for which $Z<M$. His surfaces have defining equation $z^{2}=f(x, y)$, where $f(x, y) \in k[[x, y]], f(0,0)=0$, and $f(x, y)$ is reducible at $(0,0)$.

In this paper we show that if $f(x, y)$ has even order or if $f(x, y)$ has odd order and is irreducible at (0,0), then $Z=M$ on the minimal resolution of $z^{2}=f(x, y)$. In $\S 1$ we give a method for obtaining a specific resolution of $\operatorname{Spec}(A)$ [3]. In $\S 2$ we perform some necessary computations with Z and M, and in $\S 3$ we give the proofs of the theorems.

1. Methods for resolving double point singularities. Let A
be a noetherian, complete, two-dimensional, equicharacteristic (not two), normal, local domain of multiplicity two. Assume that the residue field, k, of A is algebraically closed. One has the following characterization of A.

Proposition 1. With A as above, we have that

$$
A \cong \frac{k[[x, y, T]]}{\left(T^{2}-f(x, y)\right)}
$$

where $f(x, y) \in k[[x, y]], f(0,0)=0$, and $f(x, y)$ has no multiple factors.

Proof. According to [9, Ch. VIII, Theorem 22 and Theorem 24, Corollary 2] A is a finite module over $k[[x, y]]$ and $[A: k[[x, y]]]=2$, where $\{x, y\}$ is a system of parameters of A. Let L be the quotient field of A and K be the quotient field of $k[[x, y]]$. Then $[L: K]=2$ and there exists an element $z \in K$ such that $L=K(z)$ and $z^{2}=f(x, y) \in$ $k[[x, y]]$. Without loss of generality we may assume that $f(x, y)$ has no multiple factors. It is easy to see that the integral closure of $k[[x, y]]$ in L is $k[[x, y, z]]$. In fact, let $\alpha+\beta z$ be an element of L which is integral over $k[[x, y]]$. Then Trace $(\alpha+\beta z)=2 \alpha \in k[[x, y]]$ and $\operatorname{Norm}(\alpha+\beta z)=\alpha^{2}+\beta^{2} f(x, y) \in k[[x, y]]$, which imply that α and β are elements of $k[[x, y]]$. But the fact that A is normal and integral over $k[[x, y]]$ implies that A, too, is the integral closure of $k[[x, y]]$ in L. Also, since A is local, $f(0,0)=0[8, \mathrm{Ch} . \mathrm{V}$, Theorem 34].

We wish to obtain a resolution of the singularity of the surface $\operatorname{Spec}(A)$. Thus we wish to find a nonsingular surface W and a proper map $\pi: W \rightarrow \operatorname{Spec}(A)$ such that π induces an isomorphism between $W-\pi^{-1}\left(m^{\prime}\right)$ and $\operatorname{Spec}(A)-m^{\prime}$, where m^{\prime} denotes the maximal ideal of A.

Let $R=k[[x, y]]$ and let m denote the maximal ideal of R. Let $\dot{\phi}: V \rightarrow \operatorname{Spec}(R)$ be a proper birational map obtained by successively belonging up closed points. Let $\phi^{-1}(m)=X=X_{1} \cup \cdots \cup X_{n}$, where the X_{i} are distinct irreducible curves on V. Let D be the divisor of $f(x, y)$ on V. Then $D=D_{1}+D_{2}$, where D_{1} has support in X and D_{2} does not involve any X_{i}. It is well known that we can find V so that $\left(D_{1}\right)_{\text {red }}=\sum_{i=1}^{n} X_{i}$ has only normal crossings and D_{2} is nonsingular. Each $X_{i} \subseteq V$ gives rise to a valuation x_{i} on the function field of V. Call X_{i} an odd (even) curve if $v_{i}(f(x, y))$ is odd (even). Suppose X_{i} and $X_{j}(i \neq j)$ are both odd curves such that $X_{i} \cdot X_{j}=1$. Let us blow up the point of intersection of X_{i} and X_{j}. Then we obtain an even curve E such that $E \cdot \bar{X}_{i}=E \cdot \bar{X}_{j}=1$ and $\bar{X}_{i} \cdot \bar{X}_{j}=0$, where \bar{X}_{i} and \bar{X}_{j} are the proper transforms of X_{i} and X_{j}. Thus
we may assume that no two odd curves meet.
Now let V^{\prime} be the normalization of V in L. Then we get the following commutative diagram:
(*)

We claim that π is a resolution of $\operatorname{spec}(A)$, i.e., that V^{\prime} is nonsingular. This follows easily from Proposition 1. In fact, let S be the local ring of a point on V. Let $f(x, y) S=\alpha u^{a} v^{b}$, where $\{u, v\}$ is a regular system of parameters for S and α is a unit. Then S^{\prime}, the integral closure of S, is also the integral closure of $S[z]$, where $z^{2}=f(x, y)=\alpha u^{a} v^{b}$. Hence $S^{\prime}=S\left[z^{\prime}\right]$, where $\left(z^{\prime}\right)^{2}=\alpha u^{a^{\prime}} v^{b^{\prime}}, 0 \leqq a^{\prime}$, $b^{\prime} \leqq 1, a \equiv a^{\prime} \bmod 2$, and $b \equiv b^{\prime} \bmod 2$. Thus S^{\prime} is regular.

Let m^{\prime} denote the maximal ideal of A. Note that $\pi^{-1}\left(m^{\prime}\right)=$ $g^{-1} \phi^{-1}(m)=g^{-1}(X)$. Thus, to find the irreducible components of $\pi^{-1}\left(m^{\prime}\right)$ we must see how the curves $X_{i} \subseteq V$ behave under normalization. The rules are as follows and are easily deduced from the above description of S^{\prime}.
(1) If X_{i} is and odd curve, then its reduced inverse image in V^{\prime} is an isomorphic copy of X_{i}. This is because each point of X_{i} has just one point lying above it in V^{\prime} (check locally).
(2) If X_{i} is an even curve meeting no odd curves, then in V^{\prime}, X_{i} splits into two disjoint copies of itself. This follows because $X_{i} \cong \boldsymbol{P}^{\prime}$ and the ramification points of X_{i} are precisely the points of intersection of X_{i} with odd curves. Note that $N=2 g+2$, where N is the number of ramification points of X_{i} and g is the genus of the inverse image of X_{i} in V^{\prime}.
(3) If X_{i} is an even curve meeting some odd curves, then the inverse image of X_{i} in V^{\prime} is a two fold branched cover of X_{i}. This again follows from the local algebra. In this case, each even curve must meet an even number of odd curves. This follows from the formula $N=2 g+2$.

Note that if X_{i} is an even curve in X meeting at most three other curves, then the inverse image of X_{i} in V^{\prime} is rational.

We wish to determine the self-intersection numbers of the inverse images of the X_{i} from the numbers $\left(X_{i}^{2}\right)$. The rules are as follows.
(1) If X_{i} is an odd curve, then the self-intersection number of the inverse image of X_{i} in V^{\prime} is $\left(X_{i}^{2}\right) / 2$.
(2) If X_{i} is an even curve meeting no odd curves, then in V^{\prime} each component of the inverse image of X_{i} has self-intersection
number equal to (X_{i}^{2}).
(3) If X_{i} is an even curve which meets some odd curves, then the self-intersection number of the inverse image of X_{i} in V^{\prime} is $2\left(X_{i}^{2}\right)$.

Let us prove rule one (the proofs of the other two rules are similar). Let Z_{i} denote the inverse image of X_{i}. Let g be as in diagram (*), $g_{Z_{i}}$ be g restricted to $Z_{i}, i_{X_{i}}: X_{i} \rightarrow V$ and $i_{z_{i}}: Z_{i} \rightarrow V^{\prime}$ be inclusions, and let \mathscr{O}_{V} and \mathscr{O}_{V}, denote structure sheaves. Then

$$
\begin{aligned}
2\left(Z_{i} \cdot Z_{i}\right) & =\left(2 Z_{i} \cdot Z_{i}\right)=\operatorname{deg} i_{Z_{i}}^{*}\left(\mathscr{O}_{V}\left(2 Z_{i}\right)\right) \\
& =\operatorname{deg} i_{Z_{i}^{*}}^{*} g^{*}\left(\mathscr{O}_{V}\left(X_{i}\right)\right)=\operatorname{deg} g_{Z_{i}}^{*} i_{x_{i}}^{*}\left(\mathscr{O}_{V}\left(X_{i}\right)\right) \\
& =\operatorname{deg} i_{X_{i}}^{*}\left(\mathscr{O}_{V}\left(X_{i}\right)\right)=\left(X_{i}^{2}\right)
\end{aligned}
$$

See [5, Ch. IV, §13] for details.
Note that $m^{\prime} \mathscr{O}_{V}$, is locally principal.
2. Definitions and computations. Let $\pi: V^{\prime} \rightarrow \operatorname{Spec}(A)$ be as before and let $\pi^{-1}\left(m^{\prime}\right)=X_{1}^{\prime} \cup \cdots \cup X_{s}^{\prime}$, where the X_{i}^{\prime} are distinct irreducible curves on V^{\prime}. Let $a_{i}=\min _{t \in m}\left\{v_{i}(t)\right\}$ and let $a_{i}^{\prime}=$ $\min _{u \in m^{\prime}}\left\{v_{i}^{\prime}(u)\right\}$, where v_{i} and v_{i}^{\prime} are the valuations determined by $X_{i} \subseteq V$ and $X_{i}^{\prime} \subseteq V^{\prime}$. Define a divisor M on V^{\prime} by:

$$
M=\sum_{i=1}^{s} a_{i}^{\prime} X_{i}^{\prime}
$$

M is called the divisor of the maximal ideal. The a_{i}^{\prime} can be computed from the a_{i} as follows. If X_{i} is an odd curve and X_{j}^{\prime} is the reduced inverse image of X_{i}, then $a_{j}^{\prime}=2 a_{i}$. If X_{i} is an even curve meeting some odd curves and X_{j}^{\prime} is the inverse image of X_{i}, then $a_{j}^{\prime}=a_{i}$. Finally, if X_{i} is an even curve meeting no odd curves and if the inverse image of X_{i} is $X_{j}^{\prime} \cup X_{l}^{\prime}$, then $a_{j}^{\prime}=a_{l}^{\prime}=a_{i}$. The proofs of these rules are straightforward.

On the other hand, there is another important divisor on V^{\prime} called the fundamental divisor, which we denote by Z. As in Artin [1, page 132], Z is the unique positive divisor on V^{\prime} such that:
(1) $Z \cdot X_{i}^{\prime} \leqq 0$, for every i,
(2) if C is a divisor such that $C \cdot X_{i}^{\prime} \leqq 0$ for every i, then $Z \leqq C$.

Let R be a normal two-dimensional local ring with maximal ideal q. For simplicity, assume that the residue field of R is algebraically closed. Let $\beta: Y \rightarrow \operatorname{Spec}(R)$ be a resolution of $\operatorname{Spec}(R)$. Let $\beta^{-1}(q)=Y_{1} \cup \cdots \cup Y_{d}$, where the Y_{i} are distinct irreducible curves. Then in this general setting M and Z are defined as above and we have the following propositions.

Proposition 2. If Z, M, R, q, and $Y_{1} \cup \cdots \cup Y_{d}$ are as above, then $Z \leqq M$.

Proof. We show that $M \cdot Y_{j} \leqq 0$ for every j. Let w_{j} denote the valuation determined by $Y_{j} \subseteq Y$. Clearly if $M=\sum_{i=1}^{d} m_{i} Y_{i}$, then $m_{i}=\min \left\{w_{i}\left(f_{1}\right), \cdots, w_{i}\left(f_{r}\right)\right\}$, where the minimum is taken over a basis f_{1}, \cdots, f_{r} of q. Denote the divisor of f_{i} on Y by $\left(f_{i}\right)$. Then $\left(f_{i}\right)=F_{i}+G_{i}$, where F_{i} is a linear combination of the Y_{j} and G_{i} involves no Y_{j}. We obtain

$$
0=\left(f_{i}\right) \cdot Y_{j}=F_{i} \cdot Y_{j}+G_{i} \cdot Y_{j}
$$

Now $G_{i} \cdot Y_{j} \geqq 0$, so $F_{i} \cdot Y_{j} \leqq 0$. Let $F_{i}=\sum_{l=1}^{s} b_{i l} Y_{l}$. Then

$$
M=\min \left(F_{1}, \cdots, F_{r}\right)=\sum_{l=1}^{s}\left(\min _{i=1, \cdots, r}\left\{b_{i l}\right\}\right) Y_{l}
$$

and so $M \cdot Y_{j} \leqq 0$ [1, page 131].
Proposition 3 [6, Lemma 2.8]. Let C_{1} and C_{2} be two divisors on Y with support in $\bigcup_{i=1}^{d} Y_{i}$. Assume that $C_{1} \cdot Y_{j} \leqq 0$ for every j and that $C_{1} \leqq C_{2}$. Then $\left(C_{1}^{2}\right) \geqq\left(C_{2}^{2}\right)$ and $C_{1}=C_{2}$ if and only if $\left(C_{1}^{2}\right)=\left(C_{2}^{2}\right)$.

Proof. Let $C_{1}+B=C_{2}$. Then

$$
\left(C_{2}^{2}\right)=\left(C_{1}^{2}\right)+2 C_{1} \cdot B+B^{2} \leqq\left(C_{1}^{2}\right)
$$

since $C_{1} \cdot B \leqq 0$ and $B^{2} \leqq 0$. If $\left(C_{1}^{2}\right)=\left(C_{2}^{2}\right)$, then $C_{1} \cdot B \leqq 0$ implies that $B^{2}=0$. Thus $B=0$ since the intersection matrix for the Y_{j}^{\prime} 's is negative definite.

Let us also prove a lemma which will be useful in $\S 3$.
Lemma 1. Let $h: Y^{\prime} \rightarrow Y$ be the blow up of $p \in Y$, with $\beta(p)=q$. Let M_{Y} and M_{Y}, denote the divisors of the maximal ideal on Y and Y^{\prime}. Then $h^{-1}\left(M_{Y}\right) \leqq M_{Y^{\prime}}$.

Proof. Let $D=h^{-1}(p)$ and $h^{-1}\left(Y_{i}\right)=Y_{i}^{\prime}+n_{i} D$. Certainly the coefficients of Y_{i}^{\prime} in $h^{-1}\left(M_{Y}\right)$ and $M_{Y^{\prime}}$ are equal. Let \mathcal{O}_{p} denote the local ring of p on Y. Then $q \mathscr{O}_{p}=t a_{p}$, where a_{p} is an ideal primary for the maximal ideal of \mathscr{O}_{p} and t is a local equation of M_{Y} at p. Let v_{D} deeote the valuation determined by D. Then

$$
v_{D}(q)=v_{D}(t)+v_{D}\left(a_{p}\right),
$$

and since, at $D, h^{-1}\left(M_{Y}\right)$ has coefficient $v_{D}(t)$ and M_{Y}, has coefficient $v_{D}(q)$, we have proved the lemma. Note that $q \mathscr{O}_{Y}$ is invertible if and only if $h^{-1}\left(M_{Y}\right)=M_{Y^{\prime}}$.

Let us now return to the case of surface singularities of multiplicity two. We wish to determine the possible values for the two integers Z^{2} and M^{2} on a resolution of $\operatorname{Spec}(A)$, where A is an in $\S 1$ and A has maximal ideal m^{\prime}. Let $\beta: Y \rightarrow \operatorname{Spec}(A)$ and any resolution of $\operatorname{Spec}(A)$ and let $\beta^{-1}\left(m^{\prime}\right)=Y_{1} \cup \cdots \cup Y_{d}$, where the Y_{i} are distinct irreducible curves. By [6, Theorem 2.7] if $m^{\prime} \mathcal{O}_{Y}$ is locally principal, then $M^{2}=-2$ on Y. If $m^{\prime} \mathscr{O}_{Y}$ is not locally principal, then consider a resolution $\alpha: W \rightarrow \operatorname{Spec}(A)$ such that $m^{\prime} \mathscr{O}_{W}$ is locally principal (V^{\prime} for example), with $\lambda: W \rightarrow Y$. Denote the divisor of the maximal ideal on W by M^{\prime}. Lemma 1 and the remark following it then imply that $\lambda^{-1}(M)<M^{\prime}$. But then Proposition 3 implies that

$$
0>M^{2}=\left(\lambda^{-1}(M)\right)^{2}>\left(M^{\prime}\right)^{2}=-2
$$

and thus $M^{2}=-1$. Combining the two above cases we obtain that $-2 \leqq M^{2}<0$ for any resolution of $\operatorname{Spec}(A)$. Propositions 2 and 3 then imply that $-2 \leqq Z^{2}<0$. These bounds for Z^{2} and M^{2} give us the following corollary to Proposition 3.

Corollary. With Z and M as above, if $M^{2}=-1$, then $Z=M$.
Proof. $Z^{2} \geqq M^{2}=-1$ implies that $Z^{2}=-1$. Proposition 3 then implies that $Z=M$.

Note that $m^{\prime} \mathcal{O}_{Y}$ is not invertible in the above corollary since $m^{\prime} \mathcal{O}_{Y}$ is invertible if and only if $M^{2}=-2$.

Let us make the following two remarks. If $Z^{2}=-2$ on some resolution, then $Z^{2}=-2$ on every resolution [6, Proposition 2.9] and hence $Z=M$ on every resolution by Proposition 3. Again using Proposition 3, if $Z<M$ on some resolution, then we must have that $M^{2}=-2$ and $Z^{2}=-1$.

We need the following general proposition.
Proposition 4. Let Z be the fundamental divisor for a resolution of Spec (R), where R is as in Proposition 2. Let $Y=$ $Y_{1} \cup \cdots \cup Y_{d}$ be the support of Z, with Y_{i} distinct irreducible curves. Let $Z=\sum_{i=1}^{d} r_{i} Y_{i}$ and let $B=\sum_{i=1}^{d} b_{i} Y_{i}$ be a divisor whose support is contained in Y, where $b_{i} \geqq 0$ for all i. Suppose that $Z^{2}=-1, B^{2}=-2$, and $B \cdot Y_{i} \leqq 0$ for every i. Then the following two conditions hold.
(1) There exists a unique integer i_{0} such that $Z \cdot Y_{i_{0}}=-1$, $r_{i 0}=1$, and $Z \cdot Y_{j}=0$ for $j \neq i_{0}$.
(2) There exists a unique integer k_{0} such that $B \cdot Y_{k_{0}}=-1$, $b_{k 0}=2$, and $B \cdot Y_{j}=0$ for $j \neq k_{0}$.

Proof. To prove part one we compute with Z as follows:
$-1=Z \cdot Z=\sum_{j=1}^{j} r_{j}\left(Y_{j} \cdot Z\right)$. Noting that $Y_{j} \cdot Z \leqq 0$ for all i and that $r_{j}>0$ for all j [1, page 132], we obtain part one. To prove part two we compute with B :

$$
-2=B \cdot B=\sum_{i=1}^{s} b_{i}\left(Y_{i} \cdot B\right) .
$$

Since $Y_{i} \cdot B \leqq 0$ for all i and $b_{i} \geqq 0$ for all i, we have three cases.
Case 1. There exists an integer k_{0} such that $B \cdot Y_{k_{0}}=-2$, $b_{k_{0}}=1$, and $B \cdot Y_{j}=0$ for $j \neq k_{0}$.

Case 2. There exist two distinct integers k_{0} and l_{0} such that $B \cdot Y_{k_{0}}=B \cdot Y_{l_{0}}=-1, b_{k_{0}}=b_{l_{0}}=1$, and $B \cdot Y_{j}=0$ for $j \neq k_{0}, l_{0}$.

Case 3 is part two of the present proposition.
We will show that Cases 1 and 2 cannot occur. First we need a computation. Since $Z<B$, let $Z^{\prime} \neq 0$ be a divisor such that $B=$ $Z+Z^{\prime}$. Then

$$
-2=B^{2}=Z^{2}+2 Z \cdot Z^{\prime}+\left(Z^{\prime}\right)^{2}
$$

and thus

$$
-1=2 Z \cdot Z^{\prime}+\left(Z^{\prime}\right)^{2}
$$

Since $\left(Z^{\prime}\right)^{2}<0$, and $Z \cdot Z^{\prime} \leqq 0$, we must have that $Z \cdot Z^{\prime}=0$. But then

$$
B \cdot Z=Z^{2}+Z \cdot Z^{\prime}=-1
$$

Now it is easy to prove that Cases 1 and 2 are impossible. In fact, for Case 1 we obtain

$$
-1=B \cdot Z=\sum_{j=1}^{d} r_{j}\left(Y_{j} \cdot B\right)=-2 r_{k_{0}}
$$

and so $r_{k_{0}}=1 / 2$ which is impossible. For Case 2 we compute similarly:

$$
-1=B \cdot Z=\sum_{j=1}^{d} r_{j}\left(Y_{j} \cdot B\right)=-r_{k_{0}}-r_{l_{0}}
$$

Thus $r_{k_{0}}+r_{l_{0}}=1$ which is impossible since $r_{j} \geqq 1$ for all j [1, page 132]. This completes the proof of Proposition 4.

Under the assumptions of Proposition 4 we can also obtain the following information. The computation

$$
-1=B \cdot Z=\sum_{j=1}^{d} b_{j}\left(Y_{j} \cdot Z\right)=-b_{i_{0}}
$$

yields $b_{i_{0}}=1$. Also, since $b_{k_{0}}=2$ we have that $i_{0} \neq k_{0}$.
Corollary. Suppose that the hypotheses of Proposition 4 are satisfied with $B=M$ (i.e., assume that $Z<M$ on the resolution). Assume that $Y_{k_{0}}$ is rational and $\left(Y_{k_{0}}^{2}\right)=-1$. Let $\alpha: Y \rightarrow V_{0}$ be the map obtained by blowing down $Y_{k_{0}}$. Let M_{0} be the divisor of the maximal ideal on V_{0} and let Z_{0} be the fundamental divisor or V_{0}. Then $Z_{0}=M_{0}$.

Proof. We have that $\alpha^{-1}\left(M_{0}\right) \cdot Y_{k_{0}}=0$, and thus $\alpha^{-1}\left(M_{0}\right)<M$ by Lemma 1 and the remark following it. Then

$$
M_{0}^{2}=\left(\alpha^{-1}\left(M_{0}\right)\right)^{2}>M^{2}=-2
$$

by Proposition 3. Thus $M_{0}^{2}=-1$ and we have that $Z_{0}=M_{0}$ by the corollary to Proposition 3.
3. Statements and proofs of the theorems. The purpose of this section is to prove that Z equals M in the minimal resolution of certain double points of surfaces, among which are those in whose defining equation $z^{2}=f(x, y), f(x, y)$ is irreducible. We will show, for these double points, that Z equals M either in the resolution V^{\prime} described in $\S 1$ or in the resolution obtained by blowing down a certain curve on V^{\prime}. Note that M is locally principal on V^{\prime}, so that $Z=M$ on V^{\prime} if and only if $Z^{2}=-2$, and in that case $Z=M$ on every resolution. Now the minimal resolution can be obtained from V^{\prime} by a succession of blowing downs [2, 7]. Hence the following proposition will imply that if Z equals M on some resolution then $Z=M$ on the minimal one.

Proposition 5. Let R be a normal two-dimensional local ring with algebraically closed residue field and maximal ideal q. Suppose $\lambda: Y \rightarrow \operatorname{Spec}(R)$ is a resolution of the singularity of Spec R. Let $h: Y^{\prime} \rightarrow Y$ be the blow up of $p \in Y$, with $\lambda(p)=q$. Let M_{Y} and $M_{Y^{\prime}}$ denote the divisors of the maximal ideal on Y and Y^{\prime}, and let Z_{Y} and $Z_{Y^{\prime}}$ denote the fundamental divisors on Y and Y^{\prime}. If $M_{Y^{\prime}}=Z_{Y^{\prime}}$, then $M_{Y}=Z_{Y}$.

Proof. Let Y_{1}, \cdots, Y_{d} be the irreducible components of $\lambda^{-1}(q)$. Let $D=h^{-1}(p)$ and $h^{-1}\left(Y_{i}\right)=Y_{i}^{\prime}+n_{i} D$. Then $h^{-1}\left(M_{Y}\right) \cdot Y_{i}^{\prime}=M_{Y} \cdot Y_{i} \leqq 0$ for all i [6, page 421]. Therefore $Z_{Y^{\prime}} \leqq h^{-1}\left(M_{Y}\right)$ by the definition of $Z_{Y^{\prime}}$ 。

Lemma 1 of $\S 2$ implies that $h^{-1}\left(M_{r^{\prime}}\right) \leqq M_{1^{\prime \prime}}$. Combining the above two inequalities we obtain

$$
Z_{Y^{\prime}} \leqq h^{-1}\left(M_{Y}\right) \leqq M_{Y^{\prime}} .
$$

But by assumption $Z_{Y^{\prime}}=M_{Y^{\prime}}$, and thus $h^{-1}\left(M_{Y}\right)=Z_{Y^{\prime}}$. Now [6, Proposition 2.9] shows that $Z_{Y^{\prime}}=h^{-1}\left(Z_{Y}\right)$, and thus $h^{-1}\left(M_{Y}\right)=h^{-1}\left(Z_{Y}\right)$, which implies that $M_{Y}=Z_{Y}$.

We now commence to prove that Z equals M on V^{\prime} for certain double points.

Theorem 1. Let $f(x, y) \in k[[x, y]]$ be as in Proposition 1. Suppose that $f(x, y)$ has even order. Then on V^{\prime} we have that Z equals M (and hence Z equals M on every resolution of $z^{2}=f(x, y)$).

Proof. Recall that $\phi: V \rightarrow \operatorname{Spec}(k[[x, y]])$ is obtained by successively blowing up closed points. In the first blowing up (the blowing up of m, the maximal ideal of $k[[x, y]]$) we obtain a curve which is the inverse image of m. This curve also has an inverse image in V, and we call it X_{1}. Let M and M_{1} denote the divisors of the maximal ideals m^{\prime} and m on V^{\prime} and V. Recall that $M_{1}=$ $\sum_{i=1}^{n} a_{i} X_{i}$ and $M=\sum_{i=1}^{s} a_{i}^{\prime} X_{i}^{\prime}$, where

$$
a_{i}=\min _{t \in m}\left\{v_{i}(t)\right\}
$$

and

$$
a_{i}^{\prime}=\min _{u \in m^{\prime}}\left\{v_{i}^{\prime}(u)\right\}
$$

with v_{i} and v_{i}^{\prime} denoting the valuations determined by $X_{i} \subseteq V$ and $X_{i}^{\prime} \subseteq V^{\prime}$. Then X_{1} is an even curve and $M_{1} \cdot X_{1}=-1$. If X_{1} meets no odd curves in X, then $g^{-1}\left(X_{1}\right)$ is a disjoint union of two curves isomorphic to X_{1} and the intersection number of M with each of these curves is -1 . But this condition is incompatible with $Z<M$ by Proposition 4. If X_{1} meets some odd curves, then we have that $M_{1} \cdot X_{1}=-1$ and $a_{1}=1$. Let $X_{1}^{\prime}=g^{-1}\left(X_{1}\right)$. Then $M \cdot X_{1}^{\prime}=-2$ and $a_{1}^{\prime}=1$, which, again, is incompatible with $Z<M$ by Proposition 4.

If $f(x, y)$ has odd order, then Theorem 1 does not hold in general. In fact, if $f(x, y)=y\left(x^{4}+y^{6}\right)$, then in the minimal resolution of $z^{2}=f(x, y)$ we have that $Z<M$. This example was given by Henry B. Laufer. Notice however that $f(x, y)=y\left(x^{4}+y^{6}\right)$ is reducible. If we assume that $f(x, y)$ is irreducible at $(0,0)$, then we can prove that $Z=M$ in the minimal resolution.

Theorem 2. Let $f(x, y) \in k[[x, y]]$ be as in Proposition 1. Suppose that $f(x, y)$ has odd order and is irreducible at (0,0). Then Z equals M on the minimal resolution of $z^{2}=f(x, y)$.

Proof. Let X_{1} be as in the proof of Theorem 1 and let X_{c} be defined similarly as curves and on V for $c=2, \cdots, n$. Then X_{1} is an odd curve and we set $X_{1}^{\prime}=\left(g^{-1}\left(X_{1}\right)\right)_{r e d}$. We have two cases to consider.
(1) Suppose that the first quadratic transform of $f(x, y)$ has the same multiplicity as $f(x, y)$. Then on V we have that $X_{1} \cdot X_{2}=1$ and $X_{1} \cdot X_{j}=0$ for $j>2$. Thus $\left(X_{1}^{2}\right)=-2$ and so $\left(X_{1}^{\prime}\right)^{2}=-1$ since X_{1} is an odd curve. Note also that X_{1}^{\prime} is rational since X_{1} is odd. Thus we can apply the corollary to Proposition $4\left(k_{0}=1\right)$.

Let us make two remarks here before continuing with the proof. Since $f(x, y)$ is irreducible at $(0,0)$ it is easy to see that X_{i} is rational for all i. This follows because it can be shown that each X_{i} meets at most 3 other curves in X and thus the genus of an even curve meeting some odd curves is $(N-2) / 2$, where N must be 2 . Also note that the proof of Case 1 above still holds if we assume instead that some quadratic transform of $f(x, y)$ has the same multiplicity as $f(x, y)$, where $f(x, y)$ is not necessarily irreducible at $(0,0)$.
(2) Suppose the first quadratic transform of $f(x, y)$ does not have the same multiplicity as $f(x, y)$. Assume that $Z<M$ on V^{\prime}. Then Proposition 4 shows that there exists an integer i_{0} such that $Z \cdot X_{i_{0}}^{\prime}=-1, Z \cdot X_{j}^{\prime}=0$ for $j \neq i_{0}$, and $a_{i_{0}}^{\prime}=1$. It is clear from the definition of the integers a_{i} that $a_{1}=a_{2}=1$ and $a_{i}>1$ for $i>2$. We have two possibilities to check. Suppose that X_{2} is an odd curve. Let $X_{2}^{\prime}=\left(g^{-1}\left(X_{2}\right)\right)_{r e d}$. Then since X_{1} and X_{2} are odd curves we have that $a_{1}^{\prime}=a_{2}^{\prime}=2$ and $a_{2}^{\prime} \geqq 2$ for $i>2$. This contradicts Proposition 4 since $a_{i_{0}}^{\prime}$ must be 1. Now suppose that X_{2} is an even curve. Since $f(x, y)$ is irreducible it can easily be checked that X_{2} meets only one other curve in X. In fact, if $\left(X_{2}^{2}\right)=-c$, then X_{2} meets only X_{c+1}. This curve cannot be odd since each even curve meets an even number of odd curves, as stated in §1. Thus X_{2} meets no odd curves and so $g^{-1}\left(X_{2}\right)$ consists of two disjoint isomorphic copies of X_{2}, say X_{2}^{\prime} and X_{3}^{\prime}. Now $a_{1}^{\prime}=2$ and $a_{i}^{\prime} \geqq 2$ for $i>3$. Thus, since $a_{i_{0}}^{\prime}=1$, i_{0} must be either 2 or 3 . But if Z has nonzero intersection number with one of X_{2}^{\prime} and X_{3}^{\prime}, then it must have it with the other. In fact, the automorphism of $L=K(z)$ given by $z \mapsto-z$ leaves Z fixed and interchanges X_{2}^{\prime} and X_{3}^{\prime}. Thus we have a contradiction since Proposition 4 insists that i_{0} must be unique.

References

1. M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), 129-136.
2. E. Brieskorn, Über die Aufösung gewisser Singularitäten von holomorphen $A b$ bildungen, Math. Annalen, 166 (1966), 76-102.
3. A. Franchetta, Sui punti doppi isolati delle superficie algebriche, Note I and II,

Rend. Accademia dei Lincei, (1946), 49-57, 162-168.
4. H. Laufer, On minimally elliptic singularities, Amer. J. Math., (to appear).
5. J. Lipman, Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. IHES no. 36 (1969), 195-279.
6. P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math., 92 (1970), 419-454.
7. O. Zariski, Introduction to the Problem of Minimal Models in the Theory of Algebraic Surfaces, Publ. Math. Societ. of Japan, no. 4, Tokyo, 1958.
8. O. Zarisky and P. Samuel, Commutative Algebra, vol. 1, Princeton, Van Nostrand, 1958.
9. -, Commutative Algebra, vol. 2, Princeton, Van Nostrand, 1960.

Received December 12, 1977.
Brescia College
Owensboro, KY 42301

