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SCALE-INVARIANT MEASURABILITY
IN WIENER SPACE

G. W. JOHNSON AND D. L. SKOUG

The fact that change of scale is a pathological trans-
formation in Wiener space has long been known. For many
problems, this pathology causes no special difficulties. How-
ever it is sometimes necessary to consider functions of the
form F(λx) where λ varies over the positive reals and x
varies over Wiener space. In this setting a variety of con-
ceptual subtleties arise. In this paper we give a frame-
work and several results which prove useful in dealing with
these difficulties. In the last section of this paper we discuss
several papers in the recent literature in the light of this
framework.

1* Notation and terminology; introduction* Let T = [0, 1]
and let C0(T) denote Wiener space, that is, the space of real-valued
continuous functions on T which vanish at t = 0 (The notation CQ(T)
will never be abbreviated to Co. The latter notation will be intro-
duced latter for a certain proper subsets of C0(T).). Let & denote
the Borel measurable subsets of C0(T) and let m1 denote Wiener
measure. One can complete (C0(Γ), &, mj in the usual way to obtain
(C0(Γ), S^u mx) where Sfx is the class of all Wiener measurable sets.
Let σn be the partition 0 = t0 < tλ < < ί2» = 1 where tk = k/2n

for k = 0, 1, -, 2\ Given x in C0(T), let Sσn(x) = Σf=i [»(«*) -
α(**-i)]a. For λ ^ 0, let Cλ = {x in C0(T): lim^ SσJx) = λ2} and let
D = {x in C 0 (T):l im^S σ J>) fails to exist}. Note that \Cμ = Cλμ.
Clearly D and the sets Cλ9 λ ^ 0, are all Borel sets and C0(T) is the
disjoint union of this family of sets.

The key to our discussion is the following result due to Levy
[35] and independently, but later, to Cameron and Martin [8].

THEOREM 1. m^CJ = 1.

Levy actually established a deeper result. He showed that if
{πn} is any nested sequence of partitions of [0, 1] whose norm ap-
proaches zero, then lim^^ SxJx) = 1 for mx-a.e. x in C0(Γ). Cameron
and Martin [8] and Cameron [2] showed that Theorem 1 has some
surprising implications for the scale change and translation trans-
formations in Wiener space.

A subset A of C0(T) is said to be scale-invariant measurable
provided XA is in <$f for all λ > 0. A scale-invariant measurable set
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N is said to be scale-invariant null provided m^XN) = 0 for all λ > 0.
A property which holds except on a scale-invariant null set will be
said to hold s-almost everywhere (denoted by s-a.e.). Cameron and
Martin introdduce the concept of scale-invariant null sets in [8]. The
classes of scale-invariant measurable and scale-invariant null sets will
be denoted by Sf and Λr respectively. A function F is said to be
scale-invariant measurable provided F is defined on a scale-invariant
measurable set and F(Xx) is Wiener measurable for every λ>0. Two
functions F and G on Wiener space are said to be equivalent (F***G)
if they agree s-a.e.. This notion of equivalence was introduced by
Cameron and Storvick in [16]. Closely related notations of equiva-
lence were introduced earlier in [4 and 27].

The present authors (and others) have often been perplexed
about the exact nature of the above concepts. As long as one con-
siders a fixed scaling in Wiener space, the scale change pathologies
pointed out in [8 and 2] cause no problems. However it is often
necessary [3, 4, 9 ~ 19, 21, 24 ~ 34, 38, 39] to consider functions
of the form F(Xx) where x is in C0(T) and X varies over the posi-
tive reals. (The natural functions to consider are often somewhat
more complicated than F(Xx); for example, F(X~1/2x + ξ) where X > 0,
xeC0(T) and ξ is a real number. We will focus our attention on
the functions F(Xx) since, once, this is understood, it is not difficult
to make adjustments to fit the other cases.) Some of the problems
that arise with scale changes can be avoided by considering only
Borel measurable functions F on the uncompleted Wiener measure
space (C0(Γ), &, mj. Unfortunately however, one cannot avoid all
the scale change pathologies by restricting attention to Borel
measurable F. One striking illustration of this is provided by an
example and theorem due to Cameron and Storvick [16, pp. 5-7].
They exhibit two Borel measurable functions F and G which agree
except on an mrnull Borel set and yet their "Fourier-Feynman
transforms" are unequal mΓa.e.. In contrast, they show that if F
and G are equivalent (equal s-a.e.) and if the "Fourier-Feynman
transform" of F exists, then the "Fourier-Feynman transform" of
G exists and is equivalent to it. In the last section of this paper
we will see that related phenomena occur in the setting of the
"Feynman integral".

The results in §§2 and 3 on scale change and translations turn
out to be quite simple when looked at from the right point of view;
in spite of this (perhaps because of this) they provide valuable in-
sight into exactly what scale-invariant measurable sets and scale-
invariant null sets are really like and exactly how they compare to
Wiener measurable sets and Wiener null sets respectively. These
results allow us to expand on and understand better some of the
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old results in [8] and [2]. In addition, as we will discuss in the
last section of this paper, they help considerably in understanding
several recent papers.

2* Scale-invariant measurable sets* Let mλ be the Borel
measure given by mλ(B) = m^X^B) for B in .^. Since λ"1^ = C19

we see by Theorem 1 that mλ is concentrated on the Borel set
Cλ; i.e., mλ(Cλ) = 1. Let S^λ denote the σ-algebra obtained by com-
pleting (C0(Γ), &, mλ) and let Λϊ denote the m rnull sets. Note
that every subset of C0(T)\Cλ is in

PROPOSITION 2. (i) N is in ηλ if and only if X~ιN is in
equivalently, ιyP/l=χ^yl/[. (ii) E is in &χ if and only if X~~ιE is in
equivalently, £fχ~X&[. (iii) We have mx(E) = mί(X~ίE) for E in

Proof, (i) Let N be in ^γλ. Then NaM where M is an m r

null Borel set. Hence m^X^M) = mλ(M) = 0 and so λ-1Λf is an mi-
null Borel set. But then λ~Wcλ~1ilί is in ^Y[. The converse can
be shown in essentially the same way.

(ii) Let E be in £fλ. Then E = B U N where B is in & and
N is in Λrλ. Then λ"W is in ^/< by (i) and so λ"1^ = λ"1^ U λ"W
is in «pf. The rest of (ii) is easily checked.

(iii) Let E be in Sfx. Then E = B (J N where B is in & and
N is mrxiull. Then

mλ(E) = mλ(Bl)N) = m/E) = m^X^B) = m£srxB U λ"W) = m^X^E) .

PROPOSITION 3. ^ = Πu>o ̂  - ^ = Γh><> - ^ 1 ; ^ i s α σ-algebra
of subsets of C0(T).

Proof. Suppose A is in Sfm Then λ-1A is in ^f for every X > 0.
Hence A is in λ^f = ̂ J for every X > 0. Hence ^ c f|̂ >o ^?
Reversing the argument we see that Π̂ >o <Sfχ c ^ . Hence £f —
Π̂ >o ̂  Similarly Λ" = Π̂ >o -^I ^ is a σ-algebra since the in-
tersection of σ-algebras is a σ-algebra.

PROPOSITION 4. (i) E is in & if and only if E f]Cλ is in &*λ

for every X > 0. (ii) E is in «yf if and only if E Π Cλ is in *Λ\
for every X > 0.

Proof. Suppose E is in &[ Let λ > 0 be given. E is in ^
and Cλ is in ^ c S^ and so E Γ\ Cλ is in ^J. Conversely, suppose
EΠ Cλ is in ^f for every λ > 0. We wish to show that E is in £fλ

for every λ > 0. But C0(T)\Cλ is mrnull and so E = (EnCλ)[j
{E Π (C0(T)\Cλ)) is in f̂. (ii) is proved in somewhat similar fashion.
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The next theorem is quite simple, but it gives a very useful
characterization of £f and Λ" in that it shows rather well what
scale-invariant measurable sets and scale-invariant null sets are really
like and how they compare to Wiener measurable sets and Wiener
null sets respectively.

THEOREM 5. (i) E is in &* if and only if E has the form

(1) E--

where each Eλ is an mλ-measurable subset of Cλ and L is an
arbitrary subset of Co (J Zλ Further, for E written in this manner,
mλ(E) = mλ(Eλ) for all λ > 0. (ii) N is in <yV" if and only if N
has the form

(2) N=([JNλ{jL

where each Nλ is an mΓnull subset of Cλ and L is an arbitrary
subset of Co U D.

Proof. ( i ) Suppose E is in S< Let Eλ = E Π Cλ and let L =
Ed (Co U D). The decomposition follows from Proposition 4 and the
fact that C0(T) is the disjoint union of D and the sets Cλ, λ ^ 0.
Conversely, suppose that E has the form (1). To show that E is
in Sf9 it suffices by Proposition 3 to show that E is in ^ 0 for every
λ0 > 0. Now E ΓΊ Cλo is in Si0 by assumption and / U Eλ\ c i is

\λΦ°λ0 )

wλo-nulL Hence E is in ,5>!0 as desired. The formula mλ(E) = mλ(Eλ)
follows from the fact that mλ is concentrated on Cλ.

(ii) If N is in ^ 7 then N is in £f and so by (i) can be written
in the form N = (U >̂o Nλ) U L where each Nλ is in S^χ and L c
(DUCo). We only need to show that mλ(Nλ) = 0 for every λ > 0.
But JV in ^ implies, by Propostiion 3, that N is in ^ 7 . Hence
mλ(N) = mλ(Nχ) = 0 as desired. The converse of (ii) is easily checked.

REMARK. The preceding theorem shows rather strikingly that
there are many more Wiener measurable sets than scale-invariant
measurable sets: A set E is Wiener measurable if and only if it
has the form Eγ U L where J5Ί is an mΓπieasurable subset of Cι and
L is an arbitrary subset of (Uo<^i Q U ΰ U Co. Similarly a set is
Wiener null if and only if it has the form NX\JL where Nλ is a
mi-null subset of Cι and L is an arbitrary subset of (Uo<**i Cλ) U
DUC 0.

Let 0 < tt < < tn ^ 1 and let G be a Lebesgue measurable
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subset of ^-dimensional Euclidean space Rn. It is well known that
sets of the form

( 3 ) E ΞΞ {x in GIT): {x{t,\ , x(tn)) e G}

are Wiener measurable. (In fact E is Wiener measurable if and only
if G is Lebesgue measurable [39].) And that they are not Borel
measurable if G is not Borel measurable. It is easy to see that
such sets E are scale-invariant measurable since, for any λ > 0,
XE = {xe C0(T): (&&), , x(tn)) eX~*G} is Wiener measurable.

PROPOSITION 6. For every λ0 > 0, & g= Sf g= <j\.

Proof. The containments are clear from the fact that & c Sfλ

for every λ > 0 and the equality Sf = Γh>o &\. Let GaRn be
Lebesgue measurable but not Borel measurable. Then E as in (3) is
in £f but not in &. To see that S? Φ S^h, take X, Φ Xo and let E2i

be a subset of C^ which is not m^-measurable. Then Eh is in SΊ0

but not in SήLl and so not in Sf.
The following striking result of Cameron and Martin [8] becomes

rather transparent using Theorem 5.

COROLLARY 7. Let f be any function {however nasty) from
(0, oo) to [0,1]. Then there exists E in S^ such that m^XE) = /(λ)
for all X > 0.

Proof. For each λ > 0, pick 1^ c (Λ such that Eλ is in Si and
mλ(Eλ) ^/(λ"1)- Then i? = (Ji>o^a is the desired set since by Pro-
position 2 and Theorem 5 we have

mt(XE) = mλ-i(E) = mλ-i(Eλ-i) = f(X) .

Our sets Cλ, X ̂  0, and D depend on the particular sequence of
partitions that we choose. If π = {πu π2f •} denotes another nested
sequence of partitions whose norms go to zero, we may let Cj =

{a eC 0(T):lim.^ &,.(*) = λ2} a n d D* Ξ {xeC(T):limn-^SxJx) fails to
exist}. Essentially because of Levy's more general form of Theorem
1, all of the results obtained up to this point, with changes in
notation where appropriate, go through. Note however that £fλ>
*Λ\, mx, £f and ̂ V are all independent of the sequence of parti-
tions. A set E in Sf now has two decompositions according to the
two versions of Theorem 5:

J
X>0
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where Eπ

λ = Ef]Cπ

λ and Lπ = E Π (Cf U D*). How do these two de-
compositions relate to one another? The next proposition shows
that they agree up to a scale-invariant null set.

PROPOSITION 8. Let E be in Si Then the two decompositions
of E given by (4) and corresponding respectively to our original
sequence of partitions and to π have the property that the set

(5) (U

is scale-invariant null.

Proof. First note that for all λ > 0

= mx[(E f] CX)\(E Π CD]

Π (Cx\Cf)]

= 0 .

Thus by Theorem 5, the set [Jλ>0 (Eλ\Eπ

λ) U (L\Lπ) is scale-invariant
null. In similar fashion one can show that the set U;>o (Ef\Eλ) U
(Lπ\L) is scale-invariant null which concludes the proof since

\J(ExAEϊ)V(LAL*)

= JU (Ex\El) U ( L \ L 4 U |U (Eϊ\Ex) U (fr\L)\ .
U>0 ) U>0 )

3* Translations* In [2] Cameron used the pathology of scale
change transformations in Wiener space to show that almost no
translations preserve Wiener measurability. Specifically, he obtained
a set E in Si such that TyE = E + y is not in Si for mL-a.e. y in
C0(T). We obtain several facts below which fill in this picture. For
example, we will see that if E is in SKτ then the set E + y is in
Si for mi-a.e. y. More generally, we will see that if E is in S^-^-ζ,
then E + y is in S% for m^-a.e. y. We need the following result.

THEOREM 9. Let p and q be positive numbers. The following
assertions are equivalent:

(a) f(Vp2 + q2 z) is an m^measurable function of z.
(b) f(z) is an m^^^-2-measurable function of z.
(c) f(x + y) is an mp x mq-measurable function of x and y.
(d) f(px + qy) is an m1 x m^measurable function of x and y.

If any one (and hence all) of (a) — (d) holds, then
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z)dm1(z) = \
J CQ(T)

* c
f(x + y)d{mp x mq)(xf y)

C0(T)xCn(T)

* f f(px + qy)d{mι x mJO, y)

where by = we mean that if either side exists, both sides exist and
they are equal.

Comments on the proof of Theorem 9. A simple use of the
change of variables formula [20, p. 163] shows the equivalence of
(a) and (b) and the equivalence of (c) and (d) and the corresponding
integration formulas. The integration formulas for Borel measurable
/ were known to Levy. The fact that (a) implies (d) and the cor-
responding integration formula is a corollary of a more general
result due to Bearman [1]; this corollary was specifically pointed out
in [15; Lemma 2, p. 239]. The fact that (d) implies (a) requires
some work and may not have appeared in the literature; it was
proved in [23]. We omit the proof since we do not need this
particular implication below.

REMARK. There is a natural extension of Theorem 9 involving
n positive numbers instead of 2.

The next result follows immediately from Theorem 9, the fact

that for Wiener integrals t F( — x)dm1(x) = \ F{x)dmι{x), and
JCQ(T) JCQ[T)

the Fubini theorem, if we take / to be the characteristic function
of E where E is in «5

THEOREM 10. Let p and q be positive numbers. Let E belong
to S^j-z^-i. Then E + y and E — y are in S^p for mq-&.e. y and
mp(E+y) and mp(E—y) are mp-measurable functions of y. Similarly
E+x and E—x are in S^q for mp-a.e. x and mq(E+x) and mq(E—x)
are mp-measurable functions of x. Furthermore

S r
mp(E + y)dmq(y) = \ mp(E - y)dmq{y)

C0(T) JC0(T)

= (mp x mq)({(x, y): x + y is in E})

~ \ mq(E — x)dmp(x)
JCQ{T)

I mq{E + x)dmp{x) .
JCG(T)JCG(T)
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COROLLARY 11. Let E be in S^^\ then E + y is in £f[ for mr

a.e. y.

When p = q — 1, the next corollary is Cameron's earlier result.

COROLLARY 12. Let p and q be positive numbers. The transla-
tion map Ty from (C0(T), S^q, mq) to (C0(T), S^p, mp) is mq-almost
never measurability preserving.

Proof. Applying Theorem 10 with E = Cv^^i, we see that
Wpiv + Cv^gi) — 1 for mg-a.e. y. Let M be a m^-nonmeasurable
subset of Cp. For each y such that mp(y + Cv^γ2) = 1> let .M* =
Mil (y + Cv^^i). Then M* is mp-nonmeasurable. Let A = Λί* ~ #.
Since mq{Gj^^) = 0 and A c Cv^ζ, we see that A is in . ^ and
hence in ,5^. But y + A = ikf* is not in <5 .̂

COROLLARY 13. (mp x mff)({(», y) in C0(T) x C0(T): x + y is in
— V, in particular, x + y is in CVT for mλ x mra.e. (x, y).

In contrast, imp x mq)({(x, y) in C0(Γ) x C0(T): cc + y is in Cλ, X
Vp2 + q2}) - 0.

Next we give some positive results concerning the translation
of scale-invariant measurable sets and scale-invariant null sets.

COROLLARY 14. Let E be in S*. Then for each p > 0, E + y
is in £fp with the exception of at most a scale-invariant null sets
of y's.

Proof. Let E be in S? and let p > 0 be given. It suffices to
show that for each λ > 0, E + y is in £fv for m^a.e. y. But E in
£f implies that E is in S^-^fi and so the result follows from
Theorem 10.

COROLLARY 15. Let N be in ^K Then for each p > 0, N + y
is in ^yVl with the exception of at most a scale-invariant null set
of 2/'s.

Proof. Let N be in *yV~ and let p > 0 be given. It suffices to
show that for each λ > 0, mp(N[+ y) — 0 for m ra.e. y. But N in
implies that

ί mp(N + y)dmλ{y) = mv^^N) = 0 .
J CQ{T)

Open questions, (i) Suppose E is in Sf. Is it the case that
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E + y is in Sf for s-a.e. yl (ii) Suppose N is in ,/K Is it the
case that N + y is in ^y for s-a.e. #?

Remark on (ii). Let iV be in ^γ[ For each λ > 0 let Aλ~
{yeCQ(T):mλ(N+y)>0}. We know that Aλ is in ^V for each
λ > 0. The answer to question (ii) would be yes if one could show
that A Ξ= U;>o Ax was in ^K

Although it will not concern us in this paper, we should men-
tion that there is a small (m^measure 0) but useful set of translators
for which the translation map on (C0(Γ), Sζ9 mx) is measurable. The
relevant result is known as the Cameron-Martin translation theorem.
For information on this topic, see the papers of Cameron and Martin
[6, 7], Maruyama [36] and Segal [37].

4* Scale-invariant measurable functions* In this section we
give some simple but useful results about measurable functions. Let
&{F)(£f{F), S^λ(F); λ > 0) denote the class of all real-valued func-
tions which are defined on a Borel (scale-invariant measurable, mλ-
measurable respectively) subset of CQ(T) and which are measurable
with respect to the cr-algebra &(£ζ S^λ respectively). We will only
discuss real-valued functions for convenience. However, all the
results hold for complex-valued functions as well. The next three
propositions follows from Proposition 3, Theorem 9, and Proposition
6 respectively.

PROPOSITION 16. £f(F) = Γb>o

PROPOSITION 17. Let F be a function defined on a subset A of
C0(T). Given λ > 0, let Fλ be defined on X~ιJ by Fλ{x) = F(Xx).
(i) Fλ is in <9[(F) if and only if F is in £%F). (ii) F is in
£f(F) if and only if Fλ is in £ζ(F) for every λ > 0; that is, £f{F)
is exactly the class of scale-invariant measurable functions defined
in §1.

PROPOSITION 18. For every λ0 > 0,

THEOREM 19. Let F be a function with domain A, F is s-a.e.
defined and in £f(F) if and only if, for each λ > 0, Fλ == F\AnιCλ is
m ra.e. defined and in <9%F).

Proof. Suppose F is s-a.e. defined and in S^(F). Then by
Theorem 5, F is defined except on a scale-invariant null set N —
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(UA>O Nλ) U L where Nλ c Cλ with mλ(Nλ) = 0 and where L c ΰ u C 0 .
Hence JP* is defined on Cλ except on Nλ and so i^ is m ra.e. defined.
Since F is in S/*(F), given a Borel subset B of the reals, F~\B) is
in ^ = f|̂ >o S/ί- Hence {Fλ)~\B) = F"\B) Π Cλ is in ^ . Hence i^
is in £Sλ(F).

Conversely, suppose that for each λ > 0, Fλ is defined except
on an m rnull set Nλ c Cλ and Fλ is in <9%F). Then JP must be
defined except on some subset of the scale-invariant null set
(U^>o^)U(βUCo). Hence C0(T)\J is scale-invariant null and F is
s-a.e. defined. Let B be a Borel subset of the real line. To show that
F~\B) is in Sf it suffices by Proposition 4 to show that F"\B) Π Cλ

is in Sfλ for every λ > 0. But this is so since F~\B) f] Cλ = (Fλ)~\B)
which is in S^χ as desired.

If F is a bounded, Borel measurable function on the reals and
if {λj, λ are positive numbers such that Xn -> λ, then one easily

S b Γb

F(Xnz)dz —» \ F(Xz)dz. It is tempting to try to make
a }a

the same argument for functions on Wiener space, but the following
example shows that this cannot be done and further illustrates the
care that must be taken in dealing with scale changes.

EXAMPLE 20. Let λ > 0 be given and suppose that xn | λ. Let
F(z) — 1 — Z(?λ(«). F is bounded and Borel measurable. Now z is in
Cι for mfa.e. z and so Xnz is in λ%CL = CλnaC0(T)\Cλ for m^.e . z.
Hence \ F{Xnz)dmι{z) = 1 for every n. On the other hand,

S JCO(Γ)

F(Xz)dm1(z) = 0 and so
C0(T)

\ \ F(Xz)dmι{z) .
jcQ{τ) JCQ(T)

A positive result along these lines can be obtained by assuming
that F is continuous s-a.e..

The next two propositions are easy consequences of Theorem 9.

PROPOSITION 21. Let F be a scale-invariant measurable func-
tion. Then for each p > 0, F(px + y) is an m^measurable function
of x for s-a.e. y.

Proof. Given p we must show that

{y: F(px + y) fails to be m^measurable as a function of x)

is in ^K Hence by Proposition 4, given q > 0 we must show that

{y in Cq: F(px + y) fails to be m^measurable as a function of x)

is in ^Vq. Since Cq = qGι it suffices to show that
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{y in d ' F(px + qy) fails to be T^-measurable as a function of x]

is in ^Y[. But F{Vp2 + <z2 #) is an mrmeasurable function of z by
assumption. Hence by Theorem 9, F(px + qy) is an mx x mrmeasura-
ble function of (x, y). Hence for m^a.e. y or, equivalently, for mr

a.e. y in Clf ίXpa? + en/) is an m^measurable function of cc. Hence

{y in CL: î pcc + qy) fails to be m^measurable as a function of x}

is in ^K* as desired.

PROPOSITION 22. Lei JF and G be scale-invariant measurable
functions that are equal s-a.e.; that is F^G. Then for every
p, q > 0, F{px + qy) = G(px + qy) for mι x mΓa.e. (α?, y).

One can see that several useful functions are s-a.e. defined and
scale-invariant measurable by starting with the simple proposition
that follows.

PROPOSITION 23. Let 0 < tγ < t2 < < tn <; 1 and let f be a

Lebesgue measurable function on Rn. Let F(x) =/(xfa), •••,«(<»))•
Then F is s-a.e. defied and scale-invariant measurable.

Proof. It is well-known that if / is a.e. defined and Lebesgue
measurable, then F is mΓa.e. defined and Wiener measurable. The
result follows since, for every λ > 0, multiplication by λ followed
by / is a. e. defined and Lebesgue measurable just as / is.

5* Some related papers* In this section we indicate some ways
in which the work in this paper provides insight into several recent
papers. Except for the first topic below, we will assume that the
reader is familiar with the basic definitions. We begin with a dis-
cussion of the analytic Wiener and analytic Feyn man "integrals"
since in this case the necessary definitions can be easily and quickly
given. These integrals were introduced by Cameron in [3] and have
played a key role in certain later work [4, 16, 34].

Let C+ denote the set of complex numbers with positive real
part. Let F be a function such that the Wiener integral J(λ) =
r

\ F(λ~1/2a0dmi(a0 exists for a.e. λ > 0. If there exists a function
jcom

J*(λ) analytic in C+ such that J*(λ) = J(λ) for a.e. λ > 0, then we
define this "essential analytic extension" of / to be the analytic
Wiener integral of F over C0(T) with parameter λ. For λ in C+,
we write

\anWλ F{x)dm1{x) = J*(λ) .
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Let q be a real number (q Φ 0) and let F be a function whose
analytic Wiener integral exists in C+. Then if the following limit
exists, we call it the analytic Feyman integral of F over C0(T)
with parameter q, and we write

\anfq F(x)dmί(x) = lim
JCO(T) X-*-iq' JC0(T)

λ in C+

Let G = 0. Clearly the analytic Wiener and Feynman integrals
of G are 0 for all values of the parameters.

THEOREM 24. There exists F such that F = G(G = 0) m r a.e .

( 6 ) ΫnWλ F(x)dmί(x) Φ 0 for all X in C+ ,

and

F(x)dm1(x) Φ 0 for all real q Φ 0 .

In fact, given any subset Λ of (0, <χ>) of Lebesgue measure 0 (for
example, the rationals), there exists F such that for every X in Λ,
F(χ-1/2x) = 0 m Γ a.e. but (6) and (7)

Proof. For the first assertion we take F(x) == ZσoCDxα̂ )- Then
= G(a ) m Γ a.e. since F = G on Cx. However for X φ 1,

172^) = 1 m r a .e . and so

( 8 ) \anWλ F(x)dmί(x) = 1= i**'9 F(x)dm1(x)
JCoiT) JGQ(T)

( ) ί ( )
CoiT) JGQ(T)

for all X in C+ and all real q Φ 0.

To prove the second assertion, let F(x) = Z(70<r)\uλβ>iCji-i/a(») For
λ0 in yί, .P(λ^1/2^) = 0 for m^a-e. # siuce X^1/2x is in λ^"1/2Ci = Cx-v*
for m^a.e. x. For λ0 not in Λ, F(Xόι/2x) = 1 for mra.e. x. Since yl
has measure 0, we again have (8) for all X and q.

The following positive result follows easily from the definitions
and our earlier considerations.

THEOREM 25. Suppose that Λ is a subset of (0, °°) of Lebesgue
measure 0 and that for X not in Λ, H(X~1/2x) — F(X~1/2x) for m^a-e.

ί anwχ Canwχ

~. ^.^.v VJ , F(x)dm1(x) exists throughout C+, \ H{x)dmι{x)
JGQ{T) JCQ(T)

S anfg
F(x)dm1(x)

S C Q ( T )

H(x)dmι(x) exists and equality holds.
C0{T)
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COROLLARY 26. IfH&F, the conclusions of Theorem 25 holds.

S anwχ
F(x)dmγ(x) is an analytic function in C1

C0(T)

and the Feynman integrals I α F(x)dm1(x) are the boundary values
JCoiT)

of this analytic function. It is natural to ask if arbitrary analytic
functions and their boundary values can arise as analytic Wiener and
Feynman integrals. They can as our next result shows.

THEOREM 27. Given an arbitrary analytic function g on C+,
there exists a scale-invariant measurable function F such that for
all X in C+

1 F(x)dm1(x) = g(X) .

Proof. Let F(x) = g(X) for x in Cχ-w, X > 0 and let F(x) = 0
for x in Co U D. F is scale-invariant measurable by Theorem 19.
The result now follows since for X > 0,

\ F(X~1/2x)dm1(x) = \ F(X~1/2x)dmι(x) = \ g(X)dmί(x) = g{X) .

The next result shows that one can get arbitrary analytic
functions g (and so arbitrary boundary values) even with very
"nasty" F's.

THEOREM 28. Given any subset A of (0, °°) of Lebesgue measure
0 and any analytic function g on C+ there exists a function F such
that F(X~1/2x) fails to be m^measurable for all X in A but
\ F(x)dmι(x) — g(X) for all X in C+.
JC0(T)

Proof. We define F as in Theorem 27 except that for F in
Cλ-i/2, X in A, we let F(x) = XAk(x) where Aλ is an m^-i/2-nonmeasura-

S anwχ
F(x)dm1(x)=g(X) just

C 0(Γ)

as before, but of course F(X~ί/2x) is m^nonmeasurable for all X in A.

We have just seen that arbitrary analytic functions g can arise
as analytic Wiener integrals. The next theorem is along opposite
lines.

THEOREM 29. Given an arbitrary function f on (0, oo) (how-
ever nasty), there exists a scale-invariant measurable function F
such that for all X > 0
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i ) = /(λ) .
C0(7')

Proof. Let F(x) = /(λ) for λ in Cχ-w, λ > 0 and let F(x) = 0
for a; in Co U D and argue as in Theorem 27.

We next turn to a discussion of the papers [16] and [34] on the
Fourier-Feynman transform. We commented in §1 on Cameron and
Storvick's example [16] of Borel measurable functions F and G such
that F = G m^a.e. but their Fourier-Feynman transforms TqF and
TqG are unequal m^a.e. The functions used by Cameron and Storvick
were F = 1 and G = XCl. We remark that the same functions provide
a similar kind of example in the setting of the Lp Fourier-Feynman
transform [34].

In [16] and [34] all the functions considered are required to be
Borel measurable. However a study of the proofs shows that for
the class of functions dealt with in detail by those papers, namely
functions F as in Proposition 23 and others "built" out of such
functions, Lebesgue measurability rather than Borel measurability
is the "right" assumption on the functions /. On the other hand,
it is clear from the Cameron-Storvick example and other considera-
tions that Wiener measurability is not the appropriate setting for
these papers. It turns out that the concept of scale-invariant
measurability is precisely the correct one for the theory developed
in [16] and [34]. In I ~ IV below we describe the main results of
[16] in the scale-invariant measurability setting.

I. If F is scale-invariant measurable and if TqF (the L2 analytic
Fourier-Feynman transform of F) exists, then TqF is scale-invariant
measurable. If, in addition, G is scale-invariant measurable and
G a* F, then TqG exists and TqG ** TqF.

II. Let F be as in Proposition 23 with / Lebesgue measurable
and in L2(Rn). Then TqF exists and is scale-invariant measurable.

III. Let An = {(*!, , tn): 0 < tt < < tn ^ 1}. Let / be a
Lebesgue measurable function on An x Rn such that f(t19 , tn; , , •)
is mL2(Rn) for a.e. (tί9- A ) i n 4, and sup^ \\f(t19- ,ίΛ; , , ) l | 2 < °°.
Let

F{x) = ! • ; • ( /(ίi, , tn; x{tx\ , x{t%))dt, dtn .

Then F is defined s-a.e. and is scale-invariant measurable. Further-
more TqF exists and is scale-invariant measurable.
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IV. One can proceed to build a larger space by taking certain
sums of functions as in III. One can show that such functions F
are scale-invariant measurable and that TqF exists and is scale-
invariant measurable. We remark that this final class of functions

includes functions of the form. F{x) = exp ί i θ{t,x{t))dt\ a class

of functions on Wiener space which is of considerable interest.

We will not give proofs of I ~ IV above. We note however
that Proposition 21 plays a key role in the proof of I and Proposi-
tions 21 and 23 play major roles in the proof of II. II is then used
to prove III which, in turn, is used to prove IV. Finally we remark
that improvements similar to I — IV can be made throughout [34].

Next we give some discussion and results associated with the
operator-valued Feynman integral or Cameron-Storvick function space
integral as studied in [9 ~ 13, 18, 19, 21, 24 ~ 33]. These results
clarify the basic definitions of the theory in a variety of ways and
show the necessity of the equivalences introduced in [27, 29, 30, 33].
The results below hold in the L(LP, Lp>) theory [33] in general and
for all allowable dimensions. However, for simplicity, we give the
results just in the L(L2, L2) case with dimension 1. See [9] or [33]
for the basic definitions.

One considers complex-valued functions F on C(T). Any y in
C(T) has a unique decomposition y = x + ζ where x is in C0(T) and
ζ is in R. Hence it is natural to regard two functions F and G on
C(T) as equivalent if F{x + ζ) = G{x + ζ) for a.e. (x, ξ) in C0(T) x R.
However we will see that this is not the right notion of equivalence
for the operator-valued function space integrals Iχ(F). Let G be
identically 0 on C(T). Given any p > 0, p Φ 1, we will show in
Corollary 31 below that there exists a function F on C(T) such that
F(x + ζ) = G(x + ξ) for a.e. (x, ξ) but IP(G) is the 0 operator where-
as IP(F) is the operator Kp in L(L2, L2) defined by

Γ ψ(x) exp (-p(x - ξY/2)dx .
J-oo

(See [33, Lemma 1.1] and [24, p. 776] for some discussion concerning
this operator; in those papers it was denoted by Cx.)

THEOREM 30. Let Z be an arbitrary subset of (0, °°) and let
W = (0, oo)\Z. Then there exists a function Fz on C(T) such that
Ix(Fz) exists as a bounded linear operator on L2(R) for every λ > 0
and

0 operator, λ in Z

Kλ , λ m W.
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Also for every X in Z and for every ζ in R, Fz(X~mx + ξ) = 0 for
mj-a.e. x in C0(Γ) while for every X in W and for every ξ in R,
Fz(χ-ιl2χ + ξ) = l for m ra.e. x.

Proof. Let Fz(y) = X^o^niv - y(0)). Then for every λ0 > 0,

Fz(X^x + ξ) = ZUC;_1/2(λ0-
1/2a; + ξ - X^x(0) - ξ) = X u Oi-u*(K1/2x)

w

Now for λ0 in W, Cx is one of the sets {C^^-i^: λ in W} and so, for
every ζ in /?, Fz(X»mx + ξ) = 1 for m ra.e. α. Thus for α/reL2(R)

f (λo-
1/2x(l) + ξ)dmι(x)

σo(D

as was to be shown. Now let λ0 be in Z. Then for every ξ in 12,
Fz{X~ι/ϊx + ξ) = 0 for m ra.e. *. Thus

(Ih(Fz)ψ)(ξ) = \ (0)^(V1/2«(l) + ξ)dmί{x) = 0 .
JC0CΓ)

Note that Fz\CQm is ^-measurable. In fact, if either Z or W
is countable, it is clear that FZ\CQ{T) is Borel measurable.

COROLLARY 31. Let Z be any subset of (0, <*>) sw& £Λ,α£ 1 is in
Z. Then Fz(x + ξ) = G(α; + f) /or a.e. (a?, f). However for every λ
m TF, Iχ(Fz) — Kλ whereas Iλ(G) is the 0 operator. Moreover, if
WΦφ, IT(FZ) and Ja

q

n(Fz) fail to exist whereas iTiβ) and J°n(G)
are all the 0 operators.

Proof. We just need to be comment on the last assertion. It
is well-known that Kλ is analytic in λ throughout C+ [24] and is
never the 0 operator. For Γλ

n(Fz) to exist it would have to be an
operator-valued analytic function on C+ such that, (i) IT(FZ) = Iλ(Fz)
is the zero operator for λ in Z and, (ii) I\\FZ) = Iχ(Fz) = Kx for λ
in W. But this cannot happen by the Identity theorem [22] since
at least one of Z, W has a limit point in (0, ©o). Since IT{FZ) fails
to exist, the operators Ja

q

n{Fz) cannot possibly exist.

In the next corollary, we explicitly point out that it is possible
to have Fz equal to G in a very strong sense and yet fail to have
Iλ(Fz) = Iλ(G) for some λ > 0.
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COROLLARY 32. Let p > 0, p Φ 1 and let W'= {p}. Then for
every X > 0, X Φ p, and for every ξ in R, Fz(χ-1/2x + ξ) = G(λ"1/2ίc + ξ)
for m^a.e. a;. However IP(FZ) — Kp whereas IP(G) = 0. Further
the operators Γλ\Fz) and Ja

q\Fz) fail to exist.

REMARK. If one defined IT(F) ίn a slightly different but reason-
able way, I\\FZ) would exist and be the 0 operator for the Fz from
Corollary 32. This could be accomplished by defining Γλ

n{F) as an
operator-valued analytic function on C+ which agrees with Iχ{F) for
a.e. X in (0, ©o). Even with this altered definition, one could still
get Ia

λ

n(Fz) failing to exist simply by taking Z so that both Z and
W have nonzero measure.

The following positive results are easily established.

THEOREM 33. Let F and H be functions on C{T).
(a) Fix λ > 0 and suppose that Iχ(F) exists and that

H(X~1/2x + ξ) = F(X~ι/2x + ξ) for a.e. (x, ξ). Then Iλ{H) exists and
equals Iχ(F).

(b) Suppose Γλ

n(F) exists for λ in C+ and that, for every λ > 0,
H(X~1/2x + ξ) = ^(λ-172^ + ξ) for a.e. (x, ξ). Then Γλ\H) exists
throughout C+ and equals Ia

λ

n(F).
(c) Suppose Jqn(F) exists for q Φ 0 in R and that for every

λ > 0, H(X~1/2x + ξ) = F(X~1/2x + ξ) for a.e. (x, ξ). Then Ja

q

n(H) exists
and equals Ja

q\F).

Ia

λ

n(F), when it exists, is an operator-valued analytic function of
X for X in C+. Is there anything special about the analytic functions
that arise in this way? For example, can one put any limits on the
growth of H/ΓCί7)!! as λ—> —iql The following result answers some
such questions in the negative.

THEOREM 34. Let g(X) be an arbitrary scalar-valued analytic
function on C+. Then there exists F such that I\n{F) exists and
J (F) = g{X)Kλ for X in C+. For this F, \\IT(F)\\ = \g(X)\ for all
X in C+.

Proof. g(X)Kλ is an operator-valued analytic function of X for
X in C+ and so it suffices to find F such that Iλ(F) = g(X)Kλ for
X > 0. Let

„ ί^(λ) w h e n y 2/(°)is i n ^-v*, λ > o

~~ (θ when y - y(0) is in Co U D .

Now for X > 0, X~i/2x + f - X'1/2x(0) - ξ = X~1/2x which is in Cλ-i 2
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for all ξ and m Γ a.e. x. Hence for each λ > 0, (X~1/2x + ζ) = g(X) for
every ξ and m r a .e . x. Hence

F(X~ί/2x + ξyψiX-MxQ.) + ξ)dm1(x)
C0(T)

ψ(X~1/2x(ί) + ξ)dmι(x)
CQ{T)

= g(X)(Kλψ)(ξ) .

The result now follows since \\Kλ\\ = 1 [24, p. 776].

The next result shows that Iχ(F), X > 0, can depend on X in a
rather arbitrarily pathological way.

THEOREM 35. Let f(X) be any function (however nasty) on (0, c>o)#

Then there exists F such that IλF = f{X)Kλ for X > 0.

Proof. Simply let

f/(λ) when y - y(0) is in Cj1/2, X > 0 ,
TpfηΛ

(0 when y - y(0) is in Co U

and argue as in the preceding proof.
We will conclude this section with some relatively brief com-

ments on the papers [14, 15, 17]. Although we are less familiar
with these papers, it appears very likely that some of the ideas and
results of this paper (as well as the extensions of [16] found in [34]
in the case p = 2) will allow one to better understand and extend these
papers as well. As a test of this, we tried to see if we could improve
on Theorem 1 of [15] with reference to the assumptions on ψ. In [15],
it is assumed that ψ is Borel measurable and that for every X > 0
and every rj in C0(T), ψ(Xy + 7)) is Wiener integrable as a function
of y. We get a related result under the simpler and more general
assumption that ψ is scale-invariant integrable; i.e., ψ is s-a.e. defined
and ^-measurable and \ | ψ(\x) | dmλ(x) < oo for every X > 0.

JCO{T)

THEOREM 36. Let F be bounded continuous in the uniform
topology on Cf[R\ and let X > 0. Then the operator I?(F) (now
defined in terms of a Yeh-Wiener integral) carries the space of
scale-invariant integrable functions into itself.

We will not carry out the proof but we mention that the key
step involves a use of Proposition 21 and an extension of Theorem
1 of [14[ to a situation summarized by the formula
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AΦ, •), y(-))d(m x mύ(χ, y)

= \ f(((b - α)/2Γ«( •),»(• M m , x »»,)(«, 2/)

where m denotes Yeh-Wiener measure on C2[R].

In addition to the likelihood of being able to extend [17], it
appears that one should be able to give examples and results for
the operator-valued Yeh-Feynman integral which parallel the examples
and results given earlier in this section for the operator-valued
Cameron-Storvick (or Feynman) integral.
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