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iV-DIMENSIONAL AREA AND CONTENT
IN MINKOWSKI SPACES

R. D. HOLMES AND A. C. THOMPSON

A definition of content in Minkowski spaces (of any finite
dimension) is given which implies that the surface of the
unit ball and that of the dual ball are equal. Various con-
sequences of this definition, including the solution to the
isoperimetric problem, are explored. Numerous examples
and some unsolved problems are given in the last two sec-
tions.

1* Introduction* The original motivation for this investigation
came from the work of J. J. Schaffer on geometrical constants
associated with the unit ball in a normed linear space. He and K.
Sundaresan [15] showed that, if a normed linear space is nonre-
flexive, then the "girth" of the unit ball is 4. In the paper [13],
in which girth and inner diameter were first defined, he also showed
that, if <%f is 2-dimensional, the girth lies in the interval [6, 8].
It was these latter inequalities which suggested the consideration
of higher dimensional parameters (area, volume, etc.) and, speci-
fically, to ask for bounds for the surface area of the unit ball in
a 3-dimensional space. This problem is still, as far as we know,
unsolved (see Problem 7.9 below); but it requires, first of all, a
definition of area. Such a definition is the first aim of the present
paper, and our proposal is contained in § 2. The second aim is to
investigate the solution to the isoperimetric problem which results
from our definition of area; this is contained in § 4. Throughout
this paper, but especially in § 4, we rely on the work of H.
Busemann and his school [3], [4], [5], [6]. A more detailed summary
of the contents of each section will be given after we have explained
our notation.

Throughout, we will be concerned with finite-dimensional real
linear spaces upon which we impose a variety of norms. Script
roman letters will be used for affine sets — ̂ , %s, JΓ for spaces
and subspaces, ^ , ^', έ%f for hyperplanes. Small roman letters
will be used for vectors — p, q, , z in the space <%f and a,b, ,
h in the dual space (i.e., linear functionals on £f). For obvious
reasons it is not always possible to be completely systematic about
this. Letters from the middle of the alphabet — i, j , , n — will
be reserved for natural numbers. Capital roman letters — A, B,
will be used to denote convex sets, while nonconvex sets (and
surfaces in particular), will be denoted by capital greek letters
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(dΣ is used for a surface area element). Small greek letters will
be used for real numbers and nonlinear real-valued functions.
Distinguished here, are the symbols μ and ε which are used to
denote Minkowskian and Euclidean content respectively (including
the norms); the dimension of the content being inferred from the
context. The ̂ -dimensional Euclidean unit ball is denoted by En

and εn — ε(En) — πnβΓ(n + 2/2)"1. Finally, linear transformations
are shown by bold face capitals.

Since all norms on Mf are topologically equivalent, the set of
continuous linear functionals on ̂  (the dual space) is independent
of the choice of norm (and is, of course, a linear space of the same
dimension as <%f). This space will be denoted by <^Γ*. Given a
convex set B in ̂ f, the polar B° of B is defined by

Bo = {fejzr*\\f(x)\kl, VxeB}.

As the space gf is not explicitly mentioned in the polar notation,
it frequently has to be inferred from the context. In particular,
when B is the unit ball with respect to a norm μ, then B° is the
unit ball for the dual norm μ°.

In this paper, we are not concerned with questions of measur-
ability. In a finite-dimensional linear space, it is always possible
to introduce an auxiliary Euclidean metric and consequently a
Lebesgue measure, which is determined up to a scalar multiple.
The question is which multiple best fits the Minkowskian geometry.
Choosing a multiple is equivalent to assigning a number 7(B) =
μB(B) to be the Minkowski content of the unit ball B. Thus 7 is
to be a real-valued function defined on all centrally symmetric convex
bodies (of any finite dimension). Section 2 is concerned with the
problem of choosing a function 7 and it is shown that it is possible
to define 7 in a way which fits the geometry in the sense that

(1.1) μB(3B) = μ%o(dBϋ) .

This is a special case of Theorem 2.11 which is, perhaps, the main
result of the paper.

Though 7 and μ behave well, certain constants depending on
the dimension keep occurring. By letting p be an appropriate
multiple of μ (depending on the dimension) we show in § 3 that p
has a number of pleasing algebraic properties.

Section 4 deals with the isoperimetric problem. Here, the main
result is Theorem 4.5 which asserts that, if the unit ball is a convex
poly tope, then so also is the solution to the isoperimetric problem.
We are also able to give formulas for constructing the solution
from the given ball.
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In § 5 we briefly discuss the ideas of Busemann on normality
and transversality as applied in relation to our area function 7.
The next section is concerned with examples in ^? 3 . In particular,
we give evidence for the view that 7 is uniquely determined by
the condition (1.1). There are also a number of specific solutions to
the isoperimetric problem. As far as we know, this has not been
done for other area functions. We have also computed the solution
in ^-dimensions when the unit ball is a cube or its dual, but the
computations are too tedious to include here.

As stated above, our original problem — to give exact bounds
for μB(dB) in ^? 3 — is still unsolved. This, and a number of other,
as yet, unsolved problems arising from these investigations, are
collected in § 7.

2 General theory, the function 7* Given an w-dimensional
Minkowski space <%f with norm μ derived from the unit ball B, it
is always possible to introduce an auxiliary Euclidean norm ε and,
consequently, Lebesgue measure. This measure, is, however, only
determined up to a scalar multiple, and the question arises of
normalizing it in a suitable way. One may either introduce ε in a
more or less canonical way — for example, by taking as unit ball
the largest (in ^-dimensional content) ellipsoid inscribed in B or
the smallest ellipsoid circumcribed to B — or assign a number μ{B)
as the ^-dimensional content of the unit ball. We shall adopt the
latter approach; thus, if Δ is some measurable domain in gf and ε
is a fixed Euclidean norm:

(2.1) μ(Δ) = ήjLμ(B) - σ(J?f)ε(Δ)

where σ(<3f) denotes the ratio μ(B)/e(B).
The situation becomes more interesting when one considers the

measure in subspaces of *gf, for, as the space has in general few
isometries, it is possible for this ratio to vary from subspace to
subspace. For a fixed Euclidean norm ε on <^, σ is then a function
from all subspaces of <gf to the positive reals, ^ ? + (the ratio being
taken with respect to the unit ball in the subspace and the inherited
Euclidean norm). Of particular importance are the subspaces of
codimension 1 determined by linear functionals in <%?*. If
let f1 = {xeJίf\f(x) = 0}, then we have

( 2 . 2 )

Then, if Δ is a measurable domain in a hyperplane Sίf — {x e
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= oc}, we can, as measure is translation invariant, translate
A to Δ' £ Z 1 so that

(2.3) μ{A) = μ{A') = -A^-μ(B f] f±) = σ(J

In the sequel, we shall be using a variety of unit balls B and
their restrictions to subspaces. To indicate that μ depends on B
we shall write μB{A). However, in order to simplify the notation,
we make the following definition:

DEFINITION 2.1. Let ^ be a Minkowski space with unit ball
B and ^/ be an m-dimensional subspace of <%f with unit ball C —
ΰ Π ^ , then define

ΊΛC) = μB{C)

(the m-dimensional measure of the unit ball C in the space gf). If
^ = JT7, C = B then we denote y&{B) simply by y(B). Our first
concern will be the nature of these functions y#,. We note that
very little of what follows depends on the symmetry of the metric
(i.e., the unit ball). We begin by listing the commonly accepted
axioms for the functions y^.

Axioms 2.2.
(a) y^ is independent of the space <g?, i.e., y^{C) depends only

on the shape of the ball C and not on that of the ball B in the
larger space in which it is embedded.

(b) 7 is continuous as a function from the collection of compact
subsets of &n with the Hausdorff metric to ^ ? + .

(c) 7 is invariant under nonsingular linear transformations L
from &n to ^ ? \

(d) If En is an ^-dimensional Euclidean unit ball (i.e., an
ellipsoid) then,

y(En) = ε(En) = εn = ^ ^

There is considerable discussion of such functions y in the literature,
most notably by H. Minkowski and later by H. Busemann and his
school. An elementary account is given in the last chapter of the
book [2] by R.V. Benson.

In view of Axiom 2.2 (a) we shall, from now on, write y(C)
for 72(<?) since the space in which C is embedded does not affect
the value of τ(C). This makes it clear that 7 is a function from
the set of all (centrally symmetric) closed, bounded, convex bodies
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in &n (n arbitrary) to &+.
The simplest way to achieve (a)~(d) is to make 7 constant on

(2.5)
π'

Λ/2

These numbers appear somewhat arbitrary and it was hoped that a
function more intimately connected with the geometry (i.e., the
metric) could be constructed. One possibility in ^P 2 is 7(2?) =
(l/2)μ(dB) and, inductively,

(2.6) ()
n

for B Q &n. Another possibility considered in the literature, is to
choose 7 is such a way that the minimum ^-dimensional measure
of a parallelepiped circumcribed about B is equal to 2*.

Recently, J. J. Schaffer [14] (see also [16]) has shown that, if
is B, 2-dimensional space with unit ball B, the

(2.7) μB(3B) =

The main purpose of this investigation is to show that it is possible
to define 7 in such a way that (2.7) holds in general (see Corollary
2.12 below) and to examine the consequences of this definition. Our
first observation is that none of the above candidates for 7 satisfies
(2.7) as a simple calculation with the cube and octahedron in <%z

will demonstrate. The second is that extensive calculations in <^3

(see § 6) surprized us, not only by not yielding a contradiction, but
by suggesting that Axioms 2.2 and equation (2.7) together uniquely
determine 7 (although we have been unable to prove this). Our
calculations suggested the following definition for 7.

DEFINITION 2.3. Let C be a fixed ^-dimensional Minkowski unit
ball in &n and assign it an (arbitrary) value 7(C). For each n-
dimensional ball B in &n we require that the ^-dimensional content
7(2?) of B satisfy:

REMARK 2.4. Putting B = C in (2.8) implies that we must
have 7(C°) = 7(C). After applying the formulae for these measures
it is easily shown that 7 as defined above satisfies Axioms 2.2 (a),
(b) and (c).
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PROPOSITION 2.5. // y also satisfies y(En) = εn, then we have,
for each ball B in &n and, any Euclidean norm ε on &n

(2.9) y{B) = ε-ίe(B)ε(B°) .

Proof. Noting that' μo(B) = (ε(B)/ε(C))y(C) and μco(B°) = (ε(JS0)/
e(C°))7(C°) and substituting these values in (2.8) we obtain,

(2,10) y(B) =
= ε(B)ε(B°)ε(C)-1ε(CT1y(C0) .

Letting 5 = En in (2.10), we have

εn = y(En) = e i T ί C ^ C ) - ^ 0 ) which yields εM = 7(C°)-1ε(C)ε(C°) .

Substituting in (2.10) gives the desired result.

REMARK 2.6. The function ε(B)ε(B°) has been of interest in the
geometry of numbers. Cassels [7, p. 118] points out that, in ̂ ? 2,
upper and lower bounds have been established by K. Mahler [9]
and L. Santalό [12], these bounds being attained for parallelograms
Q and ellipses D.

y(Q) = — ^ y{B) ̂  π - y(D).

Santalό also showed that the upper bound in &% is attained
when B is a Euclidean ball, but the precise lower bound in &n is
unknown though Mahler has conjectured that it is attained by the
^-dimensional cube. It is known that in &n, (Bambah [1], and [7,
P. 118])

ε(B)ε(B°) ̂  (n\)~2An .

Henceforth, all Minkowski contents will be derived from (2.9)
(by the proposition, equivalent to Definition 2.3 plus Axiom 2>2(d)).
The definition was formulated in a way to avoid any dependence on
a Euclidean metric, but we use (2.9) for calculation because of the
great number of well known formulas for computing ε(B) and ε(B°).

An easily established property of 7 is

PROPOSITION 2.7. Let A and B be two balls in &n, then

μA(B) = μBo(A«) .

Proof. Let ε be a Euclidean metric on &n, then
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A°) _ ε(A°) ε(B°)ε(B)

We now turn our attention to the function σ. Let ^/ be an
m-dimensional subspace of the Minkowski space £f with unit ball
B. Then the unit ball in ^ is given by %/ Π B and we have, by
(2.9),

(2 11) σ(&) = μ{^ Π B ) = Ί{^ Π B ) -

This shows the need for a characterization of ( ^ f l δ ) ° such as is
given by the following goemetrical result.

PROPOSITION 2.8 (MacMullen and Shephard [10], p. 70). Let B
be a convex body in %?n with 0 as an interior point, let ^/ be a
subspace of &n and let P be the orthogonal projection along ^/L =
{/ 6 (if*)* I f{?y) - 0}. Then (B n 30° = P(B°).

The proof given in [10] is for polytopes buta continuity argument
will extend the result to convex bodies. We have used a notation
which keeps the distinction between the space ξfn and its dual clear.
As a particular case, let ^ = f1 for / e g 7 * . Then ^/L is the linear
space spanned by / and, if Pf denotes the orthogonal projection
along /, we have (B Π f 1 ) 0 = Pf(B°). Consequently:

(2.12) σ(f") = e-Uε(Pf(BQ)) .

If Σ is an (n — l)-dimensional hypersurface in g^ we will denote
the (n — l)-dimensional Euclidean "area element" of Σ at x by dΣx

and the Euclidean unit normal to Σ at the point x by x (in (g77*)*).

LEMMA 2.9. If f is a Euclidean unit vector in J?f*, then

(2.13) σ{n = - M \f(ΰ)\dΣβ.
2εtedB<>

Proof. As ΰ° is convex, it has a unique tangent hyperplane
almost everywhere. Thus g is defined [almost everywhere and the
integral in (2.13) exists. Let P = Pf and Σ' = P(B°). Now consider
a fixed point geΣ. The area element dΣ'P{g) of Σf at P{g) is the
projection of dΣg and is normal to /. Thus dΣ'Pig) is ±dΣg times
the cosine of the angle between / and g (which is, of course, ~f(g)).
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In other words dΣP(g) = 1/(0)1^,. As B° is convex P(Σ) covers Σ'
exactly twice, therefore

(2.14) ( \f(g)\dΣ9 = [ dΣ'P{β) = 2Ϊ dΣ' = 2e(Σ') .
JΣ JΣ JΣ'

By (2.12), σ(fι) = (l/e._1)e(P/(B«)) - (l/β._,)e(r) which with (2.14)
yields (2.13).

LEMMA 2.10. If Σ is a surface in £f then

(2.15) /ι(^) = ί σ(βL)dΣ. .
J -̂

Proof. o(βf) is the ratio of Minkowsjd measure in & (and in
hyperplanes parallel to ^/) to Euclidean measure in ^/. Thus it is
also the ratio of the Minkowski area element dμΣ to dΣ when both
are parallel to gΛ But, by definition, xL is the subspace of <%?
parallel to the hyperplane tangent to Σ at x and hence to dμΣ and

dΣ. Thus μ(Σ) = [ dμΣ = f σ(xL)dΣ as required.

We are now in a position to prove the main theorem.

THEOREM 2.11. Let A and B be two Minkowski unit balls in
<%f, then

μB(dA) = μAo(dB») .

Proof. By continuity, we may assume that all balls are strictly
convex and sufficiently smooth. Denote dA by Σ and dB° by Σf and
choose a fixed Euclidean norm in £?. Let xeΣ, then by (2.13),
σ(xL) = (X/2e%^)[\aS(S) \dΣ'g which when substituted in (2.15) yields

(2.16) μB(dA) = -±-\\ \x(g)\dΣ'gdΣx .

Similarly, σ{gλ) = (1/26.^)^ \x(g)\dΣx and

μAdB') = -±-\ \ \x{g)\dΣxdΣ'g

which, by comparison with (2.16), gives the desired equality.

COROLLARY 2.12. If B is α unit ball in JT", μB(dB) = μBo(dB°).
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The idea for the proof of Theorem 2.11 comes from the proof
of Cauchy's surface area formula as given in Eggleston ([8], p. 89).
Indeed, since the symmetry of the unit ball is not used, we derive
an analogue of Cauchy's formula as follows.

COROLLARY 2.13. If C is a convex body in n-dimensional
Minkowski space J2f with unit ball B, then

μB(3C) = -±-^^Bε(P7(C))dΣg .

Proof. In the same way that (2.14) was derived, we have

ε(Pγ(C)) = (1/2)ί \x{g)\dΣ'x. Thus, from Lemmas 2.9 and 2.10,
J Σ' — dC

M ε(P7(C))dΣg = - i _ ί \ \x(g)\dΣ'xdΣg

'x = μ(dC) .

REMARK 2.14. If, in Theorem 2.11, A and B are assumed to be
poly topes (rather then strictly convex and smooth), than the integrals
become finite sums and (2.16) can be replaced by

£μB{dA) = μXdB") = —— g Σ

where the Ft are the faces of A with Euclidean unit normals /<
and the X} are the faces of B° with Euclidean unit normals x}.

REMARK 2.15. These results also extend to more general surfaces
Σ in J3f, where we have by a similar argument

\x{g)\dΣ gdΣx .

There is another integral formula which may be derived from
Lemma 2.9.

PROPOSITION 2.16. Let f be a Euclidean unit vector in Sf*
and assume B and B° are sufficiently smooth. Then, if Γ is the
(n — 2)-dimensional set {g e dB°\f(g) — 0} parameterized by alf a2, ••-,

<Γ) = ±
(2.17)

d^ oa2
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where [•••] represents the (n — ϊ)-fold cross product.

Proof. Let Σ be that part of 3B° on which • f g = /(£) ̂  0.
(g is the Euclidean unit normal to Σ at g.) Then Γ = dΣ. Con-
sidering the integral β on the right of (2.17) we have

1/^,-1^-, •••, T ^ - \dar- dan_2

where |. | is the determinant. Expanding by cofactors of the
first and second rows:

X

Σ (-D<+Vi Σ
j Σ

where / = (^, ̂ 2, , φn), g = (f1( ψ2, ••-, ψ .) and &4i/ = j + 1 if i < i
and j if j > ί. If we now apply Stokes' theorem ([11], p. 337;
[17]) we get

( Σ ( - l ) i + V i Σ (-
i=l 3=1

= ± ( Σ (-i)<+ViΣ (-

= ± S Σ (~l)i+

jΣi=ί i=l
3*i

= ± (n - 1) ί Σ φί(-l)ί+1dψ1dψ2' '-dψi dψn
JΣ i=i

= ± (n - l)t /.grdJ = ± (w - 1) f
J21 J21

where the sign depends on the relative orientations of Σ and Γ. By

the symmetry of B\ we have ( |/(ff)|d^' = 2Ϊ \f(g)\dΣ and,
r jΣ'=dB° JΣ

with (2.13), σCΓ) = 1/ε.^j |/(SO|d^ = ± (l/(n - 1)6^0/9 as required.

REMARK 2.17. In the case when n = 3 the formula (2.17)
reduces to
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(2.18)

when Γ is oriented positively with respect to /.

We have shown that Definition 2.3 yields an area function j
with the property that the surface area of a ball and that of the
dual ball are equal. While we have not been able to show that y
is uniquely determined by Axioms 2.2 and Equation 2.7, the follow-
ing result is a step in that direction.

THEOREM 2.18. // Y* is an area function defined on all 2-
dimensional balls satisfying Axioms 2.2. and if μ%dA) = μ2o(3A°)
for all 3-dimensional balls A, then y*(B) = 7*(-B°) for each unit
ball B in &\

Proof. It is sufficient to consider the case when B is a polygon.
Let A be a cylinder in .^?3 based on B. Then A0 is a double cone
based on B°. We have

(2.19) = μ*(dA) = λ-μ*B{dB)y*(Q) + 2γ*(£)

where Q is a parallelogram. Next, let C be the ball obtained from
A by adding two conical caps each 1/2 the height of A. Then C°
is A0 with the cones truncated at 1/2 their height. (See Figure 2.1
for a simple case of A, A\ C and C°.) Consider dC° which consists

FIGURE 2.1

of two faces similar to B° and 1/2 the size, and a number of
trapezoids each obtained from a triangular face of A0 by truncation
at 1/2 the height (and thus of area 3/4 that of the triangle). Note
that the cross-sections parallel to these faces in C° and A0 are the
same. Thus
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Now consider dC. The Minkowski area of each cap is still 7*CB)
but now each rectangular face has a cross-section equivalent to a
regular hexagon H and of Euclidean area 3/2 times that of the
corresponding rectangle in A. It is shown in § 6 (Equation 6.2)
that y*(H) = (9/8)τ*(Q) and hence

= 2τ*CB) + ±-μϊ(dByγ(H) 27(£) + |
o o

Equating μ£(3C) and μXdC0) and substituting μXdAQ) from (2.19)
we get

eι(dB)7(Q) + 27*(J5) = A/ | ^
o o 2 2

from which y*(B) = 7*(-B°) follows.

It does not seem easy to extend this result to higher dimensions,
partly because the relationships between the analogues of the square
Q and the hexagon H are not so easily established. We also do not
know if Theorem 2.18 establishes uniqueness for the 2-dimensional
function 7.

3* The function p. Let £f be an ^-dimensional Minkowski
space with unit ball B which generates, by Definition 2.3 and (2.1),
a measure μ on m-dimensional subsets of

DEFINITION 3.1. For each measurable m-dimensional subset Ω of
let

p{Ω) = μ{Ω)εmm\

where, as usual, εm = ε(Em) = πm/2/Γ(m + 2/2).

In this section we show that p has a number of remarkable
properties with respect to Cartesian products.

If <%f and g/ are n and m-dimensional Minkowski spaces with
unit balls A and B respectively, then A x B is a centrally symmetric
convex body in ^ x ^/ which we may use as the unit ball. We
also define a dual product (or "suspension") A*B by taking A*B to
be the (closed) convex hull of the union of the natural embeddings
of A and B into <%? x ^ \ It is a straightforward computation to
verify that (A x B)° is equivalent to A°*J5° and thus the space
JT* x ^ * with ball A°*B° is dual to <%f x ^ with ball Ax B. In
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the simple case m = 1, A x B is the cylinder over A and A°*B° is
the suspension of A0. Choose a Euclidean metric in <%f x & so
that ^ x {0} and {0} x & are orthogonal. It is well known that
ε(A x B) = ε(^.)ε(5). We need a similar result for ε(.A*i?) which
(as we could find no reference) we establish here.

PROPOSITION 3.2. Let A and B be convex bodies about 0 in *ίfn

and &m respectively, then

(3.1)
(n + m)!

Proof. By continuity, it is sufficient to consider the case when
A and B are poly topes with extreme points {au α2, , ah} and {6X,
b2f , &*2} respectively. We will use (x, 0) and (0, y) to denote the
points {x} x {0} and {0} x {y} in g7*4-*1 when x e g7*, y e ξfm. Similarly,
if UQ &*, F £ Γ , (U, 0) and (0, V) are the sets U x {0} and {0}x
V.

By definition

A*B = co {(A, 0) U (0, B)} = co {(α€l 0), (0, &,) | i = 1, 2, , fe,

The poly tope A may be subdivided into simplices Su S2, , S^
which have a common vertex at 0 and which have only proper
faces in common. Similarly, B may be decomposed into simplices
Tlf T2, , Th. Now Si*Sd^A*B and therefore \Jtti S^Sά Q A*B.
Conversely, let x 6 A*B. Then x — Σ< ̂ (^i, 0) + Σy /9y(0, 6y) where
Σ*«* + Σ i Λ = 1, «*, βs ^ 0. Let λ = Σί ^ so that Σ ; & = 1 - λ.
Then, if λ ̂  0,1,

= χ( Σ -^-(α,, 0)) + (1 - λ) ( Σ τ ^
λ

but Σ i ailM<t<ί> 0 ) e (̂ L> 0) and hence is in some (Si9 0). Similarly
Σ i ^/( l - λ)(0, bj) 6 (0, Γy) for some j and we have x e St*T3-. If λ = 0
then x e (0, Γ, ) for some j and if λ = 1, cc e (Sif 0), thus in all cases
xeSi x Tj. Therefore

(3.2) A*B=[JSi*Ti.

Next note that the projections of St* Tβ onto Si and Tό always carry
interior points into interior points. Thus, if St*T3 and Sit*Tit have
an interior point in common, we must have i = V and j = i', and
the decomposition (3.2) has no proper intersections. Therefore

ε(A*B) - ε( U St*T,) -
i
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and the proof of (3.1) is reduced to showing that

(n + m)!

for n and m-dimensional simplices with a common vertex at 0.
This formula is clearly true for n = m — 1. We proceed by

induction on n for a fixed m (this is sufficient by the symmetry of
the expression in n and m). Suppose {0, v19 v2, , vn} are the
vertices of S and {0, uu u2, , uTO} are the vertices of Γ. Then
S*T is the simplex in .gf + w with vertices {(0, 0), (vkf 0), (0, uz)}|fc =
1, , n, I = 1, , m}. If we let S' = co {0, vίf , vΛ_J then

S* Γ - co {S'* T U {(vΛ, 0)}} and S = co{S'U{ Vn}\.

Now, in Euclidean space, the ^-dimensional content of an n-
dimensional simplex is n~1ε{F)ε{vF, F) where ε(F) is the (n — 1)-
dimensional content of a face F and ε(vF, F) is the perpendicular
distance from F to the opposite vertex vF. Thus

ε(S*Γ) = (n + m)-1ε(S'*Γ)ε(K, 0), S'*Γ)

and ε(S) = n~^(S'Wvn, S'). But since g7^ and g7™ are orthogonal in
^ w + m , s((vn, 0), S'*Γ) = (^, S') and hence

^ ; Ti + rn ε(S')

By the induction hypothesis ε(S'*T) = ε(S')ε(T)((n-l)\ml/(n-
and we get ε(S*T) = ε(S)ε(T)(n\m\/(n + m)\) as required.

THEOREM 3.3. // A and B are any two Minkowskί unit balls,
then

(a) p{A) = p(A\ p(3A) = p(dA°);
(b) p(A xB) = p(A*B) = p(A)p(B);
(c) p(3(A x B)) = p(d(A*B)) = p(dA)p(B) + p(A)p(dB).

Proof. Let ^ and m be the dimensions of A and JS.
(a) We have ρ(A) = ^(A)enn! = Ύ(A)εnn\ = γ(A°)εΛ^!

and |θ(dit) = μA(βA)ε%^{n -1)\ t= μAo(dA°)εn^(n - 1)! = /o(3A°), where
the central equality follows from Corollary 2.9.

(b) First,

ε ( A X B ) ε ( ( A x g )° ) εΛ+Jn+m)\

= ε(AxB)ε(A°*B°)(n + m)l .

Then by Proposition 3.2,
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p(A x B) = e(A)e(B)ε(A°)ε(B°) n l m l (n + m)\
(n + m)!

e . m ! = p(A)P(B).

Finally, by (a),

p(A*B) = p((A*E)°) - p(A° x E°) = p(A°)p(B°) = p(A)p(B) .

(c) Again we assume, without loss of generality, that A and
B are poly topes. A face F of i x ΰ is either of the form FA x B
or of the form A x FB (where FA is a face of A and JPB is a face
of 1?). We consider the former case. Let AF be the cross-section
of A parallel to FA and (AxB)F the cross-section of i x δ parallel
to F. Then (il x B)F ^ AF x 5. Thus

p(F) = p(FA xB) = (n + m-1)1 en+m^(FA x B)

= (n + m - 1)! en+m^f X f^Λc^ x
((A x J5))
(( x

x 5)4^2i|I
e(A^ x JB)

Similarly, if F = A x β f , ̂ (.F1) = p(A.)p(FB). Summing over all faces
of i x β we get

p(d(Ax B)) = p(dA)p(B) + p(A)p(dB) .

Then, using (a),

ρ(d(A*B)) = ρ(d(A*By) = ρ(d(A° x B0))

= p(dA°)p(B°) + p(A°)p(dB°)

= p{dA)p(B) + p(A)p(dB) .

COROLLARY 3.4. // Ak denotes either the k-fold cartesian product
or the k-fold dual product in <^fc, then ρ(Ak) = ρ(A)k and ρ(dAk) =
kp(dA)p(A)k~\

Proof. The first part is an immediate consequence of Theorem
3.3(b) and the second follows from parts (b) and (c) by induction.

Theorem 3.3 allows us to calculate τ(A) and μA(dA) for balls
which can be constructed from products or suspensions. For example,
if C% denotes the ̂ -dimensional cube and On its dual — the w-dimen-
sional "octahedron", we have
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and

tbJ.dC.) =

(w - 1)! ε ^ (^ - 1)! ε ^

Another, related function, of some interest is

ω(B) =
p{B) nεn μB(B) '

Theorem 3.3 implies that ω(B) = ω(B°) and ω(A x δ ) = ω(A*B) =
ω{A) + ω(B). The following establishes certain bounds on ω.

PROPOSITION 3.5. If B is an n-dimensional Minkowski unit
ball, then

(3.3) i- ^ ω(B) ^ ^
2 2

£/& equality on the right if B is a cube or an "octahedron".

Proof. As usual we may assume B is strictly convex and
smooth. Now let x be a point on dB and consider x°edB°, and
Pxo(B°) = Pz(B°) where the projection is taken onto the subspace
orthogonal to x°. Let Γ = {g e dB° \ Px*(g) e dPxo(B0)} and take P =
co {Γ U {x\ -x0}} and P* = co {Pxo(B°) U {tf°, ~-̂ 0}}. It is fairly easy
to see that ε(P) = ε(P*). But ε(P*) = (2/n)ε(Pxo(Bo))ε(x°) = 2ε(PAB°))l
nε(x) as ε(x°)ε(x) = 1. Thus, noting that P £ 5°, we have

(3.4) ε(£°) ^ ε(P) = ε(P*) =

Next, looking at the cylinder C over Pxo(B°) with generator 2#°, we
see that ε(B°) ̂  ε(C) ^ 2ε(P;co(J5o))ε(a;0) = 2e(Pβo(B°))/e(a?). This, with
(3.4) yields

(3.5) 4

Integrating (3.5) over x e dB, we get

^ ί Px<B°)dΣx
J3
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But \ s(x)dΣx = nε(B), and thus, using (2.9),
JdB

which is equivalent to (3.3). Also, if Cn is the ^-dimensional cube,

p(CJ 4 2

4* The function o and the isoperimetric problem* The
function σ(fλ), defined by (2.2) as the ratio of Minkowski to
Euclidean area in f~\Q), is important theoretically in connection
with the solution to the isoperimetric problem. This seems to have
first been recognized by H. Busemann [3], [4] who was able to give
a complete solution to the isopermetric problem in a Minkowski
space in terms of this function. For completeness, we outline his
construction here.

The first step is to modify the definition of σ to make it
positive homogeneous rather than invariant under scalar multiples.

Let <%f be a Minkowski space with an "area" function defined
on it, and let 3f and 3f* be equipped with dual Euclidean norms.
Define the function σ on <%f* as follows:

0 if / = 0

(4.1)

Since £ is a convex body, σL{f) ϊg 0 with equality if and only if
/ = 0. Clearly σL(af) = |α|cr i(/) t thus, if aL is convex, it will be
a norm on Jϊf*. Let K = {/1 σ\f) ^ 1} and / ^ Z ' g j T . The
key step in Busemann's argument [3] is in showing that if a is
convex and analytic and if Σ is an analytic, closed, convex surface
bounding a convex body C, then

(4.2) μ{Σ) = \σ\x)dΣx = nεω(C, I)

where εα) denotes the Euclidean mixed volume:

(4.3) «e(1)(C, I) = lim χ-\ε(C + XI) - ε(C)) .

Since arbitrary convex surfaces may be approximated by analytic
ones, formula (4.2) holds for arbitrary compact, convex bodies C
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with boundary Σ (the integral being taken over that subset of Σ
where a unique tangent hyper plane exists), and for arbitrary con-
vex σ1.

THEOREM 4.1 (H. Busemann [3], [4]). If oL is a convex func-
tion on J^** with unit ball K, then I — K° is the solution to the
isoperimetric problem in J2f in the sense that surfaces Σ which
are homothetic translates of the boundary of I, and only these
surfaces, minimize the surface area containing a given volume a.

Proof By (4.2) we have

a = neω(C, I) ,

also, we have Minkowski's inequality which states that

with equality if and only if C is a homothetic translate of /. Hence,
if C has prescribed volume α,

μ(Σ) = \ σA(x)dΣx ^ nan~1/ne{I)1/n

with equality only for homothetic translates of /.

DEFINITION 4.2. The isoperimetrix I in a Minkowski space
(Jέf, μ) is that homothetic translate of I centered at the origin and
satisfying

(4.4) μ(dϊ) = nμ{ϊ)

(where n is the dimension of <£?).

REMARKS (a) In Theorem 4.1 it was assumed that a represents
Euclidean volume. In fact, since any two measures of volunie are
related by a scalar multiple, the result is independent of the par-
ticular measure used. The surface bounding the greatest Euclidean
volume also bounds the greatest Minkowski volume.

(b) On the other hand, the body /, and thus 7, depend heavily
on the measure of surface area which is determined by the function
σ1 and ultimately by the choice of the function Y.

(c) Equation (4.2) is important, not only because it yields
Theorem 4.1, but because it generalizes Minkowski's method of
calculating surface area (see Proposition 4.4 below).

(d) Busemann showed that his definition of y (2.5) leads to a
function σ1 which is convex (although he also generalized Theorem
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4.1 to the nonconvex case). He, however, gave no specific example,
and even when the unit ball is a simple 3-dimensional object such
as a cube or octahedron, the body I which is generated is not simple
to describe. If y is taken to be the function defined by (2.6),
sample calculations show that σL is, in general, not convex. In
contrast with these rather negative results, the use of y as defined
by (2.8) or (2.9) yields some rather pleasing results.

For the remainder of this section, we will assume that y is
given by (2.8) and thus σ is given by (2.12).

LEMMA 4.3. // I is the isoperimetrix in the n-dimensional
Minkowski space (<^f, μ) with unit ball B, then, for a Euclidean
norm on J3f, J^* we can construct I as above and

/ ε T

Proof. Let I = λl, then e(/) = Xnε(I) and hence

(4.5) μ(ϊ) =

We also have μ(dί) = Xn~^(dl), using (4.2) and (4.4) we get

Equating this with (4.5) yields λ = εJε(B°).

REMARK. From the definition of 7, we see that λ = εJe(B°) =
ε{B)lμ{B).

This last expression for λ is contained in the work of H.
Busemann [3],

PROPOSITION 4.4 (Busemann [3]). If C is a convex body in a
Minkowski space then

(4.6) μ(dC) = l im* C + g f > ~ ^ = nμω(C, ί) .

Proof, Rewriting (4.2) and (4.3) we have

μ{dC) = lim * C

0

where, by Lemma 4.3 λ"1 = μ(B)/e(B). Thus
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«-* a

We now come to the main result of this section.

THEOREM 4.5. If the unit ball B in the Minkowski space
μ) is a convex polytope, then the isopermetrix I is also a convex
poly tope.

COROLLARY 4.6. The function σ1 as defined in (4.1) is convex
in any Minkowski space.

Before proceeding with the proof of Theorem 4.5 we first need

LEMMA 4.7. Let ^f be a hyper plane in &n and let h denote
the pole of £%f with respect to the unit ball. If ^/ is an (n — 1)-
dimensional subspace, then the pole of §ίf[\^/ in & is P(h) where
P is the orthogonal projection of %?n onto ^/.

Proof. Let uu u2, , un^x be an orthonormal basis for <%/ and
extend this, by the addition of unf to an orthonormal basis for S?n.
Let 3(? be determined by the equation

(alf a2, •••, an)-x = 1

in this coordinate system. Then h = (alf a2, ••-,«„). £ίf n & has
the equation {au a2, , an^)-x = 1 in the space ^/. Thus the pole
of this hyperplane in W is (alt a2f , α»_i) which is clearly P{h).

Proof of Theorem 4.5. For the proof we rely on the work of
H. Busemann and E.G. Straus [5], and, in particular, §3 of that
paper.

Let <%?, <%f* be equipped with dual Euclidean norms, and we
will identify <%f and g*\ We will assume that each vertex of B
is the intersection of precisely n linearly independent faces. (It is
always possible to approximate B arbitrarily closely by such a
polytope with a fixed number of faces.)

Let ^ be a subspace of dimension n-2 which does not contain
a vertex of B and extend a basis ud9 ui9 , un of g^ to a basis
u19 u2, , un of £?. Let (βu β2, , βn) be coordinates with respect
to this basis and let ts%fe be the ("rotating") hyperplane determined
by
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cos θβι + sin θβ2 = 0

where θ ranges from 0 to 2π\
Consider 3$fθ in a position which does not intersect a vertex of

J5. We wish to calculate the Euclidean area of the polar recipro-
cal of the intersection of έ%fd and B. Let aixβλ + ai2β2 -\ ccinβn = 1
be the equation of a typical face of B which intersects <%?θ. Then
the polar of this face is at = (aiu ai29 •••,«<»)• Thus, by Lemma
4.6, the pole (in Sίfί) of the intersection of this face with Jg^ is
given by

Pe(cLi) = («ti - \ cos θ, ai2 - λ, sin0, α i3, , ain)

where Pθ is the orthogonal projection on βέfθ and λ< is such that

For i = 1, 2, , n — 1 let the faces of B be chosen so that
their poles in Sίfo form the vertices of a face of (J? n £ίfθf. Then
the (n — l)-dimensional Euclidean content of the simplex subtended
at the origin by this face is

where κn is a constant depending only on n. However, each Pθ{di)
lies in Sίfθ and thus [P^αJ, , ̂ (aw_i)] is a multiple of the unit
normal x0 = (cos ί, sin ̂ ,0, , 0) to Sίfe- Thus

= ±

COS0

# U \χ

(X2ι Λ)2

cos#

cos#

sm#

#22 — ^2

sin

sin

θ

θ

0

^ 2 3

COS ^

α21

sinό1

α12

# 2 2

0

# 2 3

0

# 2 4

If we assume that the faces of B are numbered in such a way as
to make the determinants positive, then we get
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ε((B n βέfe)0) = κ n Σ ** [aί, < •••, α ί _ J

%( ^ + sin #tf2) =

where

(4.7) to, σ2, , <7») = Σ [αί, aί, , αi_2]
i

and the summation is extended over all 1-dimensional edges of B
which intersect £(fθ.

We now follow the construction described by Busemann and
Straus in [5]. Let & be the 2-dimensional plane spanned by the
first two coordinates uιy u2. The subspace β1 = β2 = 0 is a hyperplane
in έ%fθ and, on one side of this hyperplane construct the point y in
^ Π ^ 7 such that ε(y) = ljσ{xθ) = l/(cos θσx 4- sin θσ2). Then y —
(cos θσ1 + sin Θσ2)~1 (sin ,̂ —cos θ, O 0) = (Ti, τ2, 0, , 0) where 7i =
sin /9/cos ^OΊ + sin θσ2 and τ2 = —cos #/cos ̂ σx + sin θσ2. Thus 7X, 72

satisfy the equation σ2y1 — ax72 = 1. As ^ and <72 depend only on
the 1-dimensional edges of B which intersect 3ίfQ, they are constant
provided ^fQ does not intersect a vertex of B. Hence the curve
traced out in & by y consists of a finite number of straight line
segments. This implies, see [5], that the solution to the isoperi-
metric problem is a polytope which will be convex if and only if
the polygon traced out by y in & is convex. To show this we
need to investigate what happens when Sff0 intersects a vertex of
B.

Let v be the intersection of n faces with normals (aiu ai2, ,
ain)i = 1, 2, , n. A vector along any of the n 1-dimensional edges
of B which meet at v is given by the cross-product of (n — 1) of
these normals. As we saw above, these same cross-products enter
into the calculation of (σlf σ2, , σn) and, there, were ordered so
that their inner product with xθ was positive. Before ^ 0 crosses
v it cuts some k of these n edges and after it has crossed v it cuts
the remaining n — k edges. We may suppose that we have chosen
xθ (or equivalently, a side of β1 = β2 = 0 in Sίfί) in such a way that
before 3ίfθ crosses v the cross-products in (σu , σn) point away
from v which means that after <5%?Θ crosses v the vectors along the
n — k edges point toward v. Therefore, to calculate the change in
the vector (σl9 , σn) due to ^fθ crossing v we need to subtract
the cross-products which determine vectors along the k edges away
from v and add the cross-products which determine vectors along
the n — k edges toward v. We wish to determine what this sum is.
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Let au a2, , an be an ordering of t h e normals so t h a t D =

l«i, a2f , an\ > 0. Then, to say t h a t [a[9 a2, , a't-l9 a't+1, •••,<]

w h e r e {a[, , α ^ , α j + ι , , α«} is some order ing of {a19 , α ^ ,

α<+1, * ,α Λ } is directed towards v is to say t h a t <v[αί, •• ,αί_ 1 ,

a't+it " a t €!,*]> 0. That is, using a common notat ion standard in 3-
space, we require

, α»] = |α l f α<f , α,^, w, α<+1, , an\

where u is the "vector" (ulf u2, — ,un). But now, if we solve the
n linear equations

at z = 1 (i = 1, 2, , n)

to obtain the coefficients of the vector v, it is a matter of elementary
linear algebra, using Cramer's rule, to see that

Σ [al, a* , αί-i, αί+i, , α»] = Dv .
ί=l

Thus the change in (OΊ, CΓ2, , σn) due to crossing the vertex v in
this direction is to add a positive multiple of v. β£% of course also
crosses the vertex —v, but in the opposite direction, thus the addi-
tion for — v is also Dv.

We are now in a position to say exactly what happens in the
plane & when <£ĝ  crosses one or more vertices and their negatives.

First, as σx and σ2 can only change when β^θ crosses a vertex,
the vertices of the polygon in & are positive multiples of the
projections in & of the vertices of B. Second, as 3(f9 passes one
or more vertices the new values σ[, σ\ of σu σ2 are given by σ[ =
θ\ + 0i, 0*2 = o2 + d2 where (δl9 δ2, 0, , 0) is the appropriate multiple
of the corresponding vertex of the polygon. The normals (in 0>)
to the edges on either side of this vertex are (σ2, —σ^) and {σ'2—σ[).
The polygon is convex at this vertex if and only if the angle
between these normals lies between 0 and πf i.e., if and only if the
sine of this angle is positive, or — σ2σ[ + σγσ'2 > 0. But — σ2σ[ +
axσ\ — —σ2(σ1 + δ j + σ1(σ2 + δ2) = σλδ2 — σ2δ^ This last expression,

however, is a positive multiple of the sine of the angle between
(σu σ2)9 which is directed along the side of the polygon away from
the vertex, and the vertex. As this is positive the proof is com-
plete.

REMARKS (a). The proof of Theorem 4.5 actually gives us a
method for constructing the isoperimetrix when the unit ball is a
polytope. It is an easy matter to see that the points (σlf " , O
constructed in the proof are the vertices of a convex polytope
which must be a multiple of the isoperimetrix, the correct multiple



100 R. D. HOLMES AND A. C. THOMPSON

being determined by (4.4). (See examples in § 6.)
(b) It also follows that the edges of the isoperimetrix are

parallel to the vertices of the unit ball.
When B is strictly convex, we can use Proposition 2.16 to derive

an integral representation ((4.9), Theorem 4.8) for I which is similar
to the formula (4.7) in the polytope case. To this end, let / e ^ 0

and define Σf = {ge dB°\f(g) ^ 0} and Γf = {g e dB°\f(g) = 0}. (B°
is smooth and thus the Euclidean unit normal g at g is well defined
and continuous.) If we now define

(4.8)

we have, as in the proof of Proposition 2.16,

(4.9) z(f) =
(n — l)ε%

where Γ is a suitably oriented (n — 2) manifold lying in Γf.

THEOREM 4.8. If B is strictly convex and z(f) is defined as
above, then dl = {z(f)\fe^T*} = {z(f)\fedK}. Moreover, f~\l) is
a hyperplane supporting I at z(f) when f e dK.

Proof. It is clear from (4.8) and the definition of Σf that

= — ( fΛS)dΣf

β ^ -L( f(g)dΣ9

where Σ in any other subset of dB° for which the integral exists,
and that equality obtains only if Σ and Σf differ by a subset of Γf.
In particular /•«(/) ^ f*z(g). Now, from (4.1), we see that

—l)εn_i JfL δαj.(n

Thus iϊΓ = {/|/ </) ̂  1} and dK - {/|/•«(/) = 1}. For any / e K,
and any 0, f z(g) ;£ f z(f) 5ί 1 which implies that z(fj) e K° = I for
all gejgf*. But if /ediΓ, 1 = /•«(/) ^ / x for a n y * e / . Thus
/ supports I at «(/) and «(/) e 31 (and z(f) supports K at / ) . Now
B" is smooth and thus z(f) is continuous as a function of / imply-
ing that K is also smooth. Hence I is strictly convex. Let x e dl.
Then there is an fedK such that /-1(1) supports I at a;. Clearly
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/ " 1 ( l ) n / = {a?}. But f~\l) supports I at z(f), thus x = z(f) and
dl = {z(f) I / e dK} as required.

COROLLARY 4.9. // B is strictly convex then I (and I) is also
strictly convex.

COROLLARY 4.10. If B is strictly convex and smooth then 1(1)
is also.

Proof. Suppose / is not smooth. Then there is a point x =
z(f) = z(g) on the boundary of I with two distinct supporting func-
tionals / Φ g, f,ge dK. As / and g cannot be multiples of each
other, there is an open (relative to dB°) set A £ Σ9 ~ Σf Q Γf with
Euclidean normals perpendicular to / which is impossible as B° must
be strictly convex.

REMARK. If B is not strictly convex the integral representation
may still be used to advantage if we evaluate (4.9) where it is
defined and add in the cross-products corresponding to (4.7) at the
isolated singular points. With this modification, z(f) is defined for
almost all / and we have / = cό {z(f) \ f e dK} as every exposed
point of I is a z(f) for some / .

If the space J^f is 2-dimensional, then σL and consequently I
do not depend on the definition of "area" used. It can be shown
that, if <%f and ^ * are identified by identifying a pair of dual
Euclidean bases, / = UB° where U is a rotation by π/2 (in either
direction). This leads to two special properties of the isoperimetrix
/ in this case.

THEOREM 4.11. // <3f is ^dimensional, then μ(ϊ) = π.

Proof. Prom Lemma 4.3, / = (π/ε(B°))I, and thus

ε(ΐ)ε(B») „ π*

π ε(BJπ

COROLLARY 4.12. If A and B are two unit balls iπ &* and if
β is any positive real number, then ε(A + βϊB)ε(B°) ~ ε(B° + βϊAo)ε(A)
and hence μB(A + βϊB) = μA*(B° + ^ 0 ) .

Proof. It follows from (4.2) and Theorem 2.11 that, for any
two balls A and B, εω(A, IB)e(B°) = εω(B°, ϊAo)ε(A). In 2-dimensions,
we also have ε(ϊB)ε(B°)=πμB(ϊB) = π2 = ε(ϊΛo)ε(A). Thus if we expand
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ε(A + βϊB)ε(B°) = ε(A)ε(B°) + βeω(A, ϊB)ε(B°) + β2ε(ϊB)ε(B0) and (
βϊA*WA) = ε(B°)ε(A) + /3ε(1)(£°, ϊA*)ε(A) + β2ε(ΐAo)ε(A) and compare co-
efficients, the result follows.

5* Normality of points and functions* In this section we
consider some results related to the ideas of normality and trans-
versality as defined by Busemann in [4] (see also [5]). Let <gf be
a Minkowski space with unit ball B and isoperimetrix /. Let δ be
the norm on <%f associated with unit ball / and K, σ be the dual
ball and norm in gf*. For an x e ^ 7 and an / e ^ * we define
the Minkowski sine function sm by:

(5.1) sm(x, f) =
σ(f)μ(x)

It is not hard to show that, if £f is the line {ax\aeR},

\sm(x, f)\ — sm{^f, fι\X\) where sm is the sine function defined

in [4].
Following [4], we set

a{f) - sup sm{x, f) - t
σσ(f)

a(x) = sup sm(x, f) =

and define:
(a) x is normal to / and / is transversal to x if sm(xf f) = cx(f).
(b) x is transversal to / and / is normal to x if sm(xf f) —

a(x).
From (5.1) and (5.2) it is clear that x is normal to / if and

only if f/μ(f) supports B at x/μ(x). Similarly, x is transversal to
/ if and only if f/σ(f) supports / at x/d(x). From these remarks
and corollaries to Theorems 4.6 and 4.8 we have:

THEOREM 5.1.

(1) Given x, there is an f transversal to x. f is unique up
to a multiple if B is smooth.

(2) Given x, there is an f normal to x. f is unique up to a
multiple if B is smooth and strictly convex.

(3) Given f, there is an x transversal to f. x is unique up
to a multiple if B is strictly convex.

(4) Given /, there is an x normal to f. x is unique up to a
multiple if B is strictly convex.

COROLLARY 5.2. // B is strictly convex and feJέf*, then z(f)
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(as defined in (4.8)) is the unique {up to a multiple) transversal
to f.

As a consequence of Theorem 5.1 (3) and 4.2 of [5], we have:

COROLLARY 5.3. Hyper planes minimize "area" in

6. Examples* In this section we give a number of examples.
They are of two types. First we have calculations in ^? 3 that were
originally made to see whether it was possible to satisfy the
condition

(6.1) μA(dA) = μXΘA0) .

They are presented here, partly because of their intrinsic interest,
but mainly as evidence that the function 7 as defined in (2.8) is
the only area function which satisfies (6.1) as well as Axioms 2.1.
The second set of examples are of specific isoperimetrices. As far
as we know, no such examples have been given, in dimensions larger
than 2, for other area functions.

A. Examples in R\ Through this part <%f will be ^? 3 upon which
we shall impose a variety of unit balls J5.

EXAMPLE 6.1. Let B be a cube, so that B° is a regular octa-
hedron. The unit sphere dB consists of 6 squares, each of which
is parallel to a subspace whose unit ball (in the relative norm) is a
square Q of the same size and similarly oriented. Thus we have
μ(dB) = 6γ(Q). On the other hand, dB° consists of 8 triangles each
of which is parallel to a subspace whose unit ball is a regular
hexagon H of side 1/2 that of the triangle. The area of each face
is 2/3 that of the hexagon, hence μ(dB°) = (16/3)τ(iϊ). Condition
(6.1) then yields the relation

(6.2)

which was used in the proof of Theorem 2.18.

EXAMPLE 6.2. Consider next, the ball B (see Figure 6.1) which
is a cube of side τ/2 with two pyramidal caps, the apex of each
being VΊΓ/l •+ a (0 < a < 1) from the origin. The dual B° is thus
a truncated octahedron. The cross-sections of B parallel to the
square faces are the hexagons Ha illustrated in Figure 6.2, while
each triangular face is 1/4 of the rectangular cross-section.
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FIGURE 6.1
B°

The cross-sections of B° parallel to the trapezoidal faces are
regular hexagons H. Routine calculations then show that

μ{3B) = 8 % + a\ Ύ(Ha) + 2τ(Q)
(o + a)

(0, -1)

Hn

l+β

(-1, -1)
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\ /
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\ /
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/ \
/ \
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\
\

\

\

\ y'
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/ \

( α , - 1 )

( 1 , 1 )

( 1 , - a )

\
\

FIGURE 6.2

TTO

Jtin

ι-β

B
FIGURE 6.3
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and

= fl - «)2

 7 (Q) + 4(3 -
2

Equating, and using (6.2) we get

(6.3) 7(Ha) = (

and applying Theorem 2.18;

(6.4) 7(B2) - 7(fl ^
o

(£Γί is shown in Figure 6.2.)

EXAMPLE 6.3. Equation (6.4) may also be derived by considering
the ball depicted in Figure 6.3. When β — 0, this ball is especially
interesting as it is an example of a self dual centrally symmetric
polyhedron.

EXAMPLE 6.4. Let Dn denote a regular 2*-gon and take B to be
a cylinder of height 2 on a copy of Dn_x inscribed in the unit circle.
Then μ(3B) = 27(Z>—i) + 2*"1 tan (7r/2%'1)7(Q). The dual ball B° is a
double pyramid of height 2 on a copy of Dn^ circumscribed about
the unit circle. Each of the 2n faces of 8B° is a triangle of Euclidean
area l/~2~tan (ττ/271"1) parallel to a certain cross-section Pn^. (For
large n Pn^ is an approximation to two parabolic arcs.) If the
Euclidean area of Pn_, is ε(P9t_1) then μ(dB°)=2nv/Ytan(π/2n-1)7(Pn.ί)/
s(P»-i) and, using (6.1),

y = 2 cos
(6.5) \2»>Sε(K..

EXAMPLE 6.5. A further relationship between these same
quantities is obtained by considering a somewhat more complicated
situation. Consider Dn with a copy of Dn^ inscribed in it so that
its vertices are the midpoints of each second edge of Dn. Then
move copies of this D^ both above and below Dn and take B to
be the convex hull of the 3 polygones. See Figure 6.4 for the
case n = 3. The point of this construction is that the relevant
cross-sections of B are all rectangles, hexagons of the type Ha for
a = 2 cos (τr/2*"1) — 1, and Dn, while the cross-sections of B° parallel
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B
FIGURE 6.4

to faces are of the form Ha where a — cos (ττ/2""1) and the Pn^ of
the previous example.

Trigonometric calculations of the same type, but more compli-
cated than before, yield, with (6.3) and (6.4), the equations:

μ(dB°) = 2Ml/ 2 sin (JL-)Jί£s=λL

+

Using equations (6.1) and (6.5) we obtain, after considerable simpli-
fication,

2 C 0 S

A straightforward inductive argument (noting that D2 = Q) shows
that:

(6.6)

Letting ^->oo and using Axioms 2.1 (a) and (c) (so that lim^^ y(Dn) =
TΓ) we get

(6.7) -
π

This may now be substituted in (6.2), (6.3), (6.4) and (6.6) to give
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9 - az

Ί{Ha) =
π

22;«• sin 2f—

π

B. Examples of Isoperimetrίces. In this part we compute, as
indicated in Theorem 4.8 and the remarks following Theorems 4.5
and 4.8, the isoperimetrix for a number of three dimensional balls.
As the calculations are similar in each case, they are given only for
Example 6.6. The space <%f in each case is three dimensional and
has been given a Euclidean norm.

EXAMPLE 6.6. Let B be a regular octahedron with vertices at
(±1, 0,0), (0, ±1,0) and (0, 0, ±1). (y(B) = S/π). Let f~\0) be a

FIGURE 6.5

subspace where / is in the first octant. Then this subspace
intersects dB in the faces with polars ( — 1,1, 1), ( — 1,1, —1), (1, 1,
-1), (1, - 1 , -1), (1, -1,1) and ( - 1 , - 1 , 1) in order (see Figure 6.5).
Thus the corresponding vertex of / is given by the sum of the
cross products of consecutive pairs of these polars. A simple
computation yields ( — 8, —8, —8). Similarly, taking / in each octant,
we see that the vertices of I are (±8, ±8, ±8) and the isopermetrix
is a cube. Setting μ(d(Xl)) = Sμ(Xl) we get λ = 1/12 and thus I is
the cube with vertices (±(2/3), ±(2/3), ±2/3).

EXAMPLE 6.7. Let B be the cube with vertices at (±1, ± 1 , ±1).
(7(JS) = 8/π). Then I is a rhombic-dodecahedron with vertices (±1,
± 1 , ±1), (±2, 0, 0), (0, ±2, 0) and (0, 0, ±2).
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EXAMPLE 6.8. Let B be the double cone of height 2 over the
unit circle. (7(2?) — π). Then I is a cylinder of radius 8/3τr and
height 4/3.

EXAMPLE 6.9. Let B be the cylinder of height 2 over the unit
circle. (7(2?) = π). Then I is the body obtained by rotating the
area under the curve x = 4/τr cos ((πj£)z) about the z axis.

7. Conjectures and problems* In this section we collect
together a number of questions which, as far as we know, remain
open.

Problem 7.1. For the given function γ, do affine sets minimize
area?

This may be reformulated as a polyhedral inequality and, as
such, was posed by Busemann and Shephard [6] (See also [5]). In
this form, it may be stated as follows. In &n, let P be a closed
m-polytope with faces Fίf F2, , Fk. Let B be a (centrally sym-
metric) convex body in &n. Furthermore let Pt(i — 1, 2, , k) be
the orthogonal projection onto the m-dimensional subspace parallel
to the face Ft. Then Problem 7.1 is equivalent to showing that

Problem 7.2. Do Axioms 2.1 and the requirement that μΛ(dA) =
μAo(dA°) uniquely determine 7?

We conjecture that the answer is yes. The examples in § 6A
show that 7 is uniquely determined on certain polygons. The
question may be modified in many ways, for example, adding the
requirement that y(B) = 7(2?°). This leads to

Problem 7.3. If μA(dA) = μΛo(dA°) for all ^-dimensional balls, is
it true that we must have 7(2?) = 7(2?°) for (n — l)-dimensional balls?

This is the ^-dimensional generalization of Theorem 2.18.
If we define In to be the map carrying the set of centrally

symmetric closed convex -^-dimensional bodies into itself which
takes a unit ball B onto its isoperimetrix /, then there are a number
of questions regarding In.

Problem 7.4. Is In an injection?
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Problem 7.5. Is the Euclidean ball En the only fixed point of
In for n > 2?

Problem 7.6. If n > 2, do the successive iterates (In)\B)
converge (in some sense) to EnΊ

This conjecture is supported by numerous calculations which
seem to indicate that In(B) is more "sphere like" than B.

Problem 7.7. Does In map smooth balls to smooth sets?

We know from § 4 that In maps polytopes to polytopes, strictly
convex balls to strictly convex sets, and smooth and strictly convex
balls to similar sets.

The remaining problems deal with maximums and minimums of
the various numerical functions involved.

Problem 7.8. What are the lower bounds for τ(J3) in ^ ? 3 ( ^ ) ?

As was stated in § 2, it is known [1], [12] that in ^g52, 8/π ^
Ύ(B) 5̂  π with equality on the left only for parallelograms and on
the right only for ellipses.

Problem 7.9. What are the bounds for μB{dB) in &\&n)Ί

It is known [13] that in ^ 2 , 6 <; μJβA) <> 8, with equality on
the left only for regular hexagons and on the right only for paral-
lelograms. In ^ P , if A is the cubo-octahedron, (and thus A0 is the
rhombicdodecahedron) we know that μA(dA) = μAo(dA°) — 36/π <
μE3(dE3) = 4π and this is the smallest value we have found. (A
truncated cone over a regular hexagon also gives the value 36/ττ.)
If C3 is the cube in ^ 3 then μ0JidC3) = 48/ττ. Is this maximal? Note,
that in &n the cube is not, in general, maximal as limn^0O μGn(dCn)/
μEn(dEn) = 0.

Problem 7.10. What is the lower bound for ω(B) in &nΊ
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