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ONE-PARAMETER SEMIGROUPS OF ISOMETRIES INTO Hp

EARL BERKSON

In this paper we explicitly describe all strongly con-
tinuous one-parameter semigroups {Tt} of isometries of HP(D)
into HP(D), where l^p<oo, pΦ2, and D is the unit disc
\z\<l in the complex plane C. It turns out (Theorem (1.6))
that for each t, Tt=φtUu where Ut is a surjective isometry
and φt is an inner function (the families {φt} and {Ut} are
uniquely determined provided {Ut} is suitably normalized).
The nature of the family {φt} depends on the set of common
fixed points of the family of Mobius transformations of the
disc associated with the family {17*}. If there is exactly
one common fixed point in D, then {Tt} must consist of
surjective isometries (§4); otherwise {Tt} consists of surjec-
tive isometries only in very special cases (§§2,5). The
families {ψt} are explicitly described in this paper.

1* Preliminaries. The linear isometries of Hp into Hp were
characterized by Forelli [7, Theorem 1]. For convenience we quote
here a part of the statement of Forelli's theorem.

THEOREM. Let T be a linear isometry of Hp into Hp, 1 ^ p <
o o , p ^ 2 . Then T has a unique representation

(1-1) Tf = Ff{φ), for all feHp,

where F is analytic on D, and φ is a nonconstant inner function.

Let R be the set of real numbers, and R+ be {teRit^O}.
Let {Tt}, teR+, be a strongly continuous one-parameter semigroup
of isometries of Hp into Hp, 1 <̂  p < 0 0 , ^ ^ 2 . For each teR+,
let Ft and φt be as in the representation (1.1) for Tt. From the
identity Ts+t = TsTt we get for all s,teR+:

(1.2) φ s + t = φ8oφt

(1.3) Fs+t = F8Ft(φ8) ,

where "°" denotes composition of maps. Let Z be the identity map,
Z{%) = z. Obviously Ft = Ttl, and TtZ = Ftφt. It follows by strong
continuity that if u e R+, z0 e D, and Fu(z0) Φ 0, then φt(z0) -> φu(z0)
as t -> u. From this and the fact that {φt: t e R+} is normal, we find
that t H* φt is continuous from JB+ to the usual metric space of all
analytic functions on D. Using this and the pointwise equicontinuity
of {φt:teR+}9 we infer that φt(z) is a continuous function of (ί, z)
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on R+ x D. It follows by [4, Proposition (2.2)] that φt is univalent
for all t G iJ+. Since the singular factor of a univalent function on
D is trivial [6, Theorem 3.17], a univalent inner function (in parti-
cular, φt for 16 R+) is a Mδbius transformation of the disc. Thus
|^(0) | = 1^(0)1 for t eR+. If {tn} S R+, and tn-+t0, it follows that
there is an r e (0,1) such that \φ7*(0)\<r for n = 0, 1, 2 . A
standard integral representation for the inverse of a conformal
map [5, Prop. 3.7] coupled with the uniform convergence of {φtn}
to φto on compact subsets of D gives the conclusion that φΓ*(O) —>
ΦTO\O). Hence φi\0) is a continuous function of t on R+. For each
t let α* and 6t be constants, with |6 t | < 1 = \at\, such that φt(z) =
α*(s — δ*)/(l — M). We have just shown that ί H+ bt is continuous
on U+, and it follows that tv-*at is also continuous. Direct com-
putation now shows that φ;\z) is continuous in (t, z) on R+ x D.
For t < 0 define ^f to be ^zϊ. It is easy to see that {φt}, teR, is a
one-parameter group of Mδbius transformations of D, i.e., t\-*φt is
a homomorphism of the additive group of R into the group of all
Mobius transformations of D, and φt(z) is continuous in (t, 2) on
R x D. In particular [1, p. 231], $(3) has a unique continuous
logarithm ϊ(t, 2) on Jί x 5 such that ί(0, 0) = 0; moreover, Z(ί, z) is
analytic in 2 for each t, and, if (as will be done henceforth), we
standardize the branch of (φ't)

1/p, for each t, by taking (φ't)
Vp to be

exp[ί(ί, )/p], then for all β,teΛ, (φUt)
VpKφl)1/p = (Φ's)

1/p°Φf Applica-
tion of [7, (16)] to the family {Ft}, teR+, defined earlier, shows that
for each teR+,\Ft\ = \(φ't)

1/p |a.e., on \z\ = 1. Since ( '̂)1/2> is outer,
jPt can be written as a product Ft = {φ[)Vpψu where α̂ t is inner.
(Compare [7, p. 727] where this last technique is employed under
different hypotheses.) From (1.3) we have:

(1.4) ψs+t(z) = [ψs(z)][ψt(φs(z))] f o r a l l s,teR+,zeD.

From the strong continuity of {Tt} we easily infer:

(1.5) The function t^-*ψt is continuous from R+ into Hι(D).

We summarize the foregoing with:

THEOREM 1.6. Suppose 1 ^ p < 00; p Φ 2. If {Tt}, teR+, is a
strongly continuous one-parameter semigroup of isometrίes of
HP(D) into HP(D), then there are a unique one-parameter group of
Mobius transformations of the disc, {φt}, teR, and a unique family
{ψt}, teR+, of inner functions such that

(1.7) (TJ)(z) = ft(z)[(φ'ty
p(z)]f(φt(z)) for all teR+,feHp,zeD.

The families {φt} and {ψt} satisfy (1.4) and (1.5). Conversely, given
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a one-parameter group {φt} of Mobius transformations of the disc
and a family of inner functions {ψt}, 1e R+, such that (1.4) and
(1.5) hold, (1.7) defines a strongly continuous one-parameter semi-
group of isometries of Hp into Hp.

DEFINITION. For the semigroup {Tt} in Theorem 1.6 we shall
call {φt}, teR, and {ψt}, t e R+, the conformal group and the inner
coefficient of {Tt}, respectively.

2* The case of trivial conformal group. Henceforth let K be
the unit circle \z\ = 1. A singular measure will be a measure on
K singular with respect to Lebesgue measure.

THEOREM 2.1. If {Tt} is a strongly continuous semigroup of
isometries of Hp into Hp, 1 <Ξ p < oo, p Φ 2, whose conformal group
is trivial (i.e., φt = Z for all teR), then there are a unique real
number δ and a unique positive singular measure λ such that

(2.2) Ttf = emS*f for all teR+,feHp,

where S is the singular inner function induced by λ. Conversely,
for δ and λ as above, (2.2) defines a strongly continuous semigroup
of isometries with trivial conformal group.

Proof. Let {Tt} be given with trivial conformal group, and let
{ψt} be its inner coefficient. If, for some u > 0 and zoeD, ψu(z0) = 0,
then by (1.4) for each positive integer n, ψu/n(z0) = 0. Thus
(Tu/nl)(zQ) = 0. Letting n —> oo gives a contradiction, and so ψt(z)Φθ
for ί 6 JR+, ze D. Thus each ψt can be written ^ = atSt, where at

is a unimodular constant and S* is a singular inner function. It
follows from (1.4) that as+t = α8αe and Ss+ί = SsSt for s, teR+. For
ί G JB+, (Γtl) = atSt; in particular, | (Γtl)(0) | = St(0). Thus for u e R+,
limtmSt(Q) = Sw(0), and l i m ^ ^^(0) = auSu(Q). It follows that there
is a real number δ such that at — βΐδί for t e R+. We also have

(2.3) | | S e - S . | | p >0 as t >u.

For each teR+, let Xt be the singular measure corresponding to St.
For each positive integer n, St = (St/n)

n, and so \t/n = w"%. It fol-
lows that for each positive rational r, λr = r\. By (2.3) St = (SJ*
for teR+. This proves (2.2), uniqueness being evident. Conversely,
it is clear that (2.2) defines a semigroup of isometries. Let A(z) =

(2^-4 (w + z)(w - zyWXiw), for ^e i ) . Then ([6, Theorem 3.2])

A 6 HS(D) for s < 1. In particular, the boundary function of S* is
e~tB, where B is the boundary function of A. Strong continuity of
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{Tt} is readily obtained from the Lebesgue dominated convergence
theorem.

REMARK. It is known that for 1 <; p < oo? p Φ 2, the only one-
parameter semigroups of isometries of Hp into itself, continuous in
the uniform operator topology, are the semigroups {eutl}, teR+,
where δ is a real constant and I is the identity operator. For, by
general semigroup theory, such a semigroup automatically extends
to a one-parameter group with the same continuity. Now apply
[2, Theorem (2.8)].

3* Some properties of inner coefficients* In this section we
obtain properties of inner coefficients needed to find explicit repre-
sentations. Let {φt}, teR, be a nontrivial one-parameter group of
Mobius transformations of the disc, and {ψt}, t e R+, be a family of
inner functions such that (1.4) and (1.5) hold. For the purpose of
classification we reproduce here [2, Proposition (1.5)]:

SCHOLIUM 3.1. Let Ω be the set of common fixed points in the
extended plane of the functions φt, teR. Ω must be one of the
following:

( i ) A doubleton set consisting of a point τ e D and τ~ι {the
latter to be °o if τ — 0),

(ii) a singleton subset of the unit circle K, or
(iii) a doubleton subset of K.

If u is any real number such that φu is not the identity function,
then Ω coincides with the set of fixed points {in the extended plane)
of Φu

We describe {φt} as being of type (i), (ii), or (iii) in accordance
with the condition which holds in (3.1). Explicit characterizations
of the groups of each type are in [1, Theorem (1.6)]. It will some-
times be convenient to write φt{z) as φ{t, z). In the latter notation
partial differentiation will be indicated by numerical subscripts
(analogous comments apply to ψt(z)). We recall some basic facts
from [2, §1]. For each zeC, ^(0, z) exists; moreover, φ{-, •) has
continuous partial derivatives of all orders on R x D. The function
^(0, z) on C is a polynomial of degree 1 or 2 whose set of zeros is
Ω Π C. We denote this polynomial by q, and call it the invariance
polynomial of {φt}. For teR,zeD,φ1{t,z) = q{φ{t,z)) [1, Theorem
(1.5)].

If we form the semigroup {Tt} in (1.7), then standard differen-
tiation theory of semigroups can be used to show that α/r( , •) has
continuous first partial derivatives on R+ x D, and that ^(0, z) is
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an analytic function of z on D. We omit the details. Differentiate
(1.4) with respect to s, set s = 0, and denote ψx(0, z) by W(z) to
get:

(3.2) ψx(t, z) = ψ2(t, s)g(z) + ψ(t, s)T7(z) for teR+,zeD.

For arbitrary (temporarily fixed) ^ e ΰ , we have by direct differen-
tiation followed by substitution using (3.2)

(3.3) dψ(t, Φ-t(z))/dt = φ(t, Φ-t(z))W(φ_t(z)) for t e R+ .

By using the usual type of integrating factor in (3.3) and noting
that ψQ = 1, we see that

(3.4) ψ ( t 9 Φ-t(z)) = e x p Γ ί * W(Φ-u(z))du\ f o r t e R + , z e D .
LJo J

Replace z by 0f(z) in (3.4) and transform the variable of integration
to get

(3.5) ψ ( t , z) = e x ι > \ \ t W ( φ s ( z ) ) d s Ί \ f o r t e R + , z e D .
LJo J

In particular, ψ(t, z) never vanishes. Denote the exponent on the
right of (3.5) by L(t,z). Obviously L, and also ψ(>, •)> have con-
tinuous partial derivatives of all orders on R+ x D. Moreover,

(3.6) — = W(φt{z)) for t e R+, z e D .
ot

The relation (1.4) shows that \ψt(z)\ is a decreasing function of t
for each zeD. Thus

0 ^ A log I ψt(z) I = Re JWO, 2) = Re TΓ(») .

PROPOSITION 3.7. Let {φt},teR, be a nontrivial one-parameter
group of Mobius transformations of the disc, arid let {ψt}, t e R+, be
a family of inner functions such that (1.4) and (1.5) hold. Then
there is a function L(t, z) with continuous partial derivatives of all
orders on R+xD such that ψ(t, z)=exp [L(t, z)] on R+xD. Further-
more there is an analytic function W(z) on D with Re W ^ 0 such
that (3.6) holds.

4* Semigroups with conformal group of type ( i ).

THEOREM 4.1. Let {Tt},teR+, be a strongly continuous one-
parameter semigroup of isometries of Hp into Hp, l^p< °°, pΦ2,
with conformal group {φt}, teR, of type (i). Then there is a unique
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real constant δ such that

(4.2) Ttf = β " W ' T O t ) for teR+, feHp .

On the other hand, for any real constant 8 and any one-parameter
group of Mobius transformations of the disc {φt}, teR, (4.2) can be
used for all teR to define a strongly continuous one-parameter
group of isometries of Hp onto Hp.

Proof Let {ψt}, t e R+, be the inner coefficient of {Tt}. Let τ
be the common fixed point in D of the group {φt}. By [1, Theorem
(1.6)] the invariance polynomial q, which has τ as its only zero in
Ό, has a simple zero at τ. By (1.4) t v-* ψt{τ) is multiplicative, and,
by (1.5), this function is continuous on R+. So there is aeC such
that ψt(τ) = eat for t eR+. Let L( , •) and W(-) be as in Proposition
3.7. I/x(0, τ) = ^(0, τ). By (3.6) W{τ) = α. So there is an analytic
function A(z) on D such that W — a = qA. Let G be an antideri-
vative of A on Zλ

~I-G(φt(z)) = A(φt{z))q{ψt{z)) - TΓ(j5t(2)) - α = ^ r ( L - αί) .

So there is a function fc(s) on D such that

L(t, z) = G(φt(z)) + at + k(z) for t e # + , ^ e ΰ .

If we take exponentials on both sides of this equation, and use the
fact that ψQ = 1, we obtain on R+ x D

(4.3) ψt(z) = exp [αί + (?(&(*)) - G(z)] .

Let u be a positive number such that φt+u = ^ for all ί e R (such
a i6 exists because {φt} is of type (i) [1, (1.7)]). Taking t = u in
(4.3), we have ψu(z) = eau for zeD. Since ψ^ is inner, a = ίδ, where
δ is the imaginary part of a. Since ψ^τ) = eiδt for ί e R+, the
maximum modulus theorem shows that ψt(z) = eiδt for t eR+, zeD.

5. Semigroups with conformal group of type (ii) or type
(Hi)* The author is indebted to R. Kaufman for the idea of the
next proof. Before taking up the next theorem, let us observe that
if {φt} is a group of type (ii) with common fixed point α, then there
is a unique nonzero real number c such that the invariance polyno-
mial of {φt} is given by q(z) = icά(z - a)2 [1, (1.8)]. We shall call
this c the group constant.

THEOREM 5.1. Let {Tt} be a strongly continuous one-parameter
semigroup of isometries of Hp into Hp, l<^p<°ofp^2, with
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conformal group {φt} of type (ii). Let a be the common fixed point
and c the group constant of {φt}. Then there are a unique real
constant δ and a unique nonnegative constant μ such that

Ttf = {exp [iδt - icμtf - μt(a + z)(a - *0~W)1/?7(&) ,

for teR+, feHp.

Conversely, if a is a unimodular complex number, c is a nonzero
real number, and {φt} is the type (ii) group having a as common
fixed point and c as group constant, then (5.2) defines a strongly
continuous semigroup of isometries of Hp into Hp for d e R, μ ^ 0 .

Proof. Let {ψt} be the inner coefficient of {Tt}, let L( , •) and
W be as in Proposition (3.7), and let G be a primitive of W/q. Then
dG(φt(z))/dt = W(φt(z)) = dL/dt. It follows that

(5.3) f t { z ) = e x p [G(φt(z)) - G(z)] f o r t e R + , z e D .

Denote ReG by U. Let Q be the linear fractional transformation
given by Q(z) = (a + z)(a — z)~\ In particular, Q maps D onto the
right half plane P. Define g on P by g(w) = GCQ""1^)), and put
u = Reg = U(Q-\w)). It is easy to see that iflr'(w)= T7(Q
and so, writing w = cc + iy, we have du/dy — (2c)"1 Re
Let /3 = — c/\c\; then βdujdy ^ 0. Applying the Herglotz represen-
tation theorem (for P) to βdujdy gives:

(5.4) βdu/dy = σx + [ x[x2 + (y - r)2]

where σ is a nonnegative constant, and v ^ 0 is a certain measure,
which is finite on bounded Borel sets of R.

In order to make effective use of (5.4), we now examine the
boundary behavior of U and u. Since Re W ^ 0, W belongs to the
Hardy spaces Hs for s < 1. Obviously (1/q) belongs to H* for s <
1/2. Use of the Cauchy-Schwarz inequality now shows that Gr —
W/q belongs to Hs for s < 1/4. By a theorem of Hardy and Little-
wood [6, Theorem 5.12] it follows that G belongs to Hs for some
s > 0. Accordingly, for any t e R+, we can pass to the boundary
of D in (5.3) to conclude that, with respect to Lebesgue measure m
on K,

(5.5) U(φt(z)) - U(z) = 0 for almost all z .

If t < 0, we can replace t by (—t) and z by ^(s) in (5.5) and get
equality for almost all z. Thus for each teR, (5.5) holds for m-
almost all z. It follows that for m-almbst all z, (5.5) holds for
almost all t (with respect to linear Lebesgue measure). In particular,
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pick zoeK\{a} so that with z replaced by z0, (5.5) holds for almost
all t. It follows that there is a real constant Ύ(=U(ZQ)) such that
for m-almost all z, the function U on D has a nontangential limit
equal to 7 at z. Hence for almost all y e R (with respect to linear
Lebesgue measure) u on P has a nontangential limit equal to 7 at
iy. If yu y2 are any two such values of y, with yx < y2, then inte-
gration of (5.4) with respect to y between y1 and y2, followed by
interchanging the order of integration, readily gives the inequality:

/c e\ βlu(χ> V*) u(χ> #1)] ^ I {arctan [x~\y2 - r)]
(5.6) J < <

— arctan [x~\y1 — r)]}dι>(r) .

Now, keeping yx and y2 fixed, let a? in (5.6) tend to 0 through a
sequence of positive values. At each r on the interval of integration
the integrand tends to π. Using Fatou's lemma (or bounded con-
vergence) and the fact that the major ant in (5.6) tends to 0, we
infer that the interval y1 < r < y2 is v-null. Hence v(R) = 0. Making
use of this, integration of (5.4) now gives:

(5.7) βu(x, y) = σxy + βu(x, 0) .

In particular the Laplacian of u(x, 0) must vanish. So there are
real constants α, b such that

(5.8) βu(x, y) = σxy + ax + b .

Since u{Q{z)) = Re G{z) for zeD, we have from (5.8) and (5.3) that
f o r teR+, Z G D

(5.9) ψt(z) - exp {-σoiβ[{Q(φt(z))Y - {Q(s)}2] + ao[Q(φt(z)) - Q(z)]} ,

where σ09 a0 are real constants, with σ0 ^ 0. Since dφ(t, z)/dt —
q(Φ(t, z)), it is easy to see that (a — ̂ (z))"1 = icάί + (α — ̂  )"1. Using
this, we get the desired representation (5.2) from (5.9). Since the
exponential expression on the right of (5.2) defines a family {ψt}, t e
R+, of inner functions for arbitrary δ e R, μ ^ 0, uniqueness of δ
and μ for the given semigroup {Tt} is obvious from Theorem 1.6.
For the converse, one sees easily that the exponential expression on
the right of (5.2) satisfies (1.4) and (1.5).

Before taking up the type (iii) case, it will be convenient to
introduce some further notation. If a and β are unimodular complex
numbers, let σatβ and Qa>β be, respectively, the linear fractional
transformations \z — a)/(z — β) and (aβ — ϊ)σaιβ. If {φt} is a group
of type (iii), then ([1, (1.9)]) it has a unique representation of the
form
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(5.10) φt{z) = σ^β(ectσa>β(z)) ,

where a and β are unimodular complex numbers and c > 0. The
invariance polynomial in this instance is q{z) = c(a —β)~\z — a)(z —β).

THEOREM 5.11. Let {Tt}9 teR+, be a strongly continuous one-
parameter semigroup of isometrics of Hp into Hp, 1 <J p < °°, p Φ
2, and let {Tt} have conformal group {φt} of type (iii). // {φt} has
the representation (5.10), then there are unique nonnegative con-
stants μ and v and a unique real constant d such that

Ttf = {exp [idt - μ(ect

+ He~ct DIQMW)v'ffa) for t G R+, feHp .

Conversely, if a positive number c and unimodular complex numbers
a and β are given, and if the type (iii) group {φt} is defined by
(5.10), then (5.12) defines a strongly continuous semigroup of iso-
metries of Hp into Hp for δeR, μ ^ O , v ^ O .

Proof. Let {ψt} be the inner coefficient of {Tt}, and let L( , •)
and W be as in Proposition 3.7. Let G be a primitive of W/q on
D. As previously, (5.3) holds in the present situation. Let U =
Re G. We remark that once the proper conformal mapping for
transforming U is introduced, there will be some similarity with
the proof of Theorem 5.1. We shall omit details which are obvious
modifications of the proof of Theorem 5.1, and emphasize aspects
which are special to the case at hand. We observe that Qa>β maps
D onto the right half plane, and hence M = Log (Qa>β) maps D onto
the strip Y given by \Imw\<π/2. Define F on Y to be G{Mr\w)),
and put u — Re F = U(M~\w)). By direct calculation we get that
dF/dw = W(M~\w))/c. Hence, writting w = x + iy, du/dx ̂  0. The
relevant form of the Herglotz theorem for Y gives:

— du/dx = p±ez cos y + p2e~x cos y
(5.13) r

+ \ { e x cos y/[e2x cos2 y + (ex sin y - s)2]}dy(s) ,
Jit\{0}

where ρu p2 are nonnegative constants, and 7 is a measure on JR.
7 ^ 0 , and 7 is finite on bounded Borel sets. Since Gf belongs to
Hardy spaces of index less than 1/2, G belongs to some Hardy space.
In particular, for teR+, (5.5) holds m-a.e. on K (in the present
setting). After observing that if zeK\{a, β}, {φt(z): t eR} is the
component of z in j8Γ\{α, β} [3, Theorem (2.5)], we find that there
are real constants A and B such that for almost all x e R (with
respect to linear Lebesgue measure) u(x, y) —> A as y -> π/2, and
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u(x, y) —> B as y-^ — π/2. If x1 and x2 are values of x for which
these limits (with respect to y) hold, and x1 < x2, then integration
of (5.13) with respect to x from x1 to x2, followed by interchanging
the order of integration, shows that

u(xlf y) - u(x2, y)
(5.14) r

^ s'1 arctan [(ex - (sin y)s)/(s cos y)]\lzl\ drt(β) .
Jif\{0}

If we replace J?\{0} in (5.14) by the interval eXί < s < e*2, and let
y —• 7r/2, we see that this interval is a τ-null set. Similarly, if we
replace R\{0} by the interval —ex* < s < — e% and let y—>—π/2,
we see that the latter interval is a 7-null set. Thus γ(/2\{0}) = o.
Using this in (5.13) we find that there are real constants a and b
such that u(x, y) = -ftRe(ew) + ρ2Re(e~w) + aim(w) + b. This yields
the following equation for G on D

(5.15) G = -ftQα,^ + (ft/Qα^) - ai Log (Qα,,) + C ,

where C is a complex constant (which can be disregarded in using
(5.3)). In view of (5.10) Qa,β(φt) = ectQa,β. Using this fact, we get
(5.12) from (5.15) and (5.3).

To obtain uniqueness, let us note that if dj9 μjf vό(j — 1, 2) are
appropriate triples of constants such that for the given semigroup
{Tt} (and {φt}, α, β9 c) (5.12) holds with each triple inserted, then by
uniqueness of inner coefficient, the corresponding expressions inside
the "exp" sign in (5.12) must differ on R+ x D by 2πni, where n
is a constant (integer). After transposing this gives

(5.16) i(δx - δ2)t + [fo - v2){e~ct - 1)/Q] - ( A - μ2)(ect -

where we have deleted subscripts in Qa>β. If we fix t at a positive
value in (5.16) and let z —> a, the right-hand side approaches 2πni,
whereas if v1 Φ v29 the left-hand side approaches oo. So v1 = v2.
Similarly, let ^ —> /S to get μx = ̂ 2, and then δx = δ2 follows.

Under the hypotheses of the converse it is straightforward to
see that the exponential expression in (5.12) is a family {ψt} of
inner functions, and that (1.4) and (1.5) hold.
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