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ON CURVATURE OPERATORS OF BOUNDED RANK

JAAK VILMS

A curvature operator, that is, a linear map R: £/*V—
AV, has bounded rank 2r if it maps simple bivectors into
bivectors of rank =2r. It is shown here that this condition
is equivalent to the following:

2 R@y ANYyIN - AR(®;, 1, AYrs1)=0
for all x4, *+«, %, .1, Y1, ***,Yr+1 in V, with the sum taken over

all permutations (¢,, --+,%,,,) of (1,2,8,---,7+1). An appli-
cation to Riemannian geometry is given.

1. Introduction. The Riemann curvature tensor has been
studied in many different algebraic contexts. In particular, it can
be formulated as a linear map R: 42V — AV, called the curvature
operator, where V is a real m-dimensional vector space and A2V is
its associated space of bivectors.

The concept of bivector rank is reviewed in §2. Our main
result appears as Theorem 3.4 in §3. The application to Riemannian
geometry is given in §4. The reader is referred to [1] and [2] for
background material in exterior algebra.

The author wishes to thank Professor Marvin Marcus for supply-
ing an elegant proof for Theorem 3.4.

2. The rank of a bivector. The bivector space 4*V is isomorphic
to the space o(V) of linear maps V — V which are skew-symmetric
with respect to any fixed inner product on V. Namely, choose a

basis e, ---,e, of V. Then for arbitrary ae A’V we have a =
Yaie; A\ e;, where the sum is taken either over 1 <1< j<m, or
over 7,7 =1, .-+, n with the understanding that a’* = —a'’/ (and the

a'l are divided by 2). The linear map A: V — V defined by Ae, =
Ja‘e; is skew-symmetric with respect to any inner produet for
which the basis ¢, ---, ¢, is orthonormal. It is easy to check that
if a different basis is chosen, the range of A still stays the same;
hence, U, = A(V) is a uniquely defined subspace of V associated to
a. The rank of a is simply the rank of such a corresponding linear
map A eo(V), i.e., rank (a) = dim U,.

Note rank (@) = 0 means « = 0. Bivectors of minimal nonzero
rank, that is, of rank 2, are called simple or decomposable.

We shall need some equivalent definitions of the rank of «,
expressed in the context of A*V rather than o(V). These facts are
summarized as follows.
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PROPOSITION 2.1. Let ae 42V, a = 0.
(a) Rank (@) =2r if and only if there exist independent
vectors x,, - -+, X, Such that

=0, N\NTy+ o+ + Zop1 N\ Loy «

(b) Rank (a) = 27 if and only if a” + 0 and a™* = 0.

(¢) The rank of o is the smallest dimension of any subspace
Uc V such that A*U contains c.

(d) The rank of a is twice the smallest number of terms in
any expression of a as a sum of simple bivectors.

Proof.

(a) Write a = Ya'le; A e;, with the sum taken over 1 < i < j<
n. Since a # 0 by hypothesis, some a‘/ must be nonzero; hence the
basis vectors e, can be relabeled to obtain a'* = 0. Set

17

— yl2 2 _ a
r, = ae, — diave; , Ly =e, + 3, —e; .

3=j EEAN) A

Then the expression a = 3 a'e; A e; can be rewritten as

B atig
a = N\ T+ a‘ie; N\ e; — 3, — b N\e;
3575 ihi

1 ) L o
=m A a, + 2, —(aa" — a"a¥ + a'a*)e;Ae;
35i<i Q1

—n Am+ S (@ A a)ye, A e
3si<5 @
=2, N% + Q.

Note that =z, x, e, -+, ¢, are linearly independent and that a;e
Ae,, -+ -, e,} (brackets {---} denote span).

Now an induction can be performed. If a, =0, we are done.
If a, = 0, relabel the ¢, for 3 < 7 to make a}* = 0. The above pro-
cedure is then repreated on «, to get

1 )
o, =x, N\ X+ > T(a1 N a)*e; N e;
55i<i @

=2, A 2, + &, .
Thus a =2, A x, + 2, A o, + a,, with =z, ---, 2, ¢, ---, e, linearly
independent, and a,c A¥e,, ---, ¢,}. Eventually, one of the a,’s is

zero, since we run out of e¢’s to operate on. Hence a=ux, A
Ty + oo+ + By g A %, for some 27, Since the vectors =z, --:, x,, are
independent, 27 < n.

Note that ae Az, +--, x,,}. Moreover, if we extend z,, ---, ,,
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to a basis of V, then in this basis the coordinates of a are given

bya*=a¢"*=0a¢"=:-- =1, a"=a¥*=a"= .- = —1, all other a“=
0. Hence for this basis the vectors Ae, are given by Ae,_, = x,,
Aey= —2y_,. It follows that U,={x, —x, @, —;, -+, Top, —Xpoi}=
{2, -+, %}, and therefore rank (a) = 2». This proves (a).

(b) The power a” stands for the exterior product a A --- A «
where « occurs r times. Let us substitute the “canonical” expan-
sion given in part (@), a=x, A2, + -+ + Xy A 2y, into this
product; notice that it has exactly » summands. Since x A ¢ =0,
the nonzero terms of the product a” are obtained by choosing a
different summand =z, ; A 2, from each a and multiplying these
together. Since the exterior product of bivectors is commutative,

each of these terms equals z, A2, A -+« A %y A %;,. Now there
are r! of these terms, since a typical term can be built up in )
different ways. Therefore a” = »! (x, A -+ A 2,,). Since the x; are

independent, we see that a” = 0; and also a"t! = 0, since each term
of the produet a” A a contains a factor of form z A =.

On the other hand, suppose a® # 0, a*** = 0, and let rank @ =27.
Then the above argument gives a”"#0,a"t =0. If s <, then
s+ 1= 7, so a+*=0 contradicts a” = 0; and if » < s, then r+1<s,
so a™!' =0 contradicts a*= 0. Therefore only s =+ is possible.
This proves (b).

(¢) Let s be the smallest dimension of any subspace UcCV
such that a e £2U. Let ¢, ---, ¢, be a basis of U, such that ¢, ---,
e, 1s a basis of V. Hence each Ae; = 3, a%e; is a linear combination
of e, -+, e, only, so that no nonzero term with e¢;, j >k, appears
in these sums. Since a’® = —a%, this means that the coefficients a*
which involve 4, 5 > k& must all vanish. Therefore the expression
a = >, a%, N\ e; reduces to a sum over 7,5 =1, ---, k, whence ae
A2U,. This implies s < k.

Conversely, by definition of s, there is a basis b,, -« -, by, b,4,, - - -,
b, of V such that a = 3 x¥b, A b;, summed over 1 <7< j<s.
Taking this as a sum over all 4,5 =1, ---,n, we see that =10
for 7, j > s. Hence for this basis we have Ae, = 3, x“b;, summed
over 1 < j < s, which implies that U,c {b,, ---, b,}. Therefore k<s,
and thus & = s. This proves (c).

(d) By (a), a simple bivector is of form =z, A x,. The required
statement follows directly from (a) and (e).

COROLLARY 2.2.

(a) A bivector a is simple if and only if a AN a = 0.

d) If a =3 a"y;, A\ y;, 1,5 =D, then rank (@) £ p; and if the
Y, are linearly dependent, then rank (a) < 0.

© If a=y; NYs+ -+ + Yor1 N\ Ysp, them rank (@) is = 2r or
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18 <2r as the y, are linearly independent or dependent.

Proof. Part (a) is clear. For (b), note ae A°U, where U, =
{yy -+, ¥,}. Now rank (@) < dim U, by Proposition 2.1 (¢). If the
y, are dependent, dim U, < p. Hence rank () < p. For (c) note
that if y, are dependent, then rank (@) < 2» by (b). On the other
hand, if the y, are independent, then rank (a) = 2r by Proposition
2.1 (a).

3. Curvature operators of bounded rank. The space AV is
a disjoint union of the subsets of bivectors of the different possible
ranks 2,4, ---, 2[n/2]. We wish to consider how a curvature operator
R: A2V — A2V maps the simple bivectors.

The image of a simple bivector is a bivector having a certain
rank. At worst, this rank is 2[n/2] =% — 1 or » (as » is odd or
even), but it could be a smaller number. Let us say that a curva-
ture operator R has bounded rank 2» if the image of each simple
bivector has rank < 2r. This means that the range R(A*V) is con-
tained in the union of the sets of vectors of ranks 2,4, ---, 2r. Our
purpose here is to give a characterization for curvature operators
R of bounded rank 27.

Curvature operators of bounded rank 2 are those that map simple
bivectors into simple bivectors, or in other words, preserve decom-
posability; they were studied in [3] and [4]. We first state some
results concerning this special case.

ProrosiTION 3.1. If a curvature operator R has bounded rank
2, them it maps bivectors of rank 2r into bivectors of rank < 2r, for
all r.

Proof. Consider a biveetor a of rank2r. By Proposition 2.1
(a) it can be written as a =2, A 2, + -+ + X5y A . Since R is
linear, Ra = R(x, A x,) + --- + R(Xy_; A\ ®,,). But each of these
terms is a simple bivector; hence Ra =y, A ¥+ +++ + Yoooi A Yar
for suitable ¥, ---, ¥,,€ V. Now Corollary 2.2 implies that rank
(Ra) < 2r.

THEOREM 3.2. [4, Prop. 3.1]. A curvature operator R has
bounded rank2 if and only if R(x, A\ x,) N\ R(x, A\ z,) + R(x, A\ ) A
R(x, A x) = 0 for all x,, %, 2, x,€ V.

THEOREM 3.3. [3, Thm. 1]. Let V have an inner product, suppose
the curvature operator R is symmetric in the induced imner pro-
duct on AV and is nomsingular, and let m =5. Then R has
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bounded rank?2 if and only if R = AL for some linear map L:
V—-V.

Now we return to the general case and state our main theorem,
which is a generalization of Theorem 3.2. Let S, denote the sym-
metric group on  objects.

THEOREM 3.4. A curvature operator R has bounded rank2r if
and only if

(1) 2 B@oy ANYD A -+ N B@opiy A Ypid) =0,

TESpty

fO'r all Byy vty Lptry Y1y = * 7, Y41 € V'

Proof. [Marvin Marcus]. By definition, R has bounded rank 2r
if and only if R(x A y) has rank < 2r for every z,y€ V. By Pro-
position 2.1 (b), this occurs if and only if (R(z A %)™ =0 for all
x,y€ V. But this in turn occurs if and only if

r+1 r+1 r41
) R(Sne) A (S ) [T =0
forall @, -+, %4y, ¥y, -+, Yrr. € Vand all real Ay, -« <, Ny, oy, * ) tytre
The left side of (1) can be considered as an A*"+“V-valued
polynomial in the indeterminates N\, «-<, Ny, 4, < *+, Yt UpoOn

expanding and collecting terms, we find that the coefficient of
N Nppiflyt  + My 18 precisely the left side of equation (1). But if a
polynomial is identically zero, then all its coefficients must vanish.
Therefore R(x A y)™* = 0 for all z, y € V implies (1).

On the other hand, if (1) holds for all z,, « -, .4y, Yy, ***, Ypts,
then weeanput ¢, = --- =2, , =z and 9, = --- = Y4, = ¥, to get
Rx A y)** =0 for all x,ye V.

Theorem 3.4 can be restated in terms of a basis e, ---, e, of V.
Let R(e; N\ ¢;) = R;;. Then

R(x N y) = S, 2yR(e; N\ ¢;) = 3, 2'9'R,; ,
2,9 ¥
since both R and the exterior product are linear in their arguments.

Note that the R,; are the columns of the matrix of R in terms of
basis e; A e;, 1 < j, of A*V.

THEOREM 3.5. A curvature operator R has bounded rank2r if
and only if
> Rt‘a(z PVASRRIAN R, rtDdri 0,

€ 8pty
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for all 1 <14, 7, = n.

Proof.
OGSZT_H R,y A Y) A =+ A R(®,pip N Yrtr)
=2 By, A oo A Ria(r+1)jr¢1)x;‘z1()l) x;ﬂ:{)ﬂ% oyt
Now xlofid. . .xie® = gt . .24, Hence this sum can be rewritten as

NEEE R VR Iri1
i iy (R’:a(l)Jl /\ /\ Riy (r+1)~7r+1)xl r+1 yl '.l/r+1 .
,71 e jr

Now this sum is zero for all z* y’ if and only if the coefficients
SoRi, i N - ARy, .., are identically zero.

COROLLARY 3.6. A curvature operator R has an image bivector
of rank > 2r if and only if there exist integers 1 = 1, -+, 1,41,
Ju oy Jerr = such that
Z Rwuum EAN Ria(r+1)ir+1 #0.

oS,

4. An application. Let M" be an n-dimensional Riemannian
manifold and let V denote the tangent space at any point p of M".
If M™ admits local isometric embedding of a neighborhood of » into
Euclidean space E*t", then the curvature operator R at » decom-
poses into a sum R = A*L, + --- + A*L,, where the maps L, V-V
are the second fundamental form operators. Hence R(x A y) =
L(x) AN L(y) + --- + L(x) A\ L.(y) for each z, yc V, which implies
that each R(x A y) has rank < 27 (by Proposition 2.1 (d)). Hence
we get the following results, which are relevant for » < [n/2].

LEMMA 4.1. If the meighborhood of a point in a Riemannian
manifold M" admits isometric embedding into E™", then the
curvature operator at that point has bounded rank 2r.

THEOREM 4.2. Let M™ be a Riemannian manifold, and set
R,; =1/23,. R, N\ e;, where R 1is the curvature temsor and

e, -+, e, 18 a basis of the tangent space at a point of M". If
there exists a point in M™ where

aesz‘ Rtvll)-”l e A Ria(r+1)jr+l #0
for some integers L=< 1y, **+, %y, Iy, ** ) Jrts = M, then M™ cammot

be isometrically immersed in E™".
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