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EXTENSIONALITY AND CHOICE IN
CONSTRUCTIVE MATHEMATICS

MICHAEL BEESON

We study the relationships between two kinds of formal
systems which have been proposed for formalizing modern
constructive mathematics. Essentially, we show how to inter-
pret the set-theoretic systems of Friedman and Myhill in the
operation-theoretic systems of Feferman. As a by-product of
this interpretation, we prove that Friedman's system B and
certain of Feferman's systems are conservative over intui-
tionistic arithmetic. We also hope the interpretation casts
some light on the nature of the concepts axiomatized in the
two systems.

We now explain more leisurely the background of the results
and methods of this paper. Ten years ago, Bishop published a book
showing that vast portions of modern analysis can be systematically
constructivized. His methods involved only careful definitions of the
mathematical concepts involved, and a restriction that no proof by
contradiction be allowed. That is, he departed from the older school
of intuitionism, which introduced such nonclassical ideas as choice
sequences, and along with them, some axioms which are not classi-
cally valid. Because of this, each of Bishop's theorems is classically
valid; this has made the "new constructivism" considerably more
appealing to mathematicians than its predecessors. It was, however,
a challenge to logicians to find suitable formal systems in which the
work of the new constructivists could be carried out. Though Bishop's
book is entitled Foundations of Constructive Analysis, the title is
appropriate only in one sense of the word "foundations"; a thorough
philosophical analysis of the conceptions underlying constructivity is
still lacking. The same, of course, is more or less true of classical
set theory. Several logicians set out to do for the new constructivism
what Zermelo, Frankel, and Russell did for classical mathematics;
namely, to give formal systems encompassing all the usual arguments,
and based on some rough intuition of the underlying ideas. These
formal systems should in turn serve to sharpen our understanding of
the foundations of the subject.

There has not yet emerged a single formal system for the new
constructivism which is as universally recognized as adequate for its
purpose as is ZF for classical set theory. There are still several
different approaches being discussed. Two approaches which have
received the most attention are those of Peferman and Friedman.
In order to say more, and especially in order to explain the title of
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the paper, it is necessary to describe the systems of Feferman and
Friedman briefly.

Friedman's systems are based on set theory; they are like ZF
except that (i) the power set axiom is replaced by the axiom of
"exponentiation", which says the set of functions from A to B exists,
if A and B are sets, (ii) the axiom of dependent choices is added,
but not the full axiom of choice, (iii) a restricted form of induction
is used; there are also other differences from ZF. In these systems,
one formalizes constructive mathematics just as one does classical
mathematics; for instance, functions are to be identified with their
graphs. Thus a real number is a certain set of pairs (n, r) with r
rational. Or, if you please, an equivalence class of such sets, just
as in standard analysis texts. Friedman's systems include the axiom
of extensionality.

Feferman's systems seem to be quite different. They are based
on theories of "operations" which can apply to other constructive
objects, perhaps themselves. These operations may sometimes be
undefined. The variables of Feferman's systems are to range over
"the constructive universe", which includes the operations and also
the "classifications", which are rather like sets. For example, there
is a classification N of natural numbers; each number is identified
with a certain operation. Then there is the classification of rational
numbers, and then the real numbers, which are certain sequences of
rationale, i.e., operations from N to the rationale. There is a com-
prehension axiom to guarantee the existence of enough classifications,
and some combinatorial axioms to guarantee the existence of enough
operations.

The two approaches to formalizing Bishop's work seem at first
to be incommensurable, because of the following difficulties:

(1) The axiom of extensionality for classifications is inconsistent
with certain versions of Feferman's theories, and possibly inconsistent
with others.

(2 ) If one wishes to show that a function (in Feferman's sense)
is the same as a function (in Friedman's sense, as a graph), in one
direction it is easy: we can always form the graph of an operation.
But given a set Xsuch that Vze AlI weB(z, w) eX, we do not know
if there is an operation / which produces w from z. To get / , we
would need a version of the axiom of choice. Unfortunately, the
version we need is too strong — it is inconsistent with Feferman's
theory, and implies the law of the excluded middle in Friedman's
theory.

Difficulty (1) can be overcome by the simple expedient of dropping
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extensionality, as mentioned above (but see also footnote 1 for a
discussion of extensionality in Feferman's systems). Metamathemati-
cally, there is a problem about whether extensionality enables us to
prove any more arithmetical theorems; but we have solved this
problem.

Difficulty (2) is more fundamental. To explain the solution, let
me now describe the system F: it consists of Feferman's system,
plus the axiom of dependent choices DC. Since DC is constructively
valid, we have a single system, encompassing both Feferman's and
Friedman's approaches to the f ormalization of constructive mathematics
(modulo some other points discussed below). Using DC, we can prove
the equivalence of functions-as-operations and functions-as-graphs, if
the domain of the function is countable. In an appendix, we give
reasons why this is adequate for the practice of mathematics; roughly
speaking, it is because only continuous functions arise in mathematical
practice.

From the metamathematical point of view, the main purpose of
this paper is to prove that F, B, and HA all have the same arith-
metical theorems, a result which itself has some foundational signif-
icance. In order to say more, we outline the four steps of the proof:

Step 1. Show that extensionality can be deleted from B without
loss of arithmetical theorems.

Step 2. Interpret the rest of B in a suitable theory in Fefer-
man's language, namely a weak theory Fo plus a certain unusual
axiom of choice.

Step 3. Show that the axiom of choice in this theory can be
eliminated without loss of arithmetical theorems, thus reducing B to
the weak theory FQ.

Step 4. Show that FQ is conservative over HA,

Steps 1 and 4 are relatively easy; Step 1 is done in [3], by inter-
preting sets as sets of rank < ω + ω, with suitable defined equivalence

1 It is an interesting question whether extensionality can be consistently added to
Feferman's theories. In [9], Feferman showed that extensionality is inconsistent with
the versions of his theories considered there. In [4], however, reasons are given for not
including decidable equality as an axiom; and Feferman's inconsistency proof depends
heavily on decidable equality. The versions of Feferman's theories considered here have
decidable equality only for integers; it is open whether extensionality can be consistently
added.

Certainly one cannot simply read the axioms of B as being about classifications and
hope that B + Fo would be consistent: By elementary comprehension, form the universe
V — {x: x — x}. Then apply Λ-comprehension to form the Russell set {x€ V: xφx}. This
shows quite clearly the difference between classifications and sets, which is exploited, or
rather analyzed, in Lemma 2 of § 2. This lemma shows that in some sense F + Jβ +
CT-ext can be "contained in" a consistent system.
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relations. Step 4 is a simple Kripke-model argument. In case we
only want to re-prove Friedman's result that B is conservative over
classical arithmetic, Step 3 is also simple: to reduce B to Fo + classical
logic (which is conservative over PA). For the conservativeness over
HA, however, we need a "Goodman-style" theorem. This is proved
in [2]. Step 2 presents formidable difficulties. For instance, to
interpret the exponentiation axiom of B, which says the set of func-
tions from A to D exists, if A and D are sets, we need to be able
to prove the equivalence of functions-as-operations and functions-as-
graphs. For this we seem to need an axiom of choice which is in-
consistent with F. The means of solving this difficulty is to use
instead an unusual axiom of choice, weaker than the one which first
comes to mind, which is consistent. Even after overcoming this
difficulty, we still have another difficulty interpreting the AQ separa-
tion axiom of B. This difficulty is quite interesting, foundationally,
because to overcome it, we must explain the notion of "set" axiomatized
in B in terms of the notion of "classification" axiomatized in F.
Whatever the foundational merits of our answer, it suffices for the
metamathematics. It is this: a "set" X is a classification such that
the structure (TC(X), e) is given by a classification, where TG{X) is
the transitive closure of X. In other words, before we call a classi-
fication a set, we must know the whole (hereditary) membership
structure of it. Thus, the universe V is a classification, but not a
set.

This discussion is the starting point of a project which lies beyond
the scope of this paper: to analyze the different possible constructive
notions of "set". We return briefly to this idea in § 3, in connection
with a discussion of axioms of choice.

The paper is organized as follows: In § 0, we describe the theories
we shall consider. In § 1, we discuss informally the relationship be-
tween constructive mathematical practice as formalized in Feferman's
systems and as formalized in Friedman's systems. In §2, we carry
out the proof of our conservative extension result. In § 3, we sum-
marize a number of known results on axioms of choice.

0* Preliminaries* We assume familiarity with intuitionistic
arithmetic HA. We proceed to describe Friedman's and Feferman's
theories. Friedman's theory B is formulated in a two-sorted language,
with one sort of variables for numbers and one sort for sets. There
are two membership relations, for numbers belonging to sets and sets
belonging to sets. There is a successor function symbol from integers
to integers (but plus and times are to be set-theoretically defined).
The axioms of iJ are as follows; if they are not written out, they
are exactly as usual for classical set theory. Also, ordered pairs,
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functions, etc. are as usual.
1. Pairing
2. Union
3. Infinity. lxVn(n e x)
4. Extensionality. Vx(a eq*->bex)-^a = b
5. Λ-separation. 2zVx(xez +->xβa and φ(x)), for ψ a Δo formula,

i.e., having only bounded quantifiers.
6. Dependent choice. Vcc e aly e a((x, y) e X) -» V# e α3/e aω

(f(0)ex & Vneω((f(O),f(n + l))eX) .

7. Exponentiation. 3XV/(/e X ^ Fcn(f) and Dom (/) = A and
Rng (f)QB). Here JFcwί/) is Vα, &, c«α, 5> e/and <α, c)ef-~+b = c).

8. Abstraction. This is a weak consequence of replacement, which
asserts that {{x e a: φ(x, y)}: y e a} exists, if φ is a JQ formula.

9. Induction (on the integers). More precisely, "restricted induc-
tion" on the integers.

OeX & Vn(neX >n + leX) >vφel).

The help the reader, we mention some axioms which are not in
2?. For instance, full induction on the integers whould have an
arbitrary formula in place of X in axiom 9; this is one source of the
proof-theoretic weakness of B. The power set axiom is not in B;
constructively, the exponentiation axiom is considerably weaker,
though classically equivalent. It was Myhill who discovered that
exponentiation suffices for formalizing mathematical practice [12]; it
was Friedman [11] who noticed the results of restricting induction.
The full axiom of choice is not included in B; in fact, it implies the
law of the excluded middle. (See § 3 for more discussion of axioms
of choice.) The foundation axiom, and its cousin, transfinite induction,
are not in B. In [11] and [3], a variety of intuitionistic set theories
is considered, drawing from these axioms; but in this paper, we con-
sider only J3.

We do, however, have need to consider the theory obtained by
dropping extensionality from J5. We denote this theory by JS-ext,
but it is not quite as simple as just dropping the axiom of extension-
ality. First, we definitely include equality in the language (in the
case of extensional B, it can be completely eliminated, substituting
extensional equality in the equality axioms.) Second, we include a
system of terms to denote the sets which are asserted to exist by
some of the axioms. Third, we formulate the axioms of exponentia-
tion and abstraction carefully, choosing from among several formula-
tions which are equivalent when extensionality is present. We now
give these modified axioms and the system of terms to be included.
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The modified exponentiation axiom is as follows: Let Fcn(f) be

Vx, y, z((x, z)ef & (x, y) ef • Vu(y e u <—> z e u))

& Vα 6/36, c(a = <δ, c» .

Let Dom (/) == a and Rng (/) £ b abbreviate Vx e aly e b((x, y) ef) and
V(x, y) ef(xea and yeb). Then the exponentiation axiom says
lXVg(Fcn(g) & Dom (g) = A & Rng (g) = J5 -> 3/6 XV# 6

REMARKS. The choice of this version of the exponentiation axiom
is governed by the following considerations: (i) It should be strong
enough to interpret the exponentiation axiom of B under the inter-
pretation given in [3]. For this reason one uses extensional equality
in the definition of a function, so that functions defined with values
equal to the equivalence classes of some equivalence relation are legi-
timate functions; or to put it another way, so that one can construct
the set of functions in Bishop's sense from (A, E) to (2?, R)f where
E and JB are equivalence relations giving the "equality" relations of
sets A and B. (ii) It should be weak enough that it can be interpreted
in Feferman's theories as we shall do in this paper. For that reason
we cannot require that the set of all functions from A to B exists,
only that some set containing one function with the same values as
any given function from A to B exists. There is a third consider-
ation, not relevant to this paper: (iii) It should be soundly interpreted
under realizability and forcing as in [3]. Requirement (iii) would be
met if we took the axiom of B, without the modification mentioned
under (ii) (but using extensional equality in the definition of Fen); it
is also met with the axiom as given.

The modified abstraction axiom asserts the existence of a set X,
such that for y eα, there is w in X with xew *-> (xβa & φ(xf y)),
and for each w in X there is y in A with the same formula true.

We now specify the exact system of terms to be included in our
nonextensional set theories; these terms are built up from the follow-
ing constants and function symbols. We also give the defining axioms
for these symbols.

( i ) a constant symbol φ, and the axiom Vx(x £ φ).
(ii) a function symbol { }, and the axiom z e {x, y] <-* z — x \fz — y.
(iii) a function symbol for union, and the axiom

y 6 U z <—> 3z 6 a(y e z) .
zeA

Then a U b abbreviates \Jze{a,b} z

(iv) a constant symbol co and axiom
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Φ e ω & Vz(z e ω > z u {z} e ω)

and

Vx(φ e X & Vz(z e X > z U {z} 6 X) > α> £ X) .

( v) For each formula P for which separation is allowed, a func-
tion symbol {x e a: P(x, a)} and the obvious axiom.

(vi) Symbols for dependent choice: if P is a formula for which
dependent choice is allowed, we have a function symbol ip with the
axiom Vx 6 α>3 f 2/ e ωP(#, 2/) & xQ e ω -> ip(cc0) 6 αΓ & ip(aJo)(O) = #0 and
VneωP(ip(x0)(n), ίp(x0)(n + 1)).

Note that we include choice symbols only for functions from o)
to a). Thus at least we have terms for all the primitive recursive
functions, so that our nonextensional theories contain arithmetic in
a natural sense. Note that there are no terms corresponding to the
collection axiom. Generally speaking, it seems that we get several
theories of different strength by including or not including constants
and functions symbols corresponding to the various axioms. We
certainly need to include separation terms in order to achieve the
technical results we want; the rest seem to be optional.

The above description requires a little elaboration, since the
formula P in a term {x e a: P(x)} may itself contain other terms. One
way to make our definitions completely precise is as follows: Start
by adding a list fn of function symbols to the language (for the
separation terms) and similar lists for the other types of terms
required. Then Godel number all the formulae of the language, and
then write {x 6 a: P(x, y)} for fn(a, y), where P has Godel number n.
Of course, we now have more terms than we want, since we only
want such terms for certain formulae P. One can either delete the
extra terms from the language, or leave them in, but add no axioms
about them. To specify which formulae P are allowed, for example
in the case of ^-separation, we add a clause to the definition of a z/0-
formula specifying that if terms {x e b: Q(x)} occur in the component
formulae, then Q is already zf0, and similarly for abstraction and choice
terms occurring in the component formulae. Note that generally
when we add more symbols to the language, there are more JQ-ΐormulae.

Now we describe the theory Fo of Feferman. This theory has
variables ranging over the constructive universe. There is a relation
App (/, x, y)9 which we abbreviate f(x) = y, and a relation Cl (x)f which
means x is a classification, or species. There are constants A, s, 0, rf,
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PtPitPz- The last three are for pairing and impairing functions, d
is for a definition-by-integer-cases function, 0 is for zero, and k and
s are the usual combinators given by kxy ^ x and sxyz ~ xz(yz). There
are also some constants for classification, namely N (for the integers)
and cn for n = 0, 1, 2, . We write cB for cn if 72, is the Gδdel number
of B; cB(y) is supposed to denote {x: B(x, y)} for certain formulae B.
In order to state the axioms, we introduce the idea of an application
term, or for short, a term. Each constant or variable is a term, and
if t and s are terms, so is t(s). (But we emphasize that these terms
are not part of the official language.) We use the following abbrevia-
tions in connection with application terms:

tχt2 tn for ( (txt2) •••)*» (association to the left)

t = y for t — y when t is a variable or constant

ts = y for lxlz(t = x & s = z & App (x} z, y))

11 for 3j/(t = y)

£ ̂  s for Vy(t = y < > β = ^/)

^ ( ί , . . . ) for ly(t = y) & Vy(t ^ y >φ(y, • • • ) ) .

We now can give the axioms of Fo. These are in three groups,
the combinatorial axioms, the comprehension axiom, and (restricted)
induction.

Combinatorial axioms.
( i ) App (/, x, y) & App(/, x, w) -> y = w
(ii) sxy i & sxyz = xz(yz)
(iii) kxy = x
(iv) pxy i & P& I & p%z | & px(pxy) ~x& p2(p%y) = 2/
( v ) Ί (p«2/ = 0)
(vii) Vx, 2/ e iV((cc = y —> dabxy = a) & (x g 1/ —> dabxy ^ 6)).

Comprehension axiom. First we have the simple axiom xey —>
Cl(y). Then we have 3X(Vx(x e X — 0(α, 2/, TΓ)) & X=zcφ(y, W)).
Here ί5 is restricted to be an elementary formula. The definition of
an elementary formula, and the convention governing the use of
capital letter variables, is as follows: When we write a capital letter,
we mean that this variable is restricted to Cl. Thus VX abbreviates
V#(C1 (#))-->. When we write φ(X)f we mean Gl(x)—>φ(x). This applies
to every formula containing X; so for instance the comprehension
axiom above has C1(W) implicitly in front. Now we define an ele-
mentary formula φ by:

( i ) φ does not mention Cl.
(ii) If φ contains an atomic subformula set, then t is one of
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the free variables X of φ.
(iii) φ does not contain any constants cB. This is an inessential

restriction, because we can form {x: φ(y, W)} and then substitute a
constant for W or y.

Induction. Fo has "restricted induction":

OeX & VneN(neX >n'eX) >VneN(neX) .

(Here nf is p(n, 0).) This is called "restricted induction" as opposed
to "full induction" in which X is replaced by an arbitrary formula.
This is the last axiom of Fo.

The theory F. F consists of Fo together with the axiom of
dependent choices DC, written just as in the list of axioms of B.

Church's thesis. This axiom asserts that every number-theoretic
function is recursive.

(CT) V/e NNle 6 NVx 6 N(f(x) = {e}(x)) .

We shall have occasion to consider the axiom of choice in several
forms. One of them is

AC: Vα 6 X36 6 Y{a, b) eW > 3/e YxVa e X«α, /(α)> 6 W) .

The choice function / is not required to be extensional, if the axiom
is considered in Feferman's theories; it is just an operation. Never-
theless, the axiom is inconsistent with Fo (see §3). It is, however,
consistent with a theory Fo~~ which is obtained by restricting the
comprehension axiom of Fo to elementary formulae which are "almost-
negative". An "almost-negative" formula is a formula φ(t), where φ
is negative and t is (a list of) application terms. (So when φ is written
out, there will be some existential quantifiers used to say t is defined.)

REMARKS. The terminology for the many theories in Feferman's
language can be confusing, especially since the first-considered (and
hence first-named) theories have stronger axioms than the weak
theories on which attention has since focussed. If we add full induc-
tion to Fo~, we get was called BEM ("basic explicit mathematics")
in [5] and [6]. The theory BEM + CA is Fo + full induction. If we
add the join axiom, we get EMN and EMN + CA, in the terminology
of [4]; EMN was the weakest theory explicitly studied there. (This
was before the realization that join is not needed for formalizing
mathematical practice.) If we then add axioms for transfinite induc-
tion, we get EM and EM + CA (EM for "explicit mathematics"). If
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we add decidable equality and full definition by cases, we get 2V (with
only almost-negative comprehension) and TQ (with full elementary
comprehension); these were the theories originally introduced in [9].
(The theory Tx of [9] is not a constructive theory and is not relevant
here.)

1* Formalizing constructive mathematics* In this section we
shall discuss Friedman's and Feferman's different proposals for for-
malizing informal constructive mathematics. We begin with Fried-
man's approach. To each informal assertion A of constructive
mathematics, we can assign a formalization AH of A in the language
of set theory; given the idea of regarding a function as identical with
its graph, we may say that AH is a "natural" formalization of A.
The point here is that the fundamental constructive notion of opera-
tion or construction is never needed in actual practice, because all we
ever use about an operation is its values. After this fundamental
observation, the next step is to analyze what principles are actually
used in mathematical practice, to show that B suffices to prove AH

for each informal theorem. (Since of course GδdeΓs theorem will take
us beyond any formal system, what we mean is something like this:
B proves AH for any A occurring in Bishop's book, or which might
naturally have occurred in Bishop's book.) This analysis has been
carried out by Friedman; it consists mainly in checking that we do
not need power set, exponentiation suffices; and we never use full
induction, restricted induction suffices.

Carrying this analysis further, we maintain that extensionality
and union can also be dropped. First we discuss extensionality. In
Bishop's book, extensionality is never used. Of course, we require
that functions preserve the "equality" relations on their domains and
ranges, but these relations are only equivalence relations — the axiom
of extensionality is irrelevant. Indeed, in the formal development of
mathematics in B, the axiom of extensionality is used only for regard-
ing reals as equivalence classes of Cauchy sequences. In the first
place, this is a deviation from constructive mathematical practice: as
Bishop remarked, the classical mathematician puts things in equivalence
classes only to take them out again. In the second place, one can,
if one wishes, use equivalence classes as reals, then defining an equality
relation between such classes. In the absence of extensionality, this
will not be literal equality, but no matter; so extensionality is not
necessary even if we want to regard reals as equivalence classes. As
a matter of fact, the presence of extensionality in 2? is a sales device,
designed to make constructive mathematics more palatable to the
classical mathematicians. One should not take this purpose lightly —
but the present point is that extensionality is irrelevant to mathe-
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matical practice1.
Since Feferman's theory has a membership relation, we can regard

the formula AH of set theory also as a formula of Feferman's system.
We shall take an interest in the extent to which Feferman's theories
are adequate to prove AH for informal theorems A. We mention this
now, because we intend next to discuss the role of the union axiom
in formalizing constructive mathematics, and the discussion applies
to both Feferman's and Friedman's systems, since one can formulate
a union-like axiom in either system. At first it appears that we need
such an axiom, since we often want to form \JxesAx, or, more ex-
plicitly, {(y, x): y ex and xe S}. In other words, we want the union
of a family S. I think Feferman was the first to suggest that in
practice, usually S is already "pre-joined". For instance, if S has a
transitive closure, then the union above can be formed by the separa-
tion axiom alone. (Proving that every set has a transitive closure is
not possible in B.) If one looks at the place in Bishop's book where
he talks about taking the union of a family, one finds the definition
of a family sufficiently loose that it could be interpreted to mean
"pre-joined family", which indicates that union can be replaced by
separation. An examination of the book bears out this impression.
Feferman has also checked the Bishop-Cheng notes on measure theory,
where one would be more suspicious union might be needed. More
information on this point is in [10].

Before leaving the subject of union, there is something to be
learned from trying to give an example where union is needed.
Suppose we let So be the integers, and Sn+1 be the jump of Snf that
is, SΛ+i = {β: {e}Sn(e) is defined}. Let S be {{e, n): e e Sn}. What axioms
are needed to form S? (Incidentally, although S is natural enough
in recursion theory, it is not part of "constructive mathematical
practice" as defined above — it would not naturally occur in Bishop's
book.) First, we would need to form the sequence Sn (that is, the
function f(n) = Sn. To do this, we would like to apply DC, but to do
that, we need a set (of sets of integers) which is closed under the
jump operation. For this we seem to need replacement, which is not
part of B. In B, replacement has been replaced by abstraction, which
does not suffice for the present example. Indeed, intuitively speaking,
abstraction would suffice only if the Sn'& were somehow uniformly
defined, instead of inductively so as to have increasing complexity.
But then, again intuitively, we would be dealing with a "pre-joined"
family. Thus, the work which Friedman did in checking that abstrac-
tion suffices instead of replacement, is closely related to the fact that
union is not needed.

We have thus arrived at the conclusion: Constructive mathemat-
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ical practice can be formalized in B minus extensionality minus union.
If this were a subtheory of Feferman's theory F, we would have
shown that constructive mathematics can be formalized along Fried-
man's lines in F. But the Jo comprehension axiom is not a part of
F. In formalizing mathematics along Friedman's lines, do we really
need the whole Jo comprehension axiom, or will Feferman's elementary
comprehension axiom suffice to prove the existence of those sets we
actually need? The answer is, that the elementary comprehension
axiom does suffices, as far as I can see; basically because we need sets
only a few ranks above the integers. If the reader has some doubts
on this point, perhaps they will be settled when he or she sees in
the next section how the Jo comprehension axiom can be formally
interpreted in F; and see also the Appendix.

Next we come to formalizing mathematics in F along Feferman's
lines. Here there is less to be said: Bishop's book can be almost
transliterated into Feferman's system, treating reals, for instance, as
sequences of rationale, given by an operation. Of course, F includes
more axioms about operations than are needed, but this need not
concern us here. The same work as for Friedman's systems shows
that restricted induction is enough, and that we do not need a union-
like axiom.2

Thus, we have associated to each assertion A of informal mathe-
matical practice, two formal sentences AH and As, formalizing A along
Friedman's lines and Feferman's lines, respectively. (The subscripts
H and S are first initials of Friedman and Feferman.) The question
to be considered now is, do we have

Fv-{AH< >AS)Ί

Consider what is involved here: Feferman regards a function as an
2 It is interesting to consider formalizing the construction of the sets Sn in Fefer-

man's systems. We can use the recursion theorem to define an / such that f(n) = Sn,
since for a certain elementary φ, we have f(n 4-1) = c<p(f(n)). But, using only restricted
induction, we probably cannot prove VnC\(f(n)), or even that f{n) is defined for all n,
so that we are essentially in the same position as in Friedman's system, of having no
family to take the union of. This depends crucially on the fact that induction is re-
stricted, which is not so in Friedman's theories, where the difficulty remains even with
induction.

To make this point clearer, consider the axiom in Feferman's set-up that corresponds
to union. This is the join axiom, which allows us to form {<#, #>: yβf(x) and xeA} if
we know VxeAC\(f(x)). If we allow full induction, then the system with join is con-
siderably stronger than the system without. One can use join, together with the recur-
sion theorem as illustrated above, to prove the consistency of F0+in\\ induction. Aczel
[1] has identified the strength of Fo + join 4- full induction (also known as EMN +- CA)
as Σ\ — AC, while Fo -+- full induction has the same strength as the arithmetic compre-
hension axiom. This is in sharp contrast to the corresponding situation in intuitionistic
set theory, where union is still conservative even if full induction is added (by the
method of Lemma 1 of [3]).
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operation (or, in an inessential variation, as an operation paired with
a domain and range); Friedman regards a function as its graph. Can
the two be proved equivalent? One direction is easy; if / is an
operation, we can always form its graph,

using the comprehension axiom of F. And of course we can find the
graph of / restricted to some domain. Now consider the other direc-
tion. Suppose X is a classification such that Vx e All ye B((x, y) e X).
Can we find an operation / such that Vx e A((x, fix)) G I ) ? Not gen-
erally, because the required axiom of choice is not part of F. (In
fact, it is inconsistent with F, as Friedman pointed out, and also
implies the law of the excluded middle in B.) See §3. So there is
an obstacle to the proof that As <— AH. However, if A is a countable
set (in the strong sense that it is the image of some invertible func-
tion defined on all integers), then the axiom of choice

(ACJ Vx 6 Aly e B((x, y) e X) > 3/6 BAVx e A((x, fix)) e X)

is a consequence of DC. At the risk of boring some readers we prove
this: assuming the hypothesis of AC ,̂ and assuming that g enumerates
A, we have

V(n, a, b) 6 ω x A x 53<m, x, y)

e ω x A x B(m = n + 1 & x = g(m) & (x, y) e X) .

Also, there is y in B with (g(0), y) e X. Hence, by DC, there is some
F with F(0) = <0, flr(O), y) and for all n9 F(n) = (n, g(n\ h(n)), where
h is a function such that (g(ri), h(ri)} 6 X. Now we find the desired
choice function / in F by fix) = h(g~\x)). Note that only restricted
induction is needed to prove the above properties of F. Note also
that we need the strong countability of A; it does not seem to work
if we know only that A is an image of the integers.

2 The arithmetic theorems of B and F. In [11], Friedman
proved that every arithmetic theorem of B is already a theorem of
classical arithmetic. Here we improve this result to show that B is
conservative over intuitionistic arithmetic HA. This proof relies in
part on the "Goodman-style" theorems of [2]; without this work, we
still obtain a new proof of Friedman's theorem, which we believe is
illuminating because of the light it casts on the fundamental concepts
of such notions as "set" and "function" in constructive mathematics.
In the process, we prove also that the arithmetic theorems of F are
also those of HA. (Feferman was the first to point out that the
analog of Friedman's result holds for his system BEM + CA with
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restricted induction, i.e., Fo without DC. This result, though very
easy to prove, seems to be foundationally significant.)

The four main steps of our proof have been outlined in the
introduction, but now we want to give a more detailed discussion,
before proceeding to the details of the proof. As discussed there,
the first and last steps of the proof are the easiest, namely getting
rid of extensionality, and showing Fo is conservative over HA. The
hard part is interpreting B minus extensionality in Feferman's
theories. If we try to interpret it directly, we have the problem
that AC is inconsistent with FQ, but we seem to need AC to interpret
the exponentiation axiom by proving the equivalence of functions-as-
graphs and functions-as-operations. The way out of this difficulty is
found by first ignoring the difficulty: we give an interpretation of
jβ-ext in the language of Feferman's theory, by explaining what a
"set" is in terms of the notion of "classification". This assigns to
each formula φ of Z?-ext, its interpretation φ°, in a natural and beautiful
way. Unfortunately, we need AC to prove the interpretation of the
exponentiation axiom, and we need the full elementary comprehension
axiom to prove the interpretation of the zf0-separation axiom; and the
combination is inconsistent. What to do?

Here is the answer. We find an axiom of choice, which we call
CAC, which is sufficient to interpret the exponentiation axiom, but
is consistent with F. We then interpret B-ext in F + CAC, using
the explanation of "set" in terms of "classification." Then we show
CAC can be eliminated, along with DC, from proofs of arithmetic
sentences.

We now define and discuss this new axiom CAC. We shall use
OP{A, B) for the set of operations from A to B, instead of BΛ, which
might be ambiguous in the context of considering both functions and
operations. Precisely, OP(A, B)~{f:Vxe Aly e B App (/, x, y)}. Now
the new axiom is

CAC: VA3 W{Vw e W((w\ e A) & Vx e Alw e W((w\ = x) &

(Vx 6 Aly 6 B((x, y) e F)

> 3/e OP(W, B)vw e W(((w\, f(w)} e F))) .

The rationale for CAC is that the definition of A may involve some
existential quantifiers which are "made explicit" in W; that is, W
consists of pairs (x, z) where z codes the reasons why x is in A.
For instance, if A is the set of continuous functions on an interval,
then TFisthe set of such functions together with moduli of continuity.

This axiom and its rationale should be carefully compared with
the discussion of AC I in § 3. The name CAC stands for "careful
axiom of choice", because we are careful not to think that f{y) can
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be computed from y in A alone, but must also be computed from the

information that allows us to know that y is in A.5

We now state our main theorem, and give the steps of the proof

afterwards as a sequence of lemmas.

THEOREM 2.1. F, B, and HA all have the same arithmetic theo-

rems.

Proof. We establish the following chain of implications: Suppose

Φ is arithmetic, and B proves φ. Then

B — ext Y- φ (Lemma 1)

F + CAC h- φ (Lemma 2)

Fo f- φ (Lemma 5)

HA h- Φ (Lemma 6)

Here come the lemmas:

LEMMA 1. Every arithmetical theorem of B can also be proved

in B minus extensionality.

Proof. This is proved in [3].

LEMMA 2. There is a natural interpretation of B-ext in the

language of Feferman's theories; if φ° denotes the interpretation of

φ, then every axiom φ of B-ext except exponentiation has φ° provable

in F, and if φ is the exponentiation axiom, then φ° is provable in

F + CAC. If φ is arithmetic, φ° and φ are equivalent in F.

Proof. Here we border on the foundational problem of explaining

the different notions of set. We shall define in terms of "classifica-

tion", a suitable notion of "set" such that the axioms of 2?-ext

3 In unpublished memoranda (to appear in expanded form with [10]), Feferman studies
a system CM in his language, which consists of 7*7" together with the schema Φ+-*
ix(xrφ). It is not difficult to see that CM proves CAC. Therefore CM could be used in
place of Fo + CAC in § 2, with some minor technical advantages. I choose to forego
those advantages, because I wanted to interpret B in a "minimal" theory; that is, to
exhibit a theory showing "just what is needed" to interpret B. It seems important to
do this in view of the fact that I do not know how to interpret B in a theory which
is constructively valid in a meaning-preserving way. Feferman makes a case that CM
should be considered constructively valid; that is, he describes an informal interpreta-
tion of the language under which CM is valid. The fact that CAC is valid on this
interpretation is interesting, but there are also interpretations under which CAC is not
valid. So long as we lack a thorough analysis of the different possible constructive
notions of "set", it seems worthwhile to explicitly exhibit the main principle needed to
interpret B.
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(except exponentiation) will be valid for "sets" (and this can be seen
in F.) A "set" is a classification which "comes equipped" with
certain auxiliary information. This auxiliary information should be
essentially the structure where y is the transitive closure of the set
in question. This idea was exploited already in Lemma 1 and related
results of [3]; but since that was written, we have found a neater way
of presenting the "auxiliary information". We take as auxiliary infor-
mation for x, the classification of all finite descending β-chains begin-
ning with x. (We use the pairing functions of FQ to define codes of
finite sequences in Fo; for these we use the usual number-theoretic nota-
tion, trusting no confusion will ensue. Thus (x)09 •••, (x)tf and lh(x)
are given by certain application terms. Note that these are not the
set-theoretic iterated ordered pairs. Note also that (x)0 is p^x), an
annoying difference in subscripts.) Let S(x, x') be the formula,

nex' < > (u)0 = x & Vi < lh(u) — l((u)i+1 e (u)τ) .

Of course this is not an elementary formula, but no matter. We
now interpret the sets of J3-ext as pairs (x, y) with S(x, y). We
interpret a e h as (α)0 G (δ)0. To be consistent with this definition of
membership, we interpret N(x) as (x)0 e N. After stating this so
precisely, we shall ofter refer to x as a "set" and x' as its "transitive
closure", in case S(x, x'). We even speak of "the" transitive closure
of x, when in the absence of extensionality we should say "α"
transitive closure. These abuses of terminology will cause no harm.

Now we turn to verifying the interpretations of the axioms.

Pairing. First, if a and b are sets (or even only classifications)
then {α, 6} is a classification, by elementary comprehension. (Remark:
this is true even in Fϊ, where disjunction is not allowed in the
comprehension axiom; but we don't need this.) Furthermore if
S(a, af) and S(b, 6)', then we can form the transitive closure y of
{α, b} by putting u e y iff

(u)0 = {a, b} and (((u\, (tt)i*<«)-i> € a'

(And again, if we ever need it, the use of disjunction can be avoided.)
Let TC(x) abbreviate "transitive closure of x".

Union. Suppose z is a set, i.e., TC(z) exists. Then we must
prove \Jxezx is a set. First, why is it even a classification? We
have us\Jxezx if 3x(xez and uex), which is not an elementary
formula: but we have U*eβ# = {(#)2 p e TC(z)}, which solves the problem
quite neatly. Thus the union of a set is a classification, although
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we cannot prove the union of a classification is a classification. Still,
we have to prove that the union is a set, i.e., we have to construct
its transitive closure. For this, we note that if TC{z) exists, then
for wez, TC{w) is {((u\, , (u)mu)): (u\ = w and u e TC(z)}. Thus
TC(w) is cΦ(TC(z)) for a certain elementary φ. Then we have

w e TC(\J x) <—> (w)0 = \Jx and {w\ e z and
\xez / xez

this last TC((w)ύ is really cΦ(TC(z)), so we have stayed within Fo.

Infinity. We have to prove that N is a set;

TC(N) is just {(N, m):meN} .

4Q-separation: We shall show that to every AQ formula φ, with
free set variables x and Y = YU , Yn, and possibly some number
variables not shown, there is an elementary formula φf such that Fo

proves

S(A,A') & S(Y,Y') & S(x,X')
> (x 6 A & φ(x, Y) < > φ\x, A, A', Y, Y')) .

Note that X' does not occur in φ'. We also have to prove a similar
statement when x is a number variable, replacing S(xf X') by x € N.
(Some details: one has to give the definition of J0-formula of B in
such a way that each variable is clearly a "set variable" or a "number
variable"; actually there is only one sort of variables. Each formula
of B makes sense as a formula of FQ, too. Even though we are
thinking of x as a set, we use a small variable to indicate it is not
one of the classification parameters of φ'.)

If φ is atomic, it is either xe Yy Yex, or x = Y. Here it is
possible that Y might be one of the constants of B, namely 0 or
the constant for the successor function. In case φ is xeYor Yex,
we take φ' to be φ and xeA, which is already elementary, if Y is a
variable. If Y is the successor function, then (x e Y)' expresses that
x is a set-theoretic ordered pair (m, m') for some integer m; (x = 0)'
is x = 0; finally {x = C)', where C is the constant for the successor
function, is given implicitly by our remark that formulae of B make
sense in F; namely, it is x = {{n, ri): neN}. This takes care of the
basis cases in an inductive construction of φ'. Now suppose that φ
is V6 e zD(b, z, x, Y). Then, there is an elementary formula D'(6, 6',
z, z\ Y, Y\ x, A, A) such that F proves S(A, A') & S(6, V) & S(z, z')
& S(Y, T) & S(x, x')-+D'. (Note, D' does not contain x'.) We would
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like to set φ* to be Vb((z, 6> ez' —> D'). This would not quite do,
since D' contains a variable b' which is not allowed in φ'. We should
substitute for this variable, b' — {u: (u)0 = b & (z)*u e z'}f where * denotes
concatenation of sequences. This determines φ* in this case. We
leave the case of existential bounded quantification to the reader.
If φ is A & B, then φ' is A' & B'; if φ is A->J5, then φ' is A' ->#'.
The property which we claimed for φ' is easily established by induc-
tion on the complexity of φ.

Once we have φ' in hand, it is easy to verify the zf0-separation
axiom. Namely, {x e A: φ(x)} is defined by {x: φ'{x, A, X')}y not showing
any additional parameters. Since ψ is elementary, we can form this
classification in FQ; call it Q. We have to construct the transitive
closure of Q, too. But this is just {(Q)*u: (A)*ueA' and (u)oeQ).
This verifies the interpretation of the ^-separation axiom.

Dependent choice: Suppose S(A, A') and S(X, X')Vx e Aly e
A((x,y)eX); here round brackets denote the set-theoretic ordered
pair. Let Xo be {(x, y): (x, y) e l } ; pointed brackets denote the
pairing function in Fo. Then Vx e Aly e A((x, y) eX0). Hence, by
DC in F, there is for each xeA, an operation / from N into A
such that f{x) = 0, and Vn e N(f(n), f(n + 1)> e Xo Hence VneN
(f(n), f(n + 1)) 6X. Let g be {(u, v):ueN and App(/, u, v)}. Then
g is the desired set-theoretic choice function. It is a classification;
to see that it is a set, we have to define its transitive closure. Re-
calling that (u, v) is just {{u}, {u, v}}, this is easy to do, using

Abstraction. Suppose A is a set, with S(A, A'). Then

{{xeA:φ(xf y)}:yeA} ,

for a z/o-formula φ, can be formed by elementary comprehension, as
Q = {{xe A: φ'(x, y, Y', A, A')}: ye A}, where φ' is the formula con-
structed in verifying the separation axiom, and

Y' = {<Mi, , (w)^^): we A' and (w\ = y) .

Moreover, the transitive closure of this set Q can be defined by
Q' = {(Qf b)*w: beQ & (wo) e 6 & (A)*w e A'}.

Induction. The interpretation of the induction axiom of B is a
consequence of the induction axiom of F, since every set is a class-
ification. (Though possibly induction for sets is weaker than induction
for classifications.)

We now turn to the exponentiation axiom. It will be helpful to
see why we cannot interpret it directly. The exponentiation axiom
says that if A & B are sets, then there is the set of all (graphs of)
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functions from A to B. We can, of course, form the set OP(A, B)
in Fo. Let Gr(/, A) be {(x, y): x e A & App(/, x, y)}; then let X be
{Gr(/, A): f eOP(A, B)}. So every member of X is a function from
A to B. But to show every function from A to B (or some function
with the same values) arises as Gr(/, A) for some operation /, we
seem to need AC. Now here is how the axiom CAC was discovered:
giving up on proving the interpretation of the exponentiation axiom,
I considered whether this interpretation was realized. (The reader
unfamiliar with realizability can skip this part.) If g is realized to
be a function from A to B, then there will be an operation h such
that whenever u realizes xeA, then h(x, u) is g(x). Hence g can be
recovered as {(xf y): 3u(u rxeA and h(x, u) = y)}. Thus AC would not

be needed to prove the realizability interpretation of φ\ where φ is
the axiom of exponentiation. Rather than carry the proof through
along those lines, it seemed preferable to isolate CAC and use it.

Now we use CAC to verify ψ\ where φ is the exponentiation
axiom. Let A and B be sets. Find W as in CAC. Form the clas-
sification OP(W,B). Define H(h), for h in OP(W, B), to be {(x, y):
3δ(<#, b) e W and h(x9 &) = #)}. This an be done with elementary com-
prehension. Now set X = {H{h)\ h eOP(W, B) and Vx, δ, c«>, b) e W
& (x, c) e W -*h(x, b) = h(x, c))}. This also can be done with
elementary comprehension. Now we claim that X is the set of
functions from A to B. First, if / e l , then / is (the graph of) a
function from A to B, by the second clause in the definition of X
Secondly, if F is a function from A to B, fix W as in CAC', then F
arises as H(h), where h is the choice function given by CAC. (More
precisely, a function with the same values as F arises as H(h)> which
is good enough.) Thus the set of functions from A to B is a clas-
sification; but it is easy to define its transitive closure in terms of
the transitive closures of A and B. Hence it is a set.

Finally, we need to say something about the assertion that φ°
is equivalent to φ for φ arithmetic. In B, "arithmetic" sentences
are built up from a constant for zero, a constant for successor, but
no symbols for plus and times; while in FQ, there are application
terms for plus, times, and successor. We have left implicit that in
defining φ\ zero should be interpreted as zero, and the successor
should be interpreted as the graph of the successor function in Fo.
We then prove in Fo that the graphs of plus and times satisfy the in-
terpretations of the defining formulae for plus and times in set theory
(which say that plus and times satisfy certain recursion relations).
We also prove that if any classification satisfies these defining for-
mulae, then it is the graph of plus (or times, as the case may be).
This takes care of the basis case of an easy induction on the
complexity of arithmetic formulae φ. This completes the proof of
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Lemma 2.
So far, we do not even know that GAG is consistent. To

prove this, and eventually to prove that GAG can be eliminated
from proofs of arithmetic sentences, we need realizability, which so
far has not been discussed in this paper. We assume familiarity
with the general idea of realizability. (See [13] for this.) In par-
ticular we need readabilities for Fefermans's systems. There are
two (main) kinds of realizability for Feferman's systems, which differ
only on the definition of erxey. The other clauses, which assign a
formula erA to each formula A, are as follows:

erA & B is (eo)rA and (e)1rB

erA\J B is ((e)0 = > ifi\rA) &

((β)o^O >(e\rB) & (e\eN

e r(A > B) is Vp(prA > e(p)rB)

e rlxA is (e)1rA((e)Q)

erΊxA is Vx(e(x)rA) .

Now if we take erxey to be x e y, we get what is called "1945-
realizability for Fό". The name arises as follows: This realizability
is similar to Kleene's original realizability, which has come to be
known as "1945-realizability for HA", after the date of publication.
This realizability is "for Fo"9 because with this definition oΐ erxey,
we cannot get the full elementary comprehension axiom realized,
but only the almost-negative elementary comprehension axiom of FQ.
(However, we do get AC realized; set §3.) In order to make up a
realizability for F, we have to take erxey to be (e, x) ey. It is
this realizability which we shall use.

Eealizability for FQ is in [9] (though there is an oversight in
the treatment of disjunction). Realizability for Fo (and stronger
theories) is in [4]. There it is given with the "#*-trick", in which
we make a variable x* correspond to each variable x, and then the
free variables of erA are e together with x* for x free in A. This
is necessary if we are doing a variant kind of realizability called
"^-realizability", but it is not necessary for 1945-realizability. Never-
theless, it is often a convenient aid, because the meaning of x in
erAix) is not the same as it is in A{x), when erxey is taken as
{e, x) e y. So one think of x* as the set of (e, y*} such that e
realizes y ex. On the other hand, we want er App(/, x, y) to be
App(/, x, y), and if we use the x* notation, it has to be App(/*, x*9 y*),
which is an annoyance. It is, however, possible to have the best of
both notations: just let x* be x itself. This is what we do. We
define erGl(x) to be Cl(ίc).
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LEMMA 3. If F + CAC \~ ψ, then for some term t, Fo\- trφ.

COROLLARY. F + CAC is consistent.

Proof of lemma. By induction on the length of proof of φ. The
axioms of Fo have been dealt with in [4]. Actually, when [4] was
written, the importance of restricted induction had not yet been
realized, so one has to add the observation that restricted induction
suffices to prove the realizability of restricted induction. The axiom
of dependent choices is realized; we leave the verification of this to
the reader. The main task which confronts us here is to prove that
CAC is realized. We now give the argument for this. Suppose A*
is given. Let W* =V x {(u, v): (v, u) e A*}, so that er(x, u) e W
iff <β, (x, u)) e W* iff urxeA. Then Vw e W((w)0 e A) is realized,
since if erw e W, then {w)ιr{w)Q e A. Also Vx e Alw e W((w)0 = x)
is realized, since if urx e A, then (x, u) is realized to be in W.
Suppose e rVx e Aly e B«x, y) eF). Then, if urxeA (that is, if
er(x, u) e W for some e) we have (e(x9u)\ is y and (e(x,u)\ is p
such that (p)Qry e B. Take / = Xw(e(w)\. We claim / 6 OP(W, B) is
realized; that is, Vw e Wly e B App (/, w, y) is realized. Suppose
erwe W; Then (with w = (x, u) as above) we have that f(w) =
(e(w))0 is y and {e(w)\ is p such that (p)ory e B; & App( f, w, y) is
realized, being true. Finally we claim Ίw e W( < (w)0, f(w)) e F) is
realized. Suppose erweW; let w = (x, u); then f(w) is y and (e(w)\
is p such that (p)1r(x, y) eF, by our hypothesis that erVxeAly e
B((x, y) eF). But this is just what we had to show. Further-
more, all the realizing numbers we have produced depend uniformly
on the realizers of the various hypotheses. This completes the proof
of the lemma.

LEMMA 4. Suppose φ is arithmetic and F + CAC Y~ φ. Then
Fo + classical logic \-φ.

REMARK. This lemma is not needed for the proof of our main
theorem, but is included only to show how a simple proof of Fried-
man's theorem that B is conservative over classical arithmetic can
be obtained by these methods.

Proof. Let φ be fixed. Then let A be a set encoding the
characteristic functions of all the (finitely many) subformulae of φ,
so that each of them is recursive in A, and A is arithmetic. We
can use functions recursive in A for a formalized realizability, and
by standard methods (see, e.g., [13, p. 193] or the first part of [2]),
we can show that every subformula Ψ of φ is "self-realizing" in the
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sense that there is a term tΨ such that (erΨ —> Ψ) and (Ψ —> tΨrΨ)
are provable in Fo plus classical logic (one needs classical logic for
reasons discussed in the first part of [2]). By Lemma 3, Fo h- trφ for
some term t. Hence, Fo plus classical logic proves φ.

LEMMA 5. If F + CAC h- ψ, then Fo h- φ, for arithmetic φ.

Proof. This is a Goodman-style conservative extension result of
the sort considered in [2]. In that paper (Theorem 6.3), it is shown
that any axiom of choice can be eliminated, as long as it is provably
realized. Since we have shown CAC is provably realized, the proof
of Theorem 6.3 of [2] yields the lemma.

LEMMA 6. Fo is conservative over HA, and Fo + classical logic
is conservative over classical arithmetic PA.

REMARK. The second statement, together with Lemma 4, yields
a proof of Friedman's theorem independent of [2]. The second
statement of the lemma is due to Feferman (unpublished).

Proof. First we prove the second statement. If φ is not provable
in PA, there is a model Λ~ of PA in which φ fails. Then, applying
the basic technique of [9] for constructing models of Fo, we get a
model of FQ with universe .yK, in which App(e, x, y) holds just in
case ,yK* |= ln(T(e, x, n) & U(n) — y); the integers of this model ^€
are recursively isomorphic (in ..,V) to the integers of ^V\ so the same
arithmetic sentences φ hold in ^/έ as in ^V*. Hence, φ also fails ia .^
proving the second part of the lemma.

For the sake of completeness, and for other reasons, we review
Feferman's model construction used above. The other reasons are:
to check that we can start with a nonstandard model; to furnish
some ground for generalizing the construction below; and to simplify
the exposition, since in [9] Feferman is modeling stronger axioms,
which makes the construction more complicated than it needs to be
here.

Given a classical model , A^, then interpret App (/, x, y) as ^V \=
ln(T(f, x, n) & U(n) — y). The combinatorial constants have natural
interpretations as certain (standard) integers. The integers of Λ€
will be generated using the "successor" function (x, 0> from 0; but
generated inside .̂ <K That is, we define / by /(0) = 0, f{n + 1) =
(f(n), 0>; / is actually {e} for some c, and the integers of ^ Γ are
those elements of ,yV" which are satisfied to be in the range of {e}.
Then one defines relations Cl and ε on ,yK to produce . //. These
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are defined as the union of relations C1Λ and enf over all integers n.
(In [9], a transfinite union is needed to deal with stronger axioms.)
We can take Cl0 and ε0 to be empty, and set

W) iff WeCl% and ^ f= φ(x, y, W)

T76C1Λ+1 iff W is {cφ}(y, Z) for Z in C1Λ, or TΓeClΛ .

Here cφ is a number used to interpret the constant cΦ; it can be the
index of some trivial function, for instance {cφ}(y, Z) = <1, ζφ\ y, z),
remembering that y and Z can be lists of several variables, of the
proper length to be substituted in φ. This definition appears to be
circular, but it is not, because φ is an elementary formula. See [9]
for a more complete discussion. The point to be made here is that,
for Fo, the same construction works over a nonstandard model ^
because we have only restricted induction. Since the integers of
^ are isomorphic to those of ^Y\ in ^ 7 and since ^£ \= φ(m) is
expressed by a formula of arithmetic, for each φ of FOf induction in
</K can be used to verify induction in ^//.

Now we turn to the proof of the first part of the lemma. The
idea is to repeat the above construction using Kripke models. Let
Φ be an arithmetic sentence underivable in HA. According to Kripke's
completeness theorem [13, p. 329], we can find a Kripke model ^V
of HA in which φ fails. Now, imitating Feferman's construction of
a model for FOf we "blow up" ^V to a Kripke model ^£ of Fo.
Furthermore, we arrange that <sK and ^ have isomorphic integers
at each node, so that φ will also fail in ^//. Hence φ is not a theorem
of Fo.

The construction is straightforward: the domain Mt of ^ at
the node t is just Nt9 the domain of ^Γ at node t. Now the atomic
relations ε and Cl are defined (at each node t) as the union of
relations C1Λ and εn9 by the same clauses as in Lemma 4, reading
them as holding at node t. But there is a little more to check.
Why is this a "monotone" assignment? In other words, if xεy
holds at t, and t <; s, why does xεy hold at s? Well, to prove this
we have to prove by a double induction on n and the complexity of
Φ that for x9 y in CIΛ, t <; s and t (= φ(xf y) implies s |= φ(xf y). Of
course this is known for Kripke models, but we have not yet cons-
tructed a Kripke model. The proof is straightforward, using that
φ is elementary. The verification of the comprehension axiom and
other axioms of F is also straightforward. The final point concerns
the arithmetic sentences. Note that the application relation is the
same in all nodes of ^\ in particular, the integers at each node
are isomorphic to the integers of ^V\ It is then easy to prove by
induction on the complexity of the arithmetic formula A that for
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all nodes t, ^ίΊ=(lf) iff ^4ri=A(y)9 where as before y is the element
of ^ representing the integer y of ^ 7 This completes the proof,
both of the lemma, and of the main theorem.

3* More on the axiom of choice* The strongest axiom of
choice which I am willing to assert is constructively valid is DC.
There are, however, people who argue for the validity of certain
stronger forms. We now give a list of various forms of the axiom
of choice which can be considered.

ACX: Vα 6 Xlb 6 Yφ(a, 6) -> 3/ 6 YxVa e φ(a, f(a)). (Here X can be
a term, or a formula, depending on the context. 7 is a
variable.)

AC: Like ACX, but X is a variable.
ACFT: Schema of instances of AC in which both X and Y are finite

types. (Here w is a finite type, and if A and B are finite
types, so is AB.)

AC\ and ACX\: like AC and ACX, but beginning with VaeXllb e
Yφ{a, b).

AC0: Vα e Xlbφ(a, b) -> 3/Vα 6 Xφ(a, b).
ACX: Like AC0, but X is given by a term or formula.

We now discuss these briefly. First, AC0 follows in set theory from
AC and collection. It was introduced by Feferman, in [9]. The
other versions are much older. We proved in §1 the simple result
that ACX for X countable follows from DC, so is constructively
valid. A case can be made that ACl is constructively valid (Myhill
calls it a principle of "nonchoice" in [12]); I now state this case to
the best of my understanding. Suppose V α e l 3 ! 6 6 Yφ{af b) is valid.
Then we have a method h for going from an object a and a proof
p that aeX to an object h(a, p) such that φ(a, h(a, p)) (and a proof
of this fact). But because 3! bφ(af 6), we have h(a, p) depending
only on α, that is, if p and q are two different proofs that a e X,
then h(a, p) = k(a, q). "Hence", say some people, there is a function
f(ά) as required. This inference requires that each member of X
"come equipped" with a proof that it is a member of X; which is
in fact often assumed in informal constructive mathematics. It seems
to me, however, that there are several distinct notions of "set", and
only on the strictest notion do we have the required property that
members of X come equipped with proofs that they are in X. Thus
we may assert that ACl is valid, only for this notion of "set"; while
DC is valid generally, with specifying clearly our notion of set.
These various notions of set have yet to be clearly analyzed. The
following theorem summarizes the principal consistency results about
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these axioms of choice.4

THEOREM 3.1. (i) {Friedman) ACl is inconsistent with Fo.
(ii) (Friedman, announced in [12]) B + ACl + CT is consistent.
(iii) ACFT + CT is consistent with Feferman's theories.
(iv) B + AC is of course classically true; but B + AC implies

the law of the excluded middle for bounded formulae (Myhill, anno-
unced in [12]; and Dianesco (unpublished)).
This is due to the presence of extensionality. In fact

(v) (Troelstra) CT + extensionality is inconsistent with ACFT

(even ACX 0) in HAω. (It is an open problem whether B-ext + AC +
CT is consistent.)

(vi) (Feferman) Fό + AC + CT is consistent.

Proof. Here is Friedman's proof of (i): Let A(x, y) be (y = 1
and App(#, x, 0)) V (y = 0 and —iApp(x, x, 0)). Let X be {x: lyA(x, y)}.
Then VxeXllyeN A(x9y). Suppose there is a choice function /.
Then -πApp(/, /, 0), since if App(/, /, 0), the only possible y such
that A(f, y) is y = 1, but /(/) is such a y. But then the only
possible y such that A(x, y) is y — 0, and moreover f eX since

/, 0); hence /(/) = 0, contradiction.

(ii) follows from the methods of this paper, because B + AC\
is interpreted in F + CACf which is consistent with CT by realiza-
bility. I do not know what proof Friedman had in mind — neither
the realizability of [3] nor that of [12] will yield this result.

(iii) is proved in [4]. Generally speaking, one can get ACX

consistent with Feferman's theories if X is some particular self-
realizing set. But, for instance, can one get ACX consistent with
Fo if X is defined by an almost-negative formula? One cannot seem
to show that almost-negative formulae are self-realizing for the notion
of realizability needed for Fo. For i*Y, on the other hand, one has
a simpler notion of realizability, and here AC is realized. Hence (vi)
is proved.

As to (iv), I do not know what proof Myhill had in mind. Here
is a proof which D. Scott sent me on a postcard, and which is
apparently due to Dianesco. Let φ be a given formula; we shall
show AC plus extensionality proves φ V —ιφ. Let A be {n: n — 0 V
(n = 1 & φ)} and B be {n: n = 1 V (n = 0 & φ)}. Thus V# 6 {A, B}ly e

4 Added in proof: A more careful distinction between the notions of operation
and function will also help clarify these issues. While AC! is invalid for operations
it is valid for functions, if these concepts are suitably formulated.
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N(yex). Suppose / is a choice function. We have f(A) = f(B) V
/(A) Φ f(B). If f(A) - f(B) then 0, so ^ V - ^ . If f(A) Φ f(B),
then -i0 can be derived: suppose 0. Then A = 5 by extensionality,
so f(A) = f(B), contradiction. Hence in either case φ V -φ.

Now we prove (v) according to Troelstra: Suppose CT. Then
there is, by AC1>0, a functional H such that H(f) is an index e such
that Vx(f(x) = MOO). Let ^ be defined by

. . (0 if T(x, x, y)

(1 otherwise .

Let

(0 if H(gx) = JGΓ(c) where {c} is identically 0
h(x) = H ,, .

(1 otherwise .
By extensionality, ft (a?) — 0 if and only if gx is identically 0, which
is if and only if {x}(x) is undefined. Hence h is not recursive, con-
tradicting CT.

REMARKS. The reasons why AC is too strong are quite dif-
ferent in Friedman's and Feferman's theories. Part (i) of the
theorem shows that Feferman's axioms are not valid for every
possible notion of "set"; in particular, not for any notion of set for
which an element of X "comes equipped" with a proof that it is an
element of X I wonder, in this connection, if S(X, X') —> ACX is
consistent with Fo, where S(X, X') is defined in proof of Lemma 2
of §2.

In a footnote to [4], I considered a version CT2 of Church's thesis
applying to partial functions, and showed that CT does not imply
CΓo. NOW I add that CT2 contradicts AC\ in B, while CT does not.
The contradiction is obtained by imitating the proof of (i) above.

APPENDIX. We intend to present here evidence that (AH «-> As)
holds for "naturally arising" assertions A of mathematical practice.
We have already considered the difficulties of proving this equivalence
in general; the situation is unsettling, because if the two formaliza-
tions are as "natural" as it might seem, then they should both be
equivalent to A itself. The aim of this appendix is to show that,
whatever the disagreement between the two formalizations, it does
not manifest itself in the domain of mathematical practice. Originally
we viewed this work as a "reconciliation" of the two approaches;
but it became clear that giving equivalent results for mathematical
practice is not sufficient for a reconciliation of two approaches so
different in spirit. We must await a deeper philosophical analysis
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of the foundations of constructivism to explain more clearly the
meaning of an informal assertion A, before we can decide whether
AH or As is closer to this meaning.

Let us now state more precisely the point:

Thesis. For each A of informal constructive mathematical prac-
tice, perhaps excluding measure theory, F \- (As <-* AH).

Of course, since the concept of mathematical practice is not
rigorously defined, we cannot make this into a theorem and prove
it. We propose to give evidence for it, by showing that in mathe-
matical practice, the only functions which arise are defined on countable
or finite sets, and so one can use the countable axiom of choice ACN

to pass back and forth between Feferman's formalization of these
functions, and Friedman's formalization.

To begin with, a real is a function from the integers to the
rationale, so ACN suffices to prove the equivalence of Friedman's
reals and Feferman's real. Now consider functions from the reals to
the reals. Of course, the reals are not countable, so we cannot show
that Friedman's RR corresponds to Feferman's RR. The point here
is that RR is not an object which arises in mathematical practice.
In practice, we consider only continuous functions from R to R; to
be be precise, we consider the functions C(R, R) which come equipped
with a modulus of uniform continuity for each compact subset of R.
The modulus of continuity may be considered as a function from
rationale to rationals, producing ε from δ, good on [n, ri\. Such a
function / is known once we know its modulus of continuity and its
values on the rationals; hence, it is given by functions with countable
domains. Hence, ACN applies to prove that Friedman's C(R, R) and
Feferman's C(R, R) correspond. Now, the same method can be applied
to C(S, Y), if S is a separable metric space. The values of / are
determined by its values on the countable base, together with the
modulus of continuity, which is determined by its values on the
rationals. Thus F \- (AH «-> As) for each assertion A about separable
metric spaces. But this already encompasses all of Bishop's book,
except perhaps the chapters on measure theory. (These chapters on
measure theory are anyway superseded by the Bishop-Cheng notes,
[8].)

Even if our thesis had to be restricted to that part of analysis
not using measure theory, it is still significant. It is nevertheless
worthwhile to consider the problems involved in extending the thesis.
For instance, in the case of Lebesgue measure on the reals, as
developed in [8], we start with a sequence of continuous functions

fn such that Σ \ \fn(x)\dx converges. If f(x) = Σfn(x) whenever this
Jo
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converges absolutely, then / is called an integrable function. In
order to extend our thesis to measure theory, we would have to
prove some theorems about the domains of integrable functions,
showing essentially that countably many values determine the func-
tion. While it is an interesting project to work such theorems out,
I have not done so, because I believe they are somewhat tangential
to the foundational issues involved. What is really needed here is
the axiom of choice in the form Vx e J53 f y eR(x, y) e W —> 3/ e
RDVx e D(x, /(#)> e W, where D is the domain of an integrable func-
tion. The definitive resolution of this issue will rest not on a special,
technical analysis, but on a general analysis of constructive notions
of set, justifying certain axioms of choice for certain kinds of sets.
Such an analysis is beyond the scope of this paper.
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