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PARTITIONS OF GROUPS AND COMPLETE MAPPINGS

RICHARD J. FRIEDLANDER, BASIL GORDON
AND PETER TANNENBAUM

Let G be an abelian group of order » and let & be a
divisor of » —1. We wish to determine whether there exists
a complete mapping of G which fixes the identity element
and permutes the remaining elements as a product of dis-
joint k-cycles. We conjecture that if G has trivial or non-
cyclic Sylow 2-subgroup then such a mapping exists for
every divisor © of » — 1. Several special cases of the con-
jecture are proved in this paper. We also prove that a
necessary condition for the existence of such a map holds
for every & when G is cyclic.

1. Introduction. A complete mapping of a group G is defined
to be a bijection ¢: G — G such that the mapping 6: g — g7'¢(g) is
also bijective. (Some authors refer to ¢, rather than ¢, as the com-

plete mapping.) If the permutation <Ic)1 b, 2") is a complete map-
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3 b, b, --- b,
ping of G and g €@, then (clg 6 - - cuf

mapping of G. By suitable choice of g, we can therefore suppose
that b, = ¢, = 1. Then the complete mapping can be viewed as a

permutation (21 b, - b’“) of the nonidentity elements of G. The

> is clearly also a complete
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permutation b, b, - b”“) is eyclic if and only if it can be written
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: Ay Qg+ Qg —1 —1 -1 :

in the form <a a - a >, where a'a,, as'a,, - - -, a0, are all dis-
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tinet. In this case we say that G is an R-sequenceable group with
R-sequencing a,, a,, -+, a,_;. Thus a group G is R-sequenceable if
and only if it has a complete mapping which fixes the identity element
and permutes the remaining elements cyclically. In [2], we deter-
mined several infinite classes of R-sequenceable abelian groups (see
(1)-(6) below).

In this paper, we generalize the notion of R-sequenceability by
asking which groups G of order n have the property that, given any
regular partition £ + %k + --- + k& (d terms) of n — 1, there exists a
complete mapping of G which fixes the identity element and permutes
the remaining elements as a product of d disjoint k-cycles. We call
such a mapping a k-regular complete mapping of G. That is, given
any divisor k¥ of n» — 1, a k-regular complete mapping of G is a
bl bz e bn—l

ermutation (
b CiCp ** Cpy

> of the nonidentity elements of G whose
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disjoint cycles each have length & and whose quotients b;'¢, also
constitute all the nonidentity elements of G. If k¥ =n — 1 then the
permutation is cyclic and hence is an R-sequencing of G.

There are several contexts in which k-regular complete mappings
arise. For example, 6-regular complete mappings of Z, can be ob-
tained from ecyclic Steiner Triple Systems of order » = 1 (mod 6) [9].
Another occurrence of k-regular complete mappings is in connection
with a special family of permutation matrices called I-matrices [8].
An additional context in which k-regular complete mappings arise is
in the connection between map coloring and R-sequenings of a group
[2], [11].

It is well known [6] that if a finite abelian group has a complete
mapping, then its Sylow 2-subgroup is either trivial or noncyeclic.
By a theorem of M. Hall [5], the converse is also true. We conjec-
ture that, given any abelian group G of order n having either trivial
or noncyclic Sylow 2-subgroup, there exists a k-regular complete
mapping of G for each divisor £ of » —1.! We have shown this to
be true for » < 15, as well as for the following general cases:

(1) k=mn—1, G is the cyclic group Z,, where # > 1 is odd.

(2) k=n—1, n,6) =1 and n # 1.

(3) k=mn—1, G has cyclic Sylow 3-subgroup, where n > 1 is
odd.

(4) k =mn — 1, the Sylow 2-subgroup of G is (Z,)™, where m > 1,
but m == 3.

(5) k=mn —1, the Sylow 2-subgroup S of G is Z, X Z, where
either

(i) 7~ is odd, or :

(ii) » = 2 is even and G/S has a direct cyclic factor of order = 2
(mod 3).

(6) k=n—-1,G=2,x Z,, r=1.

(7) k is any divisor of n —1, G is an elementary abelian p-
group, G # Z,.

(8) k is any divisor of p — 1, G is an abelian p-group p # 2.

(9) k=2o0r (n —1)/2, G=Z%, where n > 1 is odd.

As mentioned above, cases (1)-(6) give R-sequencings of G and
are proved in [2]. Cases (7) and (8) will be proved in §2 of this
paper and case (9) in §3.

As a necessary condition for solving the cyclic case for any
divisor & of » — 1, we must be able to divide the nonzero residues
mod » into (n — 1)/k sets, each of cardinality %, such that the sum

1 One might also conjecture that there must be a complete mapping corresponding
to any partition of n — 1. However, the cyclic group Z; provides a counterexample,
as it has no complete mapping that fixes the identity and permutes the remaining
elements as a product of a 4-cycle and a 2-cycle.



PARTITIONS OF GROUPS AND COMPLETE MAPPINGS 285

of the elements in each set is = 0 (mod ). (We use additive notation
when the group is eyeclic.) We will solve this number theory problem
in §4 of this paper.

2. Abelian p-groups. The following theorem gives an infinite
family of groups G of order n for which there exists a k-regular
complete mapping for all divisors & of » — 1.

THEOREM 1. Suppose G is an elementary abelian p-group of
order n, p prime, G # Z,. Then for any divisor k of n — 1, there
exists a k-regular complete mapping of G.

Proof. If n=9p", we can write G=2,PZ,H--- P Z, (m
times). G is the additive group of GF(p™), the finite field of p™
elements. Let a be a generator of the (cyclic) multiplicative group
GF(p™)* of nonzero elements of GF(p™). For each divisor & of n» — 1,
we define the permutation ¢ by ¢(x) = a‘x, where d = (n — 1)/k. Since
a? has order k in GF(p™* and a? «a®— 1+ 0, the permutation ¢ is
a k-regular complete mapping in G. ]

THEOREM 2. Suppose G is an abelian p-group of order m = p=,
» prime, p #* 2. Then for any divisor k of p — 1, there exists a
k-regular complete mapping of G.

Proof. If G = Z,» then by a result in [3] there exists a unit o
in the ring Z,~ such that the mapping ¢(x) = a-x is a k-regular com-
plete mapping of Z,x.

The result follows by induction and the following observation:
If ¢, is a k-regular complete mapping of G, and ¢, is a k-regular
complete mapping of G, then the mapping (x, ¥) — (¢.(), ¢.(y)) is
clearly a k-regular complete mapping of G, X G,. ]

3. Cyclic groups. In this section we show the existence of
k-regular complete mappings of cyclic groups for certain values of k.

THEOREM 3. If k=2 or (n — 1)/2, then there exists a k-regular
complete mapping of the cyclic group Z,, where n > 1 is odd.

Proof. The nonzero elements of Z, are 1,2, ---, n — 1, the non-
zero residues mod n. For k = 2, we define the permutation ¢ by

n—1 n+1>
2 72 )

p=Ln-1@n—2-

¢ is clearly a product of (n — 1)/2 disjoint 2-cycles. The two differences
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occuring in the jth factorof gare s — (n — 7) =25and (n — 5) — 5 =
n — 27. As j runs from 1 to (n — 1)/2, these differences run through
all the nonzero residues mod n, since n is odd. Thus ¢ is a 2-regular
complete mapping of Z,.

For k = (n — 1)/2, we define the permutation ¢ to be the product
of two k-cycles ¢, = (a, a,, ---,a;) and &, = (—a;,, —ay -+, — ),
where the a, are determined as follows:

()i -1; 1=is 23
a, = 7 1 if n=1 (mod4)
—1i2i—-1; <i< =
(—=1)"21 ) [ si=—
and
(—1)(2i — 1) ; 1g¢§”11
a; = if =38 (mod4).
4 == 2

In either case, since —a, = n — a,, it is easily checked that the ele-
ments +a;, 1 <1<k, run through all the nonzero residue mod x.
If =1 (mod4), the differences a,,, — a;, in ¢, are (—1)(447) (when
154 (n —D/4), (=1 (47) (when (n + N4 L1 (n—3)/2), 2
and 3. A straightforward check shows that, since n is odd, these
differences are all distinet and, along with their negatives, run through
all the nonzero residues mod n. The verification for » = 3 (mod 4)
is entirely similar. Thus, in either case, ¢ = ¢,¢, is an (n — 1)/2-
regular complete mapping of Z,. ]

For the case &k = 6, a 6-regular complete mapping of Z, for n =1
(mod 6) can be constructed from a CIP-neofield N, of order » =2
(mod 6) [1] or from an HP I-matrix of order m = 0 (mod6) [8].
This result can be extended to show the existence of a 6-regular
complete mapping of any abelian group of order =1 (mod6) [14].

4. A related number theoretic problem. Let ¢:G->G be a
complete mapping of G, normalized (as in the introduction) so that
¢ fixes the identity element of G. Then as already noted, ¢ can be

2; 22?32) of the elements of G with

the property that a, = b;'¢, (i1 =1, ---, » — 1) also constitute all the
nonidentity elements of G. We now decompose this permutation into
a product of disjoint cycles, and suppose that (b, b, ---b,) is a typical
one of these cycles. Thus ¢, = b,,, for ¢ < », while ¢, = b,. Hence

regarded as a permutation (
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a,a, -+ a, = (bi'e) (b:'e) - -- (b;'¢,) = (br'b,) (b:7by) - -+ (b7'D) = 1. We
have thus proved the following:

THEOREM 4. Suppose that ¢ is a complete mapping of G whose
associated permutation is the product of disjoint cycles of lengths
Py Py vty Toe  Then the elements of G can be partitioned into disjoint
subsets S; of cardinality r, (1 £ 1 < v) such that the product of the
elements in each subset S; (taken in a suitable order) is 1.

We now specialize to the case where G = Z,, the cyclic group
of order %, and we go over to additive notation. We further suppose
that ¢ is a k-regular permutation of Z} = Z,\{0} for some k& >1,
i.e., that ¢(0) = 0, while the remaining n — 1 elements of Z, fall into
(n — 1)/k cycles, each of length k. In this case, Theorem 4 asserts
that if such a complete mapping ¢ exists, then the nonzero elements
Z¥ can be partitioned into (n — 1)/k sets of cardinality %k, where the
sum of the elements in each set is = 0 (modn). The purpose of this
section is to show that this necessary condition for the existence of
o is always fulfilled as long as %k[n — 1 and n is odd. (Of course
the condition that » be odd is needed, for only then is the sum of all
the elements of Z, congruent to 0 (mod n).) We state this formally
as a theorem, although the proof will not be achieved until the end
of the section.

THEOREM 5. Suppose n is odd and k|n — 1, where k > 1. Then
the monzero residues (modn) can be partitioned into (n — 1)/k sets
of cardinality k, so that the sum of the elements of each set is = 0
(mod 7).

We remark that if %|l|(n — 1), and that if Theorem 5 has been
proved for sets of cardinality %, then it also holds for sets of car-
dinality I. Indeed the required sets of cardinality ! can be obtained
by simply grouping together the sets of cardinality & (in groups of
1/k). This reduces the proof of Theorem 5 to the case where k is a
prime. For k = 2 the theorem is trivial, since the required sets are
then just {1, n—1}, {2, n—2}, - -+, {(n—1)/2, (n+1)/2}. For odd values
of & we have not been able to take effective advantage of the re-
duction to primes. Instead we will proceed by mathematical induec-
tion through the odd values of k. The kernel of the proof is a
discussion of the case k = 3.

When k& = 3, the conditions k|n — 1 and n odd of Theorem 5 are
together equivalent to » =1 (mod6). In this case Theorem 5 re-
duces to
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THEOREM 6. If » =1 (mod 6), then the nonzero residues (mod n)
can be partitioned into (n — 1)/3 triples such that the elements of
each triple have sum = 0 (mod n).

This theorem was proved by Skolem [12], [13] for n =1 or 7
(mod 24), and by Hanani [7] for » =13 or 19 (mod24). For the
purpose of extending to arbitrary odd %, it is necessary to strengthen
Hanani’s result by proving a conjecture of Skolem [13, p.274]. We
will therefore have to make a fairly elaborate detour. This investi-
gation was originally carried out by one of us (B.G.) in collaboration
with W. H. Mills [4]. Related constructions were later carried out
by O’Keefe in [10] and Doner in [1]. Since [4] is not in general
circulation, we will reproduce the details of the construction here.

Given a set A = {a, a,, ---, @,} of m integers and a set B =
{b, by, ---, b,,} of 2m integers, we will say that B covers A if B can
be partitioned into m disjoint pairs (b,,b;), -, (b;,, b;,) with
b;, —b,=a; 1 =x=m). We will prove the following conjecture
of Skolem:

THEOREM 7. A, ={1,2,3, ---, m} is covered by B, = {1, 2,3, ---,
2m — 1, 2m + ¢}, where ¢ =0 if m =0 or 1 (mod4), and ¢ =1 if
m =2 or 3 (mod4).

Clearly if B covers A, and v = 0, then any set of the form
YB + 06 ={vb,+ 9, -+, Vb, + 0} covers YA and —vA.

LemMmA 1. If w =1, the set F, =1{1,3,5, ---, 2u — 1} s covered
by G,=1{1,2,8, ---, 2u}.

Proof. An appropriate division of G, into pairs is given by
(,2u+1—1), 115 u.

LeEmMA 2. If u+#1 or 3, then F, is covered by H, = {0, 3,4, 5, ---,
2u + 1}.

Proof. We use induction from u to u + 2. We have F, = {1, 3}
and H, = {0, 8, 4, 5}. The pairs (4,5) and (0, 3) give a covering of
F, by H,. For the other initial value of the induction, namely u = 5,
we have Fy, ={1,3,57,9} and H, = {0, 3,4,5,6,7,8,9,10,11}. The
desired covering of F; by H, is provided by pairs (7, 8), (3, 6), (5, 10),
(4, 11) and (0, 9).

Now assume the lemma true for w, and consider F,i, =
{1,8,5, ---,2u + 3}and H,+, ={0,3,4,5, ---, 2u + 5}. We form the
pairs (0, 2u + 3) and (3, 2u + 4). These give the differences 2u + 3
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and 24 + 1. The remaining elements of F,, constitute the set F,
while the remaining elements of H,,, form the set {4,5,6, ---,
2u +2,2u + 5} = —1-H, + (2u + 5). By induction (and the above
remarks) this set covers F',, completing the induction.

LEMmA 3. If w+ 1,2 4, then F, is covered by J, ={0,2,3, ---,
2u — 2, 2u — 1, 2u + 1}.

Proof. We form the pair (2, 2u + 1), which has difference 2u — 1.
The remaining elements of F', constitute the set F,_,, while the
remaining elements of J, constitute the set H,_, of Lemma 2. There-
fore, Lemma 3 follows from Lemma 2.

LEMMA 4. If u #= 2 or 4, then F, is covered by K, = {0, 1, 4, 5,
6, ---, 2u + 1}.

Proof. We again use induction from w to w + 2. We have
F,={1} and K, =1{0,1} so clearly K, covers F,. For the other
initial value u = 6, we have F,={(1,3,5,7,9, 11} and K, = {0, 1, 4,
5,6,7,8,9,10, 11,12, 13}. A covering of F; by K; is given by the
pairs (6, 7), (9, 12), (5, 10), (1, 8), (4, 13) and (0, 11).

Now assume the lemma proved for some integer u, and consider
F,..,=1{,3,5 ---,2u+ 3} and K,+, =1{0,1,4,5,6, ---, 2u + 5}. We
form the pairs (0, 2u + 3) and (1, 2u + 2) with differences 2u + 3 and
2u + 1 respectively. The remaining elements of F',., constitute F,,
while the remaining elements of K,,, form the set {4,5,6, -,
2u +1,2u + 4, 2u + 5} = —1-K, + (2u + 5). By induction, —1-K, +
(2u + 5) eovers F',, and the proof is complete.

LemMMA 5. Ifu > 1, then F, is coveredby L, = {0,1,2,4,5,6, ---,
2u — 1, 2u + 1}.

Proof. We form the pair (2, 2u + 1), which has a difference of
2u — 1. The remaining elements of F, form the set F',_,, while the
remaining elements of L, form the set K, , of Lemma 4. For u # 3
or 5, Lemma 5 now follows from Lemma 4. Finally, consider u = 3
and 5. We have L,=1{0,1,2,4,5 7 and L,=1{0,1,2,4,5,6,7, 9}.
The required coverings of F, and F; are given respectively by (1, 2),
4, 1), (0,5) and (7, 8), (2, 5), (1,6), (4,11), (0, 9).

LEmMMA 6. If w =4, then F, 1s covered by M, =1{0,4,5,6, ---,
2u + 1, 2u + 3}.

Proof. We form the three pairs (0, 2u — 1), (4, 2u + 1), (8, 2u + 3)
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with differences 2u — 1, 2u — 3, 2u — 5 respectively. The remaining
elements of F', form the set F,_,. If w = 4, the remaining elements
of M, form the set {5, 6}, which covers F,. If u > 4, the remaining
elements of M, form the set {5,6,7,9, ---,2u — 2,2u} =L,_; + 5.
In this case the result follows from Lemma 5, and the proof is
complete.

We are now ready to prove Theorem 7. There are six special
cases which do not fit into the general pattern. We deal with them
separately in the following lemma.

LeMMA 7. If m=2, 3, 6, 7, 10 or 11, there is a covering of
A, =1{,2,---,m}by B,=1{1,2, ---,2m — 1, 2m + 1}.

Proof. Write m = 2h + 6, where 6 =0 or 1 and =1, 3 or 5.
We begin by forming the pairs (1,2) and @+ 4, h+2+27), 1 =
2 =< m — h. These pairs have differences 1, + 1, h + 2, ---, m. If
h =1 these pairs constitute the desired covering. If h =3 we are
left with the problem of covering {2, 3} by {6 + 25, 8 + 24, 10 + 27,
13 + 26}, which can clearly be done. If h =5, we must cover {2, 3,
4, 5} by {8424, 10+25, 12+24, 14424, 16+24, 18+ 24, 19 + 20, 21 + 24}.
The required covering is (8 + 24, 10 + 24), (18 + 2§, 21 + 29), (12 + 29,
16 + 26), (14 + 24, 19 + 29).

Proof of Theorem 7. Let m = 2h + 06, where 6 =0 or 1. By
Lemma 5, we can assume that m # 2, 3,6, 7, 10 or 11. We now use
induction on m. Note first that e =0 if h is even, and e =1 if &
is odd. We begin by forming the pairs (i, & + 2i), where 1< ¢ <
m —h =h+6. Then we are left with the problem of covering
{1,2, --+, b} by the union of the sets {h + 20 + 2¢ — 1|1 < 7 < h},
{8h +20 + j|1<j=<h—1} and {2m + ¢}. Now the set {1, 2, ---, u}
can be covered by {1,2, ---, 2u — 1, 2u + &'}, where u = [h/2] and
€ =0if u=0o0r1l (mod4), ¢ =1if u=2o0r 3 (modd). If u=0
this is trivial, if v =2, 3, 6, 7, 10 or 11 it follows from Lemma 7,
while for all other u it follows from the induction hypothesis. We
now distinguish four cases:

Case 1. h=0 or 2 (mod8). Here ¢ =¢ =0. Then as just
noted, we can cover {2,4,6, ---, h} by {h +20 +2¢ — 1|1 << < h}. By
Lemma 1, we can cover {1, 3,5, ---, h — 1} by {8h + 26 + j|1 < 5 < h}.

Case 2. h=1or 3 (mod8). Here ¢=1,¢ =0. By assumption
we can cover {2,4,6, ---, k—1} by {h +20 +2i — 1|1 i< h — 1}
By Lemma 3 we can cover {1,8,5, ---, h} by {8h + 20 — 1} U {3k +
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20+ J|11=<5=h—1}U{@2m + 1} unless h =1, 3 or 7. Here h =17,
while h = 1, 3 correspond to m =2, 3, 6, 7.

Case 3. h =4 or 6 (mod8). Heree=0,¢ =1. By assumption
we can cover {2,4,6, ---,h} by {h+20+21—1|1<i<h—1U
{8h +26 +1}. By Lemma 2 we can cover {1,3,5, ---,h — 1} by
{8h +20 —1}U{B8h +20 + J|2=j7j=h} unless h=2 or 6. Here
h # 2. For h = 6 a suitable covering of {1, 2, 3, 4, 5, 6} is given by
(23 + 20, 24 + 20), (9 + 20, 11 + 23), (19 + 20, 22 + 25), (A7 + 20, 21 +
26), (A5 + 26, 20 + 20), (7 + 20, 13 + 206).

Case 4. h =5 or 7 (mod8). Here ¢ =¢ =1. By assumption
we can cover {2, 4,6, ---, h — 1} by {h +20 + 20 —1{1 <7< h —2}U
{8h+20—1}. By Lemma 6 we can cover{l, 3,5, ---, h} by {8h+26—3} U
8h+20 +7115j=h—-—1}U{2m + 1}if h = 7. There remainsh = 5,
which corresponds to m = 10 and 11. This completes the proof of
Theorem 7.

Proof of Theorem 6. Let n =6m + 1. It is trivial to check
that the nonzero residues (modn) are the disjoint union of the four
sets A4, B, + m, —A,, — (B, +m). By Theorem 7 B, + m covers
A,. This means that (B, + m)U A, is a union of triples (a, b, ¢)
where ac€A,, b,ceB, +m, and a =b —¢. The triples (a, —b, ¢)
and (—a, b, —c¢) then exhaust all the nonzero residues (mod =), and
each one has sum zero.

We turn now to the case k = 4 of Theorem 5. It is convenient
to prove it in the following somewhat sharper form.

THEOREM 8. Suppose n s odd and kin — 1, where k = 4. Then
the momzero imtegers im the imterval [—(n — 1)/2, (m — 1)/2] can be
partitioned into (n — 1)/k disjoint sets of cardinality k, so that the
sum of the elements in each set is 0.

Proof. Again we note that this is trivial when & is even, for
then we need merely split the interval [1, (n — 1)/2] into (n — 1)/k
sets of cardinality %/2, and then adjoin to each of these sets the
negatives of its elements. Suppose next that k¥ = 5. The conditions
that » is odd and k|» — 1 then yield n» = 10m + 1. We begin by
forming the 2m triples (a, —b,¢) and (—a, b, —¢) constructed in
Theorem 6. If m =0 or 1 (mod4), the elements of these triples
constitute all the nonzero integers in the interval [—3m, 3m], and
each triple has sum zero. The remaining nonzero integers in the
interval [—(n — 1)/2, (n — 1)/2] = [—5m, bm] are symmetric about 0,
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and there are 2(5m — 3m) = 4m of them. They can therefore be
partitioned into 2m pairs of the form (—7, 5). To each of the above
2m triples we adjoin one of these pairs. This has the effect of de-
composing the nonzero integers of [—5m, 5m] into 2m sets of cardi-
nality 5, where the sum of the integers in each set is zero.

If m =2 or 3 (mod 4), the elements of the triples (a, —b, ¢) and
(—a, b, —c¢) of Theorem 5 constitute the integers 1,2, ---,3m — 1,
3m + 1 and their negatives. The remaining nonzero integers in
the interval [—5m, 5m] are therefore 3m and {v|3m + 2 < v < 5m},
together with their negatives. Since this set is symmetric about 0,
we can again split it into 2m pairs of the form (—j7, j) and adjoin
one pair to each triple, giving the desired partition of [—5m, 5m]
into sets of cardinality 5.

Exactly the same construction will clearly now carry us from k%
to k+2 for any £k =5. It is no longer necessary to distinguish
between the various residues of m (mod4), since for %k = 5, the
elements of our k-sets constitute all the nonzero integers in
[—(n —1)/2, (n — 1)/2].

We note that the hypothesis in this section that ¢ is a k-regular
permutation can easily be dispensed with, using a very slight modi-
fication of the above technique. The only essential requirement is
that 0 must be the only fixed point of 4. For simplicity we confined
ourselves to the regular case, which seems to be the most interesting
in applications. In a later paper the results of this section will be
extended to arbitrary groups of odd order.

Note added im proof. A direct, constructive proof of Skolem’s
conjecture (Theorem 7T), appears also in R. O. Davies, “On Langford’s
problem (II), Math. Gaz., 43 (1959), pp. 253-255. We are grateful
to D. G. Rogers (private communication) for pointing out this result
as informing us of the following 8-regular complete mapping of Z,:
é = (1, 8,5)(2, 10, 11) (3, 6, 24) (4, 14, 16) (7, 19, 17) (9, 15, 20) (12, 23, 18)
(18, 22, 21). The above partition was obtained by D. G. Rogers and
F. W. Roush by means of a computer search.
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