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JOINT BROWDER SPECTRUM

JOHN J. BUONI, A. T. DASH AND BHUSHAN L. WADHWA

There exist in the literature many notions of joint
spectra which have been then generalized to joint essential
spectra and in some instances to joint Browder spectra.
The purpose of this note is to develop a notion of joint
Browder spectrum which uses ideas of Arveson and Wael-
brook. It is shown that this notion of joint Browder
spectrum has many of the useful properties of the Browder
spectrum.

Polynomial joint Browder spectrum* For an operator (bounded
operator) A on a Banach space X,xe pb(A) if λ — A is Fredholm
and there exists a deleted open neighborhood N of λ, such that
μ e N implies that μ — A is invertible. The Browder essential
spectrum of A, σb(A), is the complement of ph(A). Thus σb(A) =
σe(A) U {accumulation of points of σ(A)}, where σe(A) and σ{A)
denote the Fredholm spectrum and the spectrum of A [4], respec-
tively. Also σb(A) — σ(π(A))9 where τr:α-*α/αn 3ίΓ, α is a maximal
commutative subalgebra of &(X) {0{X) is the algebra of all bounded
operators on X) containing the double commutant of A, and J??~ is
the ideal of compact operators on X. This characterization of σb(A)
is due to Gramsch and Lay [5]. Let At and A2 be two commuting
operators on X. Let έ% be any commutative Banach algebra contain-
ing Aj. and A2. Then the joint spectrum of the pair A — (Alf A2)
with respect to the algebra & is usually defined as {(φ{A^, φ(A2)): φ
is in the maximal ideal space of &} and is denoted by σ&(Alf A2) =
σ^(A). Arveson [1] defines σ(Au A2) = σ(A) = {λ = (λx, λ2): p(λ) e
σ(p(A)) for all polynomials p: C2 —> C} and shows that σ(A) = σ^(A),
where & is the norm closure of the rational algebra generated by
Aι and A2 [1], C is the set of all complex numbers and C2 is the
two-fold Cartesian product of C. Following Arveson we define the
joint Browder spectrum of A = (Au A2), denoted by σftA), as and
defined by

σl(A) = {λ = (Xlf λ2): p(λ) 6 σb)(p(A)) for all polynomials p: C2 >C} .

Also the joint Fredholm spectrum

σΐ(A) = {λ = (λx, λ2): p(X) 6 σe(p(A)) for all polynomials p: C2 > C) .

When there is no confusion, we shall write the polynomial joint
Browder spectrum and the polynomial joint Fredholm spectrum as
σb(A) and σ,(A), respectively.
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In [7] Snow has defined the joint Browder spectrum of Aλ and
A2 in terms of the joint Fredholm spectrum of Schechter and Snow
[6]. Our treatment of the subject is different from theirs. Although
all our results hold for w-tuples of operators, for brevity we shall
discuss them for pairs of operators only. Throughout the text we
shall write a pair of operators as A = (Alf A2) and a pair of complex
numbers as λ = (Xu λ2) unless otherwise mentioned. In the first
part we shall obtain an analogue of Arveson's theorem and a
generalization of Gramsch and Lay's result. In the later part we
shall obtain a relationship between σb(A) and σe(A), where A = (AU A2).

Let α be a maximal commutative subalgebra of &(X) containing
the double commutant of Au A2. We need the following lemmas to
prove our main result. For an operator A1 we shall denote the
image of Ax in the algebra a/a n J ^ by Aλ. We shall write A =
(Al9 A2).

LEMMA 1. {(ύ(Ά) = (α>(Ai), o)(A2)): ω is in maximal ideal space
of a/a n JT} Q σb{A).

Proof. Let X = (Xlt λ2) e ω(A) = (ωiAJ, ω(A2)). Then for any
polynomial p of two variables, (θ(p(X) — p(A)) = 0 and hence p(X) —
p(A) is not invertible in a/a n J%" Thus by the above mentioned
result of Gramsch and Lay [5], p(X) is in σh(p(A)) for all polynomi-
als p.

LEMMA 2. oh{A) is a nonempty compact subset of σb(A1)xσb(A2).

Proof. σh(A) being the intersection of closed sets is closed. Let
λ = (λ1? λ2) 6 σb(A), by taking p(zu z2) = zίt it follows that xt e σb(Ai)
for i = 1, 2. Lemma 1 assures that σb(A) is nonempty.

LEMMA 3. Let p(Xl9 λ2) be a polynomial with no zeros on σb(A).
Then p(A) is invertible in a/a f]

Proof. Suppose p{A) — p(Au A2) is not invertible in a/a n
then there exists an a) in the maximal ideal space of a/a(~)J%Γ such
that ω(p{Ά)) = 0. Let X = {Xu λ2) = ω{A). Thus p{X) = 0, while
χeσb(A).

Let Z be any compact subset of C2. Let Rat (Z) denote the set
of all rational functions on Z, that is, all quotients p/q of polynomi-
als p and q (in two variables) for which q has no zeros on Z.
Consider in particular Z = σh(A) = σb(Al9 A2). Now for /eRat(Z),
f=p/Q, define f(A) = p{A)-q{Ay1 (Lemma 3 guarantees that q{A)
is invertible.) Thus there is an algebraic homomorphism of Rat (Z)
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into a/a Π 3ίΓ. Let Rat (A) = Rat (Alf A2) denote the norm closure of
the image of Rat (Z) in a/a n

LEMMA 4. Let Z = σb(Al9 A2) = σh{A). Then σh{f{A)) = f(Z) for
all f in Rat (Z).

Proof, Let / e Rat (Z) be such that / has no zeros on Z. Thus
f = gjh, where g and h are polynomials having no zeros on Z. By
Lemma 3, both g{A) and h(A) are invertible in α/αn^7 and hence
/(A) = ̂ (A)fc(A)-1 is invertible. Thus 0 £ /(Z) implies that 0 £
σb(f(A)). A simple translation argument shows that σb(f(A))Qf(Z).

Let λ = (X, λ2) 6 Z. Then / — /(λ) has the form g/h where #
and h are polynomials and /& has no zeros on Z. Also g(x) = 0, by
definition of σb(A)9 0 = g(X) eσb(g(A)). Thus flr(iί) is not invertible
for a/a n ̂ ^ and /(λ) 6 σb(f(A)). This proves the lemma.

LEMMA 5. Rat (A) is inverse closed in a/a f] J?t~.

Proof. Suppose $ e Rat (A) and s"1 e a/a n Λ. Since s 6 Rat (A),
there exists a sequence fn e Rat (α 6(iί)) such that ||s — /»(A)|| -> 0.
Since s - 1 exists, for large enough %, (/W(A))-1 exists and (/XA))-1—>
s'1. By Lemma 4, /n has no zeros on σb(A). Let gn = l/fn. Then
fir% e Rat (σb(A)) and || s^-g^A) || —̂  0 which implies that s"1 e Rat (A).
Hence the result.

THEOREM 6. Let m be the maximal ideal space of Rat (A).
Then σh(A) = {(o(A): ω em}.

Proof For any ωem, let λ = (λx, λ2) = (^(AJ, α>(A2)) = ω(A).
For each polynomial 3>(«lf z2) we have ω(p(λ) — p(A)) = 0. Thus
p(λ) — p(A) is not invertible in Rat (A), and by Lemma 5, it is not
invertible in α/αf lX Thus by the result of Gramsch and Lay,
p(X) — p(A) is not invertible. Thus p(X) e σb(p(A)) for every poly-
nomial p and hence Xeσb(A).

Conversely, let λeσδ(A). Then for every fe Rat (Z), Z = σh(A),
we^ have | /(λ) | ^ sup^ | /fe, z2) \ = sup | σ(/(iί)) | ^ || /(A) ||. Thus
/(A) —• /(λ) is a bounded, densely defined homomorphism of Rat (A)
and so there is an ωem such that ω(f(Ά)) — /(λ). The conclusion
now follows by using f(zlf z2) = (ffa, z2), f2(zu z2)), where ft(zl9 z2) =
«„ i = 1, 2.

Theorem 6 is the analogue of a result of Arveson [1, page 276].
The techniques used here are heavily based on the definition of
σb(Al9 A2) in terms of polynomials of two variables.

We let Au A2 denote the image of Aγ and A2 in the Calkin
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algebra, and A = (Al9 A2); then an analogue of Lemma 3 will assure
that q(A) is invertible in the Calkin algebra provided q has no
zeros on σe(A). Thus there is an algebraic homomorphism of
Rat(tfe(A)) into the Calkin algebra, and we let Rat (A)=Rat (Άί9 A2)
denote the norm closure of the image of Rat (σβ(A)) in the Calkin
algebra. The analogues of Lemmas 4, 5 and Theorem 6 can now be
proved in terms of σe(A) to get the following theorem.

THEOREM 7. Let m' be the maximal ideal space of Rat (A).
Then σe(A) = {(ω(A): ωem'}.

Theorems 6 and 7 and the result of Arveson [1, page 276] now
allow us to identity σb(A), σe(A) and the σ(A) defined above with the
respective maximal ideal spaces of the respective finitely generated
rational algebras Rat (A), Rat (A) and Rat (A). Now we want to
see how these three spectra are related to each other. In the case
of a single operator T, it is well known that σe(T) £ σb(T) £ σ{T)
and σb(T) = σe(T) U {accumulation points of σ(T)}. We shall show
that similar results hold in the case of joint spectra.

First let us note that if (λ^ λ2) g σ(Al9 A2) then there exists a
nonconstant polynomial p such that p(Xl9 λ2) g σ(p(Alf A2)) and hence
(X, λ2) £ σb(Alf A2). Thus σb(Alf A2) £ σ(Au A2), similarly σe(Au A2) £
σb(Al9 A2).

THEOREM 8. ob{Al9 A2) = σe(Alf A2) U {accumulation points of
σ(Al9 A2)}.

Let λ = (λlf λ2) be an accumulation point of σ(A). For a non-
constant polynomial p, by using the continuity of p9 it follows
that p(X) is an accumulation point of σ(p(A)) and hence is contained
in σb(p(A)). We have already noted that σe(A) £ σb(A). Thus we
have shown that σe(A) U {accumulation points of σ(A)} is contained
in σb(A).

Let λ = (λx, λ2) be an isolated point of σ(A) and suppose λ g σe{A).
Thus σ(A) = {λ} U Fx where Fx = cr(A)\{λ}. By the previously men-
tioned identification the maximal ideal space of Rat (A) is {λ} Π ί\.
So there exists an idempotent E [9, page 96] such that Rat (A) =
E Rat (A) φ (7 — E) Rat (A) and the maximal ideal space of the two
subalgebras can be identified with {λ} and Fx respectively. Thus
{λ} = {(λx, λ2)} = σ(EA) - σ{EAl9 EA2) and Fx = σ((I-E)A). Let E be
the image of E in the Calkin algebra, then Rat (A) = .©Rat A 0 (Ϊ-E)
Rat (A). This decomposition of the algebra now gives rise to a
decomposition of the maximal ideal space of Rat A [9, page 96];
using Theorem 7 it follows that σe(A) = σe(EA) U σe((I-E)A). Thus
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in particular σe(EA)Qσe(A)f but σe(EA)Qσ(EA) and hence σe(EA)Q
σ{EA) Π oe{A) = 0 (because λίσβ(A)). Thus 2£A is compact; i.e., £7
is a finite-dimensional idempotent, hence E — 0. By Theorem 6, since
£7 is compact, σb(A) = **((/ - E)A). Also σh((I-E)A) Q σ((I - E)A),
hence λgσδ(A).
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