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JOINT BROWDER SPECTRUM

JOHN J. BUONI, A. T. DASH AND BHUSHAN L. WADHWA

There exist in the literature many notions of joint
spectra which have been then generalized to joint essential
spectra and in some instances to joint Browder spectra.
The purpose of this note is to develop a notion of joint
Browder spectrum which uses ideas of Arveson and Wael-
brook. It is shown that this notion of joint Browder
spectrum has many of the useful properties of the Browder
spectrum.

Polynomial joint Browder spectrum. For an operator (bounded
operator) A on a Banach space X, hep,(4) if x — A is Fredholm
and there exists a deleted open neighborhood N of A, such that
reN implies that ¢ — A is invertible. The Browder essential
spectrum of A, 0,(A), is the complement of p,(4). Thus o6,(4) =
0,(A) U {accumulation of points of o¢(A)}, where o,(4) and o(4)
denote the Fredholm spectrum and the spectrum of A [4], respec-
tively. Also ¢,(4) = d(x(4)), where w:a—ajaN 5%, a is a maximal
commutative subalgebra of < (X) (<& (X) is the algebra of all bounded
operators on X) containing the double commutant of A, and .9 is
the ideal of compact operators on X. This characterization of g,(A4)
is due to Gramsch and Lay [5]. Let A, and A4, be two commuting
operators on X. Let <Z be any commutative Banach algebra contain-
ing A, and A,. Then the joint spectrum of the pair A = (4, A,)
with respect to the algebra <7 is usually defined as {(#(4,), ¢(A,)): ¢
is in the maximal ideal space of <#Z} and is denoted by o¢_(4,, 4,)=
o,(A). Arveson [1] defines d(4,, 4,) = 6(4) = {M = (A, M) DV €
o(p(A)) for all polynomials p: C* — C} and shows that ¢(A) = o,(A4),
where <# is the norm closure of the rational algebra generated by
A, and A, [1], C is the set of all complex numbers and C? is the
two-fold Cartesian product of C. Following Arveson we define the
joint Browder spectrum of A = (4,, 4,), denoted by o%(4), as and
defined by

o3(4) = (v = (\y, M) D(V) € 0,)(p(A4)) for all polynomials p: C*— C} .
Also the joint Fredholm spectrum
02(A) = (L = (A, o) D(M) € 0,(p(A4)) for all polynomials p: C*—— C} .

When there is no confusion, we shall write the polynomial joint
Browder spectrum and the polynomial joint Fredholm spectrum as
o,(A) and o,(A4), respectively.
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In [7] Snow has defined the joint Browder spectrum of A, and
A, in terms of the joint Fredholm spectrum of Schechter and Snow
[6]. Our treatment of the subject is different from theirs. Although
all our results hold for n-tuples of operators, for brevity we shall
discuss them for pairs of operators only. Throughout the text we
shall write a pair of operators as A = (4,, 4,) and a pair of complex
numbers as A = (A, A,) unless otherwise mentioned. In the first
part we shall obtain an analogue of Arveson’s theorem and a
generalization of Gramsch and Lay’s result. In the later part we
shall obtain a relationship between ,(4) and ¢,(4), where A=(4,, 4,).

Let a be a maximal commutative subalgebra of <& (X) containing
the double commutant of A4, A,, We need the following lemmas to
prove our main result. For an operator A, we shall denote the
ingagg of A, in the algebra a/an .o by A,. We shall write A=
(A, A,).

LEMMA 1. {w(4) = (0(4)), ®(A,): ® is in maximal ideal space
of ala N 2%} S o,(4).

Proof. Let = (A, \o) € W(4A) = (w(4,), ¥(4,)). Then for any
polynomial p of two variables, @(p(\) — p(A)) = 0 and hence p(\) —
p(A) is not invertible in a/an .27 Thus by the above mentioned
result of Gramsch and Lay [5], »(\) is in o,(p(A)) for all polynomi-
als p.

LeMMA 2. 0,(A) is a nonempty compact subset of o,(A) X o,(4,).

Proof. o,(A) being the intersection of closed sets is closed. Let
N = (A, \y) € 0,(A4), by taking p(z, 2,) = 2, it follows that ;e 0,(4))
for i =1,2. Lemma 1 assures that ¢,(4) is nonempty.

LEMI\EA 3. Let p(\, \,) be a polynomial with no zeros on o,(A).
Then p(A) is invertible in ala N 2Z.

Proof. Suppose p(4) = p(fil, A4,) is not invertible in alan o7,
then there exists an @ in the maximal ideal space of a/an .2  such
that @(p(4)) =0. Let A= (O, \) = @(A). Thus p(\) = 0, while
N Ea,(A).

Let Z be any compact subset of C%. Let Rat (Z) denote the set
of all rational functions on Z, that is, all quotients »/¢ of polynomi-
als p and ¢ (in two variables) for which ¢ has no zeros on Z.
Consider in particular Z = ¢,(4) = 6,(4,, 4,). Now for feRat(Z),
f = »lq, define f(ﬁ) = 20(11)@(@)'1 (Lemma 8 guarantees that q(4)
is invertible.) Thus there is an algebraic homomorphism of Rat (Z)
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into a/an 2. Let Rat (/T) = Rat (A}, A,) denote the norm closure of
the image of Rat (Z) in a/an 927

LEMMA 4. Let Z = 0,(A, A,) = 0,(A). Then o,(f(4)) = f(Z) for
all f in Rat (Z).

Proof. Let feRat(Z) be such that f has no zeros on Z. Thus
f = g/h, where g and h are polynomials having no zeros on Z. By
Lemma 3, both g(ff) and h([i) are invertible in a/an .2, and hence
f(A) = g(A)R(A)* is invertible. Thus 0¢ f(Z) implies that 0¢
o(f (A)). A simple translation argument shows that g,( f([f)); f(Z).

Let A= (\, M) €Z. Then f — f(\) has the form g/h where g
and % are polynomials and % has no zeros on Z. Also g(\) =0, by
definition of 0,(A), 0 = g(\) e g,(9(4)). Thus g(A) is not invertible
for a/an 2 and f(\)€a,(f (A)). This proves the lemma.

LEMMA 5. Rat (/1\) 18 inverse closed in aja N %

Proof. Suppose §cRat(4) and §'ea/an f. Since §eRat (A4),
there exists a sequence f, € Rat (0,(4)) such that I|§ — f.,,(fi)ll — 0.
Since §-' exists, for large enough n, (f,(A))* exists and (f,(4))*—
§7'. By Lemma 4, f, has no zeros on o,(A4). Let g, =1/f.. Then
g. € Rat (0,(4)) and ||§"—g.(A)|| — 0 which implies that §-' € Rat (4).
Hence the result.

THEOREM 6. Let m be the mawimal ideal space of Rat(A).
Then o0,(A) = {w(A): @ e m}.

Proof. For any wem, let A = (A, ) = (0(A,), 0(A,)) = w(A).
For each polynomial »(z,2,) we have w(p(\) — p(ff)) = 0. Thus
p(\) — p(A) is not invertible in Rat (4), and by Lemma 5, it is not
invertible in a/an 22 Thus by the result of Gramsch and Lay,
p(\) — p(A) is not invertible. Thus p(\)€o,(p(A)) for every poly-
nomial p and hence A e o,(4).

Conversely, let neo,(4). Then for everyAf eRat (Z ) Z = o,(4),
we have |[f(\)|= sup;|f(z,2)| =sup|o(f(A)| = | f(A). Thus
f(A) — f(\) is a bounded, densely defined homomorphism of Rat (A)
and so there is an @ em such that o( f(/i)) = f(A). The conclusion
now follows by using f(z,, 2.) = (fi(2y, 22), fo(2y, 25)), Where fi(z, 2,) =
2, t=1,2.

Theorem 6 is the analogue of a result of Arveson [1, page 276].
The techniques used here are heavily based on the definition of
0,(4,, 4,) in terms of polynomials of two variables.

We let A, A, denote the image of A, and A, in the Calkin
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algebra, and A = (4, 4,); then an analogue of Lemma 3 will assure
that ¢(A) is invertible in the Calkin algebra provided ¢ has no
zeros on o,(A). Thus there is an algebraic homomorphism of
Rat (,(A)) into the Calkin algebra, and we let Rat (A)=Rat (4,, 4,
denote the norm closure of the image of Rat (¢.,(4)) in the Calkin
algebra. The analogues of Lemmas 4, 5 and Theorem 6 can now be
proved in terms of ¢,(A) to get the following theorem.

THEOREM 7. Let m' be the maximal ideal space of Rat (A).
Then 0,(A) = {(w(A): @ e m'}.

Theorems 6 and 7 and the result of Arveson [1, page 276] now
allow us to identity g,(4), 0.(A) and the ¢(A) defined above with the
respective maximal ideal spaces of the respective finitely generated
rational algebras Rat (A), Rat(A) and Rat(A4). Now we want to
see how these three spectra are related to each other. In the case
of a single operator T, it is well known that o¢,(T) < 0,(T) S o(T)
and 6,(T) = 0,(T) U {accumulation points of ¢(T)}. We shall show
that similar results hold in the case of joint spectra.

First let us note that if (A, \,) ¢ 0(4,, 4,) then there exists a
nonconstant polynomial p such that p(\, \.) ¢ 6(p(4,, 4,)) and hence
O\, o) € 04(A,, A,). Thus o,(4,, 4,) < 0(4,, A,), similarly o,(4,, 4,) =
oy(A,, Ay).

THEOREM 8. o0,(4,, 4, = 0.(4, A,) U {accumulation points of
o(4,, A)}.

Let » = (A, \,) be an accumulation point of ¢(4). For a non-
constant polynomial p, by using the continuity of p, it follows
that p(\) is an accumulation point of o(p(A4)) and hence is contained
in o,(p(4)). We have already noted that o,(4) S 0,(4). Thus we
have shown that ¢,(4) U {accumulation points of ¢(A)} is contained
in o,(4).

Let A = (\;, \,) be an isolated point of o(A4) and suppose \ ¢ 0.(4).
Thus o(A) = {A\} U F, where F, = g(A)\{\}. By the previously men-
tioned identification the maximal ideal space of Rat (A4) is {\} N F,.
So there exists an idempotent E [9, page 96] such that Rat(4) =
ERat(A)@D (I — E)Rat (A) and the maximal ideal space of the two
subalgebras can be identified with {\} and F, respectively. Thus
(A = {0, M)} = 0(EA) = o(EA,, EA,) and F,=0((I—E)A). Let E be
the image of E in the Calkin algebra, then Rat (A)=ERat AP (I—E)
Rat (A). This decomposition of the algebra now gives rise to a
decomposition of the maximal ideal space of RatA [9, page 96];
using Theorem 7 it follows that o,(A) = ¢, (FA) U 0, (I—FE)A). Thus
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in particular o, (FA) < 0,(A4), but ¢,(FA) S o(FA) and hence o,(EA)S
o(EA)No,(A) = @ (because ¢ 0o,(A)). Thus FA is compact; i.e., F
is a finite-dimensional idempotent, hence £ =0. By Theorem 6, since
E is compact, 0,(4) = o,((I — E)A). Also g,(I—E)A) < o((I — E)A),
hence X\ ¢ g,(A).
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