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DENSITIES AND SUMMABILITY

A. R. FREEDMAN AND J. J. SEMBER

The ordinary asymptotic density of a set A of positive
integers is y(A)=limn->ooA(w)M, where A{n) is the cardinality
of the set AΠ{1,2, , n}. It is known that the space of
bounded strongly Cesaro summable sequences are just those
bounded sequences that converge (in the ordinary sense)
after the removal of a suitable collection of terms, the
indices of which form a set A for which v(A)=0. In this
paper we introduce a general concept of density and then
examine the relationship, suggested by the above observa-
tion, between these densities and the strong convengence
fields of various summability methods. These include all
nonnegative regular matrix methods as well as the famous
nonmatrix method called almost convergence.

The characterization of the bounded strongly Cesaro summable
sequences mentioned above is significant in ergodic theory, where it
relates to the study of weakly mixing transformations ([4], p. 38;
[7], pp. 40-41).

The concept of a lower asymptotic density is presented axio-
matically in § 2. Certain essential properties of these densities are
proved and the "natural density" associated with the lower density
is defined. The natural density has some of the properties of a
measure but, in particular, is not a countably additive function. Of
interest, therefore, are certain additivity properties (we call them
(AP) and (APO)), valid for some natural densities, that are approxi-
mations to countable additivity.

Section 3 contains examples of densities. Of particular interest
are those generated by nonnegative regular matrices, and another
called uniform density.

In § 4 we investigate sequence spaces associated with a density.
One such space is the space ωδ of "nearly convergent" sequences
(Definition 4.2) and another is the strong summability field |c,| of a
summability method S that is "related" to the density in the sense
of Definition 4.9. Whether or not the (APO) property holds for the
density turns out to be crucial in the comparison of the sequence
spaces a)δ and |c s | .

We use the following notation: The set of positive integers will
be denoted by /. For A, BQI, we write A~B {A is asymptotical-
ly equal to B) if the symmetric difference AΔB is finite. For two
sets A and J5, the set-theoretic difference is denoted by A\B =
{x:xeA, xίB). Let 0 denote the empty set. Sequences of real
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numbers will alternately be denoted by x, (xt), or (xlf x2, • ••). The
coordinate wise product of two sequences x, y will be denoted by
x-y = (x^i). For a sequence x, we let \x\ — (|α?<|), and if a? is a
sequence and I is some real number, we write x — I = (x{ — I). We
let ω denote the linear space of all real-valued sequences, and m, c,
and c0 will, as usual, denote the subspaces of ω consisting of the
bounded sequences, the convergent sequences, and the sequences
convergent to zero. Finally, if M = (ank) is an infinite matrix and
x — (xt) is any sequence, the product M-x will denote the sequence
(yd, if it exists, where yt = Σ?=i aijχj-

2. Densities and the additivity property* A function δ, de-
fined for all sets of natural numbers and taking values in the closed
interval [0,1], will be called a lower asymptotic density (or just a
density) if the following four axioms hold:

(D.I) if A~J3, then δ(A) - δ(JB);
(D.2) if A Π B = 0 , then δ(A) + δ(B) ̂  δ(A U B);
(D.3) for all A, B, δ(A) + δ(B) ^ 1 + δ(A Π B);
(D.4) δ(I) = l.

If δ is any density, we define δ, the upper density associated
with δ, by

δ(A) = 1- δ(I\A)

for any set of natural numbers A.
The first proposition lists the essential properties of δ and δ.

The proofs are elementary and left to the reader.

PROPOSITION 2.1. Let δ be a lower asymptotic density and δ its
associated upper density. For sets A, B of natural numbers, we
have

( i )
(ii)
(iii) for all A, B, δ(A) + δ(B) ^ δ(A U B);
(iv) 3(0) = 3(0) = 0;
(v) ί(J) = l;
(vi) ί
(vii)

We will say that a set A £ J has natural density with respect
to δ in case δ(A) = δ(A). We define

For A e ηi9 let vδ(A) = 5(A) (the natural density of A). In this
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paper we are mainly interested in sets A with natural density zero.
Note that Aeηδ and vδ{A) = 0 if and only if δ(A) = 0. Let

τ]l = {A: δ(A) = 0} .

The basic facts concerning vδ, τ]δ, and ΎJ\ are contained in Pro-
positions 2.2 and 2.3. We again omit the proofs.

PROPOSITION 2.2.

( i ) If A~I, then Aeηδ and vδ{A) = 1.
(ii) // A~0 (i.e., if A is finite), then Aeηo

δ.

PROPOSITION 2.3.

( i ) vδ is finitely additive, i.e., if A, Beηδ and A Π B = 0 ,
then AUBeηδ and

vδ{A UB) = vδ(A) + vδ{B) .

(ii) // Alf 4 , i , e ηl, then \JU A, e ηl
(iii) // Aeηδ, then (I/A)eτjδ and vδ(I\A) = 1 - vδ(A).
(iv) If Aeηδ and A~B, then Beηδ and vδ{A) = vδ{B).
A simple example shows that vδ is never countably additive:

Taking At = {i}9 i = 1, 2, , we have Â  6^δ, ΐ = 1, 2, and AtΓ\
Aά - 0 (i Φ j), but UΓ=i Λ = I and vd(/) = 1 ^ 0 = ΣΓ-i ̂ (A4). How-
ever, for some densities, a similar property holds which we shall
call the additivity property. This property of densities has been
studied in other settings by Buck [1] and Freedman [2]. From its
statement it is apparent that it is an approximation to countable
additivity for vδ.

ADDITIVITY PROPERTY (AP). If A^η,, ί = 1, 2, , and if Atn

Aj — 0 (ΐ Φ j), then there exist sets Bif i — 1, 2, , such that
Bi~Ai9 i = 1, 2, ••-, \Jΐ=ιBi^Vt and ^(UΓ-i^) - Σ^i^CBJ.

In this paper we shall only need to consider a weaker property,
namely, the additivity property for sets of zero natural density.

ADDITIVITY PROPERTY FOR SETS OF ZERO NATURAL DENSITY (APO).
If At eη], i = 1,2, , and if At Π Aά — 0 (i Φ j), then there exist
sets Bt, i = 1, 2, such that B^A^ i = 1, 2, and Ufei#iG775

If the condition that the sets A< are disjoint is removed from
(APO), we get an apparently stronger property (APO') However,
we can prove

PROPOSITION 2.4. The 'properties (APO) and (APO') are equiva-
lent.
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Proof. Obviously (APO') implies (APO). Now suppose (APO)
holds and let (At) be any sequence of sets in η°δ. Define a pairwise
disjoint sequence (Al) in the usual way:

Noting that Aίerj] we know, by (APO), that there exist sets B'^A't
such that Uf=i B'i e Vl Letting Bt — Ui=i B'jf it is easily seen that
Bi~Ai and \j7=1Bt = \J7^BI

The fact that (AP) implies (APO) is obvious. Whether or not
the reverse implication holds is an open question.

3* Examples of densities and the (APO). The term "asymptotic
density" is often used for the function

where A{n) is the number of elements in A Π {1, 2, , n). If XA

denotes the characteristic sequence of A (thus XA is a sequence of
O's and l's), and if Cί denotes the Cesaro matrix

1 0 0 •••

C,=

1 1 0
2 2

i i . .io
n n n

then A(n)/n is the wth term of the sequence

d(A) = liminf (d ZΛ

Thus

This function satisfies axioms (D.1)-(D.4).
This example suggests that there may be a general way to

produce a density from a summability method. We now show that,
for any nonnegative regular matrix, there is a natural way to do
this.

PROPOSITION 3.1. Let M be a nonnegative regular matrix and
let δM be defined by

dM(A) = liminf {M XA)n .
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Then δM is a density (i.e., satisfies (D.1)~(D.4)) and, furthermore,

δM(A) = limsup(M-XΛ)n .
Λ-+OO

Proof. For convenience we write δ for δM.
(D.I). If A~B there exists a positive integer N such that

%A(J) = ^B(i) except, possibly, for 1 <S i ^ N. Thus

^ Σ aJXAΰ) - Uj)\ ^ Σ α.y » 0(Λ->OO) .
j l j l

It follows that lim inf n^(M XA)n = lim infΛ(ilf ZJ Λ and so δ(A) =
(D.2) If AΠ.B = 0 , then XAϋB = XA + XB. Hence

UB) = lim inf (ilf XW* = lim inf (M-XA + M-XB)n
n—*oo n—»oo

^ lim inf (M XA)n + lim inf (M XB)

δ(B).

(D.4) 5(1) = liminf^CftΓ JW. = lim inf κ ^ Σ~-i «»i = l
Before proving (D.3) we show that the formula for δ(A) holds.

First note that XΛA = 1 - XΛ. Then, letting ϊ = (1, 1,1, •••),

δ(A) = 1 - (δI\A) = 1 - lim inf (M XlU)n
n-*oo

= lim sup (1 - ΛΓ Z Λ Λ = Hm sup (1 - MΛ + Λf

The last equality holds since limΛ_>oo(l — M ΐ)n = 0.
(D.3) Since XAf]B — XA -{- XB — XAΌBr we can wri te

) = l + lim inf (M.Z^ n β ) Λ
n-*oo

5: 1 + lim inf (M XA)n + lim inf (M XB)n

- δ{A U JB) =

U B)) ̂  δ(A) + δ{B) .

One simple, but interesting, example is the density δj obtained
from the identity matrix J. In this case δj(A) — 0 if I\A is infinite,
and otherwise δj(A) = 1. Also, η°δj consists of just the finite subsets
of the natural numbers and ηδj consists of the finite sets together
with the sets A for which A~I.
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We now show that the (APO) holds for any density obtained
from a nonnegative regular matrix as in Proposition 3.1. In fact,
the (AP) holds, but will not be proved here.

PROPOSITION 3.2. Let M be a nonnegative regular matrix and
let δ = δM be as in Proposition 3.1. Then if (Aτ) is a disjoint
sequence of sets in η°δ, there exists a sequence (Bi) of sets such that
Bi-At, i = 1, 2, - -, and U?=i B< e yl

Proof. Let M = (αΛ<) be nonnegative and regular. Then for
each n = 1, 2, let s(n) be such that

oo *|

Σ ani < — and s(n + 1) > s(n) .
ί=«(n)+l %

For each j = 1, 2, select fc(j) so that n ^ &(i) implies

C O x i and k(j + 1)

The existence of fc(^) follows from Proposition 2.3 (ii). Further, for
n ^ &(1) let p(n) be such that k(p(n)) <ίn < k(p(n) + 1). Finally,
for m = 1, 2, , we define

Note that ,Bm—Am for m = 1, 2, . Letting i? = Uί°=i^> w e n o w

show that δ(B) = 0. Reasons for some of the steps in the following
string of inequalities will be given immediately thereafter.

(1) δ(B) = li
n—>oo

oo

= lim sup Σ anί^B^)
/ 1 *(Λ)

(2) ^ lim sup — + Σ α
w-»oo y W <=i

= lim sup Σ α»iZ*(ί)
%-yoo ΐ = l

(3) =lίmsupΣα, i Σ
ίi—> oo i = l m = l

β(n) p(«)

(4) = lim sup Σ αΛί Σ *
τt-*oo ί=i m=l

β(n) p(n)

^ lim sup Σ ani Σ
m=l

lim sup Σ ani Σ
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( 5 ) ^ lim sup
n-+oo <p(n)

( 6 ) - 0 .

Reasons. ( 1 ) Proposition 3.1; (2) follows from the definition of
s(n); (3) Since the Bm's are disjoint, we can write Xs(i) = Σ ϊ = i ^ m ( Ό ί
(4) We show that if m > pin) and i <̂  s(n)f then %Bm(i) = 0: m > p(w) ==>
fc(w + 1) > k(p{n) + l)>n=> s(k{m + 1)) > s(n)=>{l, 2, . . , s(n)} n # m =
0 ^ ^ ( ί ) = 0 f or i <: s(w); (5) follows since w ;> k(p(n)); (6) follows
since p(w) —> o3 as w —> oo. This completes the proof.

We now define another density, one which is closely associated
with the summability method introduced by G. G. Lorentz [5] called
"almost convergence," and for which the (APO) fails. To this end
let

Γ 1 m+n η

u(A) = lim min — Σ ZA(ΐ) .

We shall call u the (lower) uniform density of A.
Here we state without proof some facts concerning the density

u: The limit in the definition of u exists for any set A. The func-
tion u is a lower asymptotic density (i.e., u satisfies (D.1)-(D.4) of
§2). The associated upper density ΰ is

Γ 1 m+n Ί
u(A) = lim max — Σ ^ ( ί )

u-»oo L w^O ^ i=m+ί J

It follows that Aeηu iff the sequence Z^ is almost convergent. Note
that if a set A contains arbitrarily long consecutive strings of in-
tegers (i.e., if for each N> 0 there exists k such that {k + 1, k +
2, , k + AT} C A), then ΰ(A) = 1.

We use this last fact to show that the (APO) fails for u. Let
A = {1,2,4, •• ,2»f •••} and let At = {i + a:aeA}9 i = 1, 2, •••. It
is not difficult to show that each A έ e ^ , since max m έ 0 ^~x ΣΓ=S?+i^(i)
is approximately (log2n)/^. In order to show that the (APO) fails,
it suffices to show that, for any choice of sets B^A^ ^(UΓ=i^) > 0.
Thus, if (Bt) is any sequence of sets with Bt^Aif ί = 1, 2, •••, and
if N > 0, then for each i, l ^ i ^ N, there exists Â  so that 2n + i e JB<
whenever w > fc^. Taking fc = m a x ^ , k2, , &̂ } and n> k, we ob-
serve that 2* + 1 6 #!, 2" + 2 6 £ 2, , 2n + iVe β^ and therefore,
{2n + 1, 2n + 2, , 2W + iV} £ UΓ=i Bt. It follows that UΓ«i ^ con-
tains arbitrarily long consecutive strings of integers and, consequently

4* Sequence spaces related to densities* If $ is a sequence, I



300 A. R. FREEDMAN AND J. J. SEMBER

is a real number and A is a set of natural numbers with I\A infinite,
then by

we shall mean that the sequence x converges to I in the ordinary
sense if we ignore the terms indexed by A, that is,

DEFINITION 4.1. x —--> I in case for each ε > 0 there exists N > 0
\A)

such that \xn — 11 < ε whenever n^ N, ng A.

DEFINITION 4.2. For any density δ, let

ωδ — {xe ft): 3ί real and A £ J with ί(A) = 0 and x -—> £} .

We call ft)δ the set of (δ-) nearly convergent sequences.

PROPOSITION 4.3. For any density 8, ωδ is a linear space of
sequences with c Q(ύδ.

Proof. The fact that c £ ωδ is immediate from the definition
and Proposition 2.2 (ii). Let x and y be in ωδ and let llf l2, A, B
be such that δ(A) = δ(B) = 0, x —-> ϊr and ?/ —-> ί2. By Proposition
2.3 (ii) δ(il US) = 0, and it is clear that x + yr—> I, + l2, con-

sequently x + yeωδ. The remaining linear space postulates follow
easily.

PROPOSITION 4.4. Let 3 be a density. Then the (APO) holds for
δ iff ωδ is closed with respect to the topology of uniform convergence
on ft).

Proof. Note that the topology referred to in the proposition is
not the usual linear topology of coordinatewise convergence. Assume
first that the (APO) holds and let y e ωδ. Then there is a sequence
{xn} in ωδ such that xn —> y uniformly. For each n there exists a
real number ln and a set of natural numbers An such that δ(An) — 0
and xn—~"?ϊ We show that the sequence (ln) is Cauchy and the-

\An)

refore converges, in the usual sense, to some limit I. Let ε > 0 be
given. There exists N> 0 so that n^N implies \x* — Vi\< ε/4 for
i = 1, 2, . If we take m, n^ N, then there is an integer i such
that \x? — ln\ < ε/4 and |α?Γ — lm\ < ε/4 (choose i g AΛU Am and suffici-
ently large) and, therefore,

\ln ~ lm\ ^\ln-χ»\ + I a?j - yt\ + \yt - xT\ + \xT ~ IJ < e .
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We now use the (APO). There exist sets Bn~An such that if E~
\Jΐ=1Bί9 then δ(E) == 0. We claim that y —-> I. If ε > 0 choose n

(E)

such that for all i, \xZ — yt\ < eβ and such that \ln — l\ < e/3. Since
An is contained in E (except for at most finitely many points), there
is an N(=N(n)) such that, if i ^ N and HE, then igAn and
\x* — U < fi/3. Hence, for i^N and igE we have

and so 2/-τ=τ>ϊ. It follows that yeωδ.
\E)

Now suppose the (APO) fails to hold for δ. Then there exists
a sequence of disjoint sets Alf A2, of natural numbers such that
δ(Ai) = 0, i = 1, 2, , and also such that for any choice of (Bt)
with Bi~Aif i = 1, 2, - , we have 5(UΠ=i-δi) > 0. Evidently, if we
remove one set, say Bjf from this union we still get the same con-
clusion—namely, for any j = 1, 2, , S(\JtΦj Bt) > 0. We define a
sequence {xn} that converges uniformly to a sequence y, where each
xn e ωδ and y g ft)δ. Let

— if i e Ay, where 1 ^ i ^
:/

0 otherwise

and let

— if there exists j such that ί e A*
3

0 otherwise.

It is easily seen that xnecoδ and that \x* — yt\ < l/(n + 1), i = 1,
2, •••, so that {xn}—>y (uniformly). However, if I is a real number
and E is a set for which y —-> ϊ, then for all but at most one w

(in the case that I — 1/j for some j) we have, evidently,

Letting Bn = AnaE, n = 1, 2, 3, , we have δ(JE) ̂  δ(\Jϊ=ιBn) > 0.
It follows that ygωδ. This completes the proof.

Since the sequences xn and y defined above are bounded we im-
mediately obtain the

COROLLARY 4.5. ωδΓ\m = ωδr\m iff 8 satisfies the (APO).

We note that, in our prime example (ordinary asymptotic
density and Cesaro summability), the space coδnm coincides with the
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space of bounded strongly Cesaro summable sequences. In this case
the density and the summability method are related, both being
produced from the Cesaro matrix. In relating densities and sum-
mability methods in general, we are led to investigate methods that
we call Λ-type summability methods. If £ is a summability method
with domain, or convergence field, cs, let the strong convergence
field associated with S be

\cs\ = {xeω: ll such t h a t S(\x - l\) = 0} .

The set \cs\ need not be a subspace of cs. (For example, if cs is
the set of all convergent series with S(x) = ΣΓ=iXu then \cs\ is the
set of all constant sequences.) I t is a subspace, however, for those
methods given in

DEFINITION 4.6. An R-type summability method (RSM) is a linear
functional S with domain cs, where cs is a subspace of ω, and such
that S satisfies the following two properties:

(PI) S is regular (i.e., c Q cs and S(x) = limfc% for xec).
(P2) if IxI e c s with S(\x\) = 0 and y em, then y-xecs and

We let

G°s = {x G ω: S(x) = 0}

\cs\ = {xecoill such that | x — I\ ec%}

= {xeω:\x\ec°s} .

We remark that c°s is a subspace of cs and that (P2) can be briefly
written: m-\cs\

Q S c^.
Our next three propositions establish that the summability

methods under consideration are reasonable ones.

PROPOSITION 4.7. For any summability method S, the condi-
tion (P2) is equivalent to the condition that \cs\° be solid (i.e.,

Proof. Assume condition (P2) holds, let y e m and xe\cs|°. Let-
ting 7] be the sequence of ± Γ s such that \y-x\ = O ^ Λ ) , and noting
that yj ysm, we can write

By (P2), Iy x\ ec°s and, therefore, y xe\cs\°. Conversely, suppose
that |c<j|° is solid and let xe |c5 |°. Writing x = x+ — x~, where xf =
max{a?i, 0} and xϊ=— min{^, 0}, we observe that x+ = t-x, where
tern. Thus x+ e\cs |°. Since | x+1 = x+, it follows that x+ e cQ

s. Simi-



DENSITIES AND SUMMABILITY 303

larly, x~ e c°s and, since c°s is a subspace, x e c°s. Condition (P2) fol-
lows.

PROPOSITION 4.8. If S is an RSM, then \cs\ c c s ,

Proof. If x e | cs | then, for some i, j cc — 11 6 c^ which implies, by
definition, that a; - le\cs\°. It follows by (P2) that x - lec°s. It
follows from (PI) and the linearity of S that xecs (and that
S(x) = Z).

PROPOSITION 4.9. / / S is an RSM, £&e% | c s | and \cs\° are sub-

spaces of cs and c°s, respectively. Furthermore, cQ\cs\ and

Proof. Condition (P2) implies that \cs\°Qc°s and Proposition 4.8
gives the inclusion \cs\ Q cs. To show that x + y e\cs\° whenever
xe\cs\° and ys\cs\

0, let rj and τ be sequences of ± l ' s such that

\x + y\ = y x + τ - y .

Again (P2) implies that Ύ) X and τ-y are in c°s, and therefore since
c% is a subspace, \x + y\ec°s. By definition it follows that x + y e\cs\°.
We omit the other details, which are routine.

Note that if S is an RSM, then it follows from Propositions 4.8
and 4.9 that cQ \cs\ Q cs. Furthermore, it is easy to see that if x
is a convergent sequence and if I is any real number for which
\x — l\ec°s, then I = S(x) — lim^o;*. An RSM is therefore "strongly"
regular. In case S is a matrix method of summability, this ter-
minology agrees with that used in [6] (p. 191).

We now compare the sequence spaces ωδ and \cs\ as they relate
to a density δ.

DEFINITION 4.9. A density δ and an RSM S are related in case,
for each subset A of the natural numbers,

PROPOSITION 4.10. // δ and S are a related density and RSM,
then

(where ώδ denotes the closure of a)δ with respect to the topology of
uniform convergence on a)).

Proof. Let x e ωδ Π m. Then there exists a real number I and
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a set A of natural numbers such that §(A) = 0 and x-—> I. Since

δ(A) = 0, we have XAe\cs\°. Writing

and noting that x — lem, we have, by Proposition 4.7, (x — l)-XAe
\cs\\ Further, (x — J) Z i u 6 C o £ 1̂ 1° by Proposition 4.9. It follows
that x — le\cs\° and, consequently, that # e | c s | .

Next consider any xe \c8\. If I is such that \x — l\e\cs\°, define

= \iel: x _ j | > 11 n - ι 2 . . .
n »

We claim that δ(An) = 0. Define a sequence δ by

1
if i

0 otherwise.

The sequence b is bounded and so b (x — I) e \cs\° by Proposition 4.7.
But b-(x — I) — XΛn, thus XAn€\cs\° Since 8 and S are related, this
means that δ(An) = 0. Now define {yn} by

aj< if i > n and i 6 | J As ,

i if i > n and i$\J A3 .

If £7W = Ui=i Aί9 then δ(J5J = 0 and clearly yn —+1, so that yn e α)δ

for each n = 1, 2, . Also | y? — ajt | < 1/n and thus {yn} -* OJ uni-

formly. Therefore as 6 ωδ.

COROLLARY 4.11. // 8 and S are a related density and RSM,
and if the (APO) holds for 8, then

\cs\()m = ωδΓim .

In case \cs\ is a closed subspace of a), then (independently of the
validity of the (APO))

5* Concluding remarks* The results are illustrated most clearly
in the case of matrices. If M is any nonnegative regular matrix,
it is readily seen that the summability method defined by M is an
RSM and that the method is related (in the sense of Definition
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4.9) to the density δ# (Proposition 3.1). By Proposition 3.2 the

(APO) holds, and we therefore have |cM | Πm = ωδMflm = ύ)^(Ίm. In
the special case where M = J (the identity matrix), we have \cj\n
m = ωδjΓ\7n = cf]m = c. It is interesting to note here that ωδj is
itself equal to c, since δj(A) — 0 if and only if A is finite. (Thus
the condition that x converge to I except on a set A e y°δj is equi-
valent to the ordinary convergence of x to I.)

In case M = Clf the Cesaro matrix, we obtain IσJ £ ωδ and the
relationship between strong Cesaro summability and ordinary asym-
ptotic density mentioned several times previously Qa^Πm = ωδ Dm).

As a nonmatrix illustration of the results, if we let S be the
summability method defined by S(x) = I if and only if (ΣΓ=ϊ+i %i)/n -* I
uniformly with respect to m = 0, 1, 2, , then the convergence field
consists of the space of almost convergent sequence introduced by
Lorentz [5]. The associated strong convergence field is the space
|ACj of strongly almost convergent sequences studied in [3] (x is
strongly almost convergent in case there exists I such that
(ΣΓ="ϊ+i \Xi — ϊ|)M->0 uniformly with respect to m = 0, 1, 2, •)• It
can readily be checked that almost convergence is related to the
uniform density function discussed in §3. Since | AC | is closed in
the topology of uniform convergence, we have, by Corollary 4.1.1,

I AC I = I AC 1 Π m = ωu Π m .

However, since the (APO) fails to hold for this density (see § 3) we
have the strict inclusion

ΰ) M ί lmξ I AC I .
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