POINTWISE DOMINATION OF MATRICES AND COMPARISON OF \mathscr{F}_{p} NORMS

Barry Simon

Let p be a real number in $[1, \infty$) which is not an even integer. Let $N=2[p / 2]+5$. We give examples of $N \times N$ matrices A and B, so that $\left|\alpha_{i j}\right| \leqq b_{i j}$ but $\operatorname{Tr}\left(\left[A^{*} A\right]^{p / 2}\right)>$ $\operatorname{Tr}\left(\left[B^{*} B\right]^{p / 2}\right)$.

Let A and B be $N \times N$ matrices with

$$
\begin{equation*}
\left|a_{i j}\right| \leqq b_{i j} . \tag{1}
\end{equation*}
$$

If we define the p norm of a matrix by

$$
\begin{equation*}
\|A\|_{p}=\operatorname{Tr}\left(\left[A^{*} A\right]^{p / 2}\right)^{1 / p} \tag{2}
\end{equation*}
$$

then it is trivial that, if p is an even integer, then

$$
\begin{equation*}
\|A\|_{p} \leqq\|B\|_{p} \tag{3}
\end{equation*}
$$

when (1) holds. For one need only write out the trace explicitly in terms of matrix elements. In a more general context, we conjectured in [5] that (1) implies (3) whenever $p \geqq 2$. The attractiveness of this conjecture is shown by the fact that I know of at least five people other than myself who have worked on proving it.

It was thus quite surprising that Peller [3] announced that (3) fails for some infinite matrices whenever p is not an even integer. In correspondence, Peller described his counterexample which relies on his beautiful but elaborate theory of \mathscr{I}_{p} Hankel operators (4) and on a paper of Boas (2). It follows from Peller's example that (3) must fail for some finite N but it is not clear for which N. Our purpose here is to give explicit N and to avoid the complications of Peller's $\mathscr{\mathscr { p }}_{p}$-Hankel theory.

The idea of the construction is very simple. Boas [2] constructed polynomials $f(z), g(z)$ with $\int\left|f\left(e^{i \theta}\right)\right|^{p} d \theta>\int\left|g\left(e^{i \theta}\right)\right|^{p} d \theta$ even though the coefficients, a_{n}, of f and coefficients, b_{n}, of g obey $\left|a_{n}\right| \leqq b_{n}$. a and b should be thought of as Fourier coefficients of $f\left(e^{i \theta}\right)$ and $g\left(e^{i \theta}\right)$. It is obvious that for sufficiently large $N, \sum_{j=0}^{N=1}\left|f\left(e^{i j_{X}}\right)\right|^{p} \geqq \sum_{j=0}^{N-1}\left|g\left(e^{i j_{N}}\right)\right|$ where $\theta_{N}=2 \pi / N$. Again f and g should be viewed as functions on Z_{N} and the coefficients of the polynomial (if N is larger than the degrees) as Z_{N}-Fourier components. But the functions on Z_{N} are naturally imbedded in $N \times N$ matrices in such a way $\|A\|_{p}^{p}$ is just $\sum \mid f\left(\left.e^{\left.i j_{N}\right)}\right|^{p}\right.$ and so that the order (1) is equivalent to the order on Fourier coefficients.

To be explicit, given N and c_{0}, \cdots, c_{N-1} let A be the matrix

$$
\left(\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{N-2}
\end{array} c_{N-1}+c_{N-1}\right.
$$

$z_{N}=\exp \left(i \theta_{N}\right)$ and let φ_{j} be the vector with components $\left(1, z_{N}^{i}, z_{N}^{2 j}, \cdots\right.$, $\left.z_{N}^{(N-1) j}\right) ; j=0, \cdots, N-1$ and observe that

$$
\begin{equation*}
A \varphi_{j}=f(j) \varphi_{j} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
f(j)=\sum_{i=0}^{N-1} c_{\ell} \chi_{\iota}(j) \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\chi_{\iota}(j)=z_{N}^{\ell j} \tag{6}
\end{equation*}
$$

We use (6) to define χ_{ι} for any integer ℓ although, of course, χ_{ι} is periodic in ℓ with period N.

Of course, we have just exploited the fact that if σ is the matrix which cyclicity permutes the coordinates by one component, then $A \sigma=\sigma A$ (indeed $A=\sum c_{p} \sigma^{k}$) and since $=\sigma^{N}=1, \sigma$ is naturally diagonalized in terms of the group Z_{N}. The χ 's are just the characters of Z_{N}. (In Physicist's language, since A has periodic boundary conditions, one diagonalizes it in momentum space.)

Since the φ_{j} are orthogonal vectors, A is a normal operator. For such an operator $\|A\|_{p}^{p}$ is just the sum of the p th powers of the eigenvalues, i.e.,

$$
\begin{equation*}
\|A\|_{p}^{p}=\sum_{j=v}^{N}|f(j)|^{p} . \tag{7}
\end{equation*}
$$

We take

$$
\begin{gather*}
k=\left[\frac{1}{2} p\right]+2 \tag{8a}\\
N=2 k+1=2\left[\frac{1}{2} p\right]+5 \tag{8b}
\end{gather*}
$$

Motivated by Boas' example, we choose
(9) $\quad c_{0}=1 ; \quad c_{1}=r ; \quad c_{k}=\lambda r_{k} ; \quad c_{\iota}=0, \quad$ if $\ell \neq 0,1, k$
where r is sufficiently small and

$$
\begin{equation*}
\lambda=\left(\frac{1}{2} p-1\right)\left(\frac{1}{2} p-2\right) \cdots\left(\frac{1}{2} p-k+1\right) / k!. \tag{10}
\end{equation*}
$$

Notice that since p is not an even integer and since $p / 2+1<k<$ $p / 2+2$, we have that $\lambda<0$. Let $d_{j}=\left|c_{j}\right|$ and let B the corresponding matrix so (1) certainly holds.

We compute $\|A\|_{p}^{p}$ using (7) and the binomial theorem which is certainly legitimate if r is sufficient small

$$
\begin{aligned}
|f(j)|^{p / 2} & =\sum_{\ell=0}^{\infty}\binom{p / 2}{\iota} \sum_{m=0}^{\ell}\binom{\iota}{m} r^{\delta+m(k-1)} \lambda^{m} \chi_{\iota+m(k-1)}(j) \\
& =f_{1}(j)+f_{2}(j)+f_{3}(j)+0\left(r^{2 k+1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{1}=\sum_{\ell=0}^{k-1}\binom{p / 2}{\iota} r^{\iota} \chi_{\iota} \\
& f_{2}=\sum_{\ell=k}^{2 k-1}\left[\binom{p / 2}{\iota}+\lambda\binom{p / 2}{\iota-k+1}\binom{\ell-k+1}{1}\right] r^{\iota} \chi_{\iota} \\
& f_{3}=r^{2 k} \chi_{2 k}\left[\binom{p / 2}{2 k}+\lambda(k+1)\binom{p / 2}{k+1}+\lambda^{2}\binom{p / 2}{2}\right] .
\end{aligned}
$$

Because $N=2 k+1$, the characters $\chi_{0}, \cdots, \chi_{2 k}$ are orthogonal so squaring and summing:

$$
\|A\|_{p}^{p}=\sum_{1=0}^{k-1}\binom{p / 2}{j}^{2} r^{2 j}+r^{2 k}\left[\binom{p / 2}{k}+\lambda\binom{p / 2}{1}\right]^{2}+0\left(r^{2 k+1}\right) .
$$

The formula for $\|B\|_{p}^{p}$ is identical, except λ is replaced by $|\lambda|=-\lambda$. But λ is exactly chosen so that

$$
\binom{p / 2}{k}-\lambda\binom{p / 2}{1}=0
$$

Thus, for r small, $\|A\|_{p}>\|B\|_{p}$.
It was necessary to take $N=2 k+1$ rather than just $k+1$ to avoid cross terms between the r_{0} and $r^{\prime \prime}(\zeta \leqq 2 k)$ factors which have the wrong sign and only vanish because χ_{0} and χ_{ℓ} are orthogonal for $\ell \leqq 2 k$.

We close this paper with a series of remarks:
(1) Peller constructs infinite matrices A, B which are matrices of compact operators on ℓ_{2} with (1) holding, $B \in \mathscr{I}_{p}$ and $A \notin \mathscr{I}_{p}$. It is easy to get such operators from our examples as follows: normalize A, B so that $\|A\|_{p}>1>\|B\|_{p} \geqq\|B\| \geqq\|A\|$. Let us view ℓ_{2} as the tensor algebra over \boldsymbol{C}^{N}, i.e., as $\boldsymbol{C} \oplus \boldsymbol{C}^{N} \oplus \boldsymbol{C}^{N^{2}} \oplus \cdots$ and let $\Gamma(A)=$ $1 \oplus A \oplus(A \otimes A) \oplus \cdots$. Then $\left|\Gamma(A)_{i j}\right| \leqq\left|\Gamma(B)_{i j}\right|$ and $\Gamma(A), \Gamma(B)$ are compact, $\Gamma(B) \in \mathscr{I}_{p}$ but $\Gamma(A) \notin \mathscr{I}_{p}$.
(2) Given any measure space, (M, μ) with $L^{2}(M, \mu)$ infinite dimensional, we cannot have that $\|A\|_{p} \leqq c\|B\|_{p}$ for some fixed c and all A, B with $|(A f)(m)| \leqq(B|f|)(m)$. For one can always imbed C^{N} into $L^{2}(M, \mu)$ in a way preserving $\|A\|_{p}$ norms and order (map $\left(a_{1}, \cdots, a_{n}\right)$ into $\sum a_{i} f_{2}(m)$ with f_{i} multiples of characteristic functions of disjoint sets). If $\|A\|_{p} \leqq c\|B\|_{p}$ held for $L^{2}(M)$ it would hold for any C^{N}. But by taking tensor products of our example one can arrange that $\|A\|_{p}\|B\|_{p}$ is arbitrarily large. [It is interesting that this tensor product/operator theory version of Katznelson's remark (quoted in Bachelis [1]) is more natural than the function theoretic construction.]
(3) Let $N(p)$ be the smallest N for which there exist matrices for which (1) holds but (3) fails. Clearly we have shown

$$
N(p) \leqq 2\left[\frac{1}{2} p\right]+5
$$

but equality is most unlikely for any p. Indeed for $1 \leqq p<2$, we have $N(p)=2$ since if

$$
A=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

then $\|B\|_{p}^{p}=2^{p},\|A\|_{p}^{p}=2(\sqrt{2})^{p}>\|B\|_{p}^{p}$ if $p<2$. Moreover, we owe to S . Friedland the following simple argument showing that $N(p) \geqq 3$ if $p>2$. If C, D are positive matrices with

$$
\begin{equation*}
\left|c_{i j}\right| \leqq d_{i j} \tag{11}
\end{equation*}
$$

then with $\mu_{j}(\cdot)=$ singular values, we trivially have

$$
\mu_{1}(C) \leqq \mu_{1}(D) ; \quad \mu_{1}(C)+\mu_{2}(C) \leqq \mu_{1}(D)+\mu_{2}(D)
$$

(since for 2×2 positive matrices $\mu_{1}(C)+\mu_{2}(C)=\operatorname{Tr}(C)$). By general rearrangement inequalities [5]

$$
\operatorname{Tr}\left(C^{p}\right) \leqq \operatorname{Tr}\left(D^{p}\right)
$$

for any $1 \leqq p \leqq \infty$. Given A, B obeying (1) and applying this remark to $C=A^{*} A, D=B^{*} B$, we see that (3) holds for any $p \geqq 2$ if $N=2$. It would be interesting to know the precise value of $N(p)$. Two natural guesses are $[p / 2]+1$ and $2[p / 2]$.

It is a pleasure to thank V. Peller for most valuable correspondence and S. Friedland for useful discussions.

References

1. G.F. Bachelis, On the upper and lower majorant properties in $L^{p}(G)$, Quiro. J. Math., 24 (1973), 119-128.
2. R. P. Boas, Majorant problems for trigonometric series, J. Anal. Math., 10 (1962), 253-271.
3. V. V. Peller, Dokl. Acad. Nauk. Math., 252 (1980), 43-47; and paper in prep.
4. -, Nuclearity of Hankel operators and Hankel operators of the class γ_{p} and projecting γ_{p} onto the Hankel operators, Leningrad preprints.
5. B. Simon, Trace Ideals and Their Applications, Cambridge University Press, 1979.

Received December 19, 1980. Research partially supported by NSF Grant MCS-7801885. Sherman Fairchild Visiting Scholar; on leave from Departments of Mathematics and Physics, Princeton University.

California Institute of Technology
Pasadena, CA 91125

