POINTWISE DOMINATION OF MATRICES AND COMPARISON OF \mathscr{I}_{p} NORMS

BARRY SIMON

Let p be a real number in $[1, \infty)$ which is not an even integer. Let N = 2[p/2] + 5. We give examples of $N \times N$ matrices A and B, so that $|a_{ij}| \leq b_{ij}$ but $\operatorname{Tr}([A^*A]^{p/2}) >$ $\operatorname{Tr}([B^*B]^{p/2})$.

Let A and B be $N \times N$ matrices with

$$||a_{ij}| \leq b_{ij} \; .$$

If we define the p norm of a matrix by

(2)
$$||A||_{p} = \operatorname{Tr} ([A^{*}A]^{p/2})^{1/p}$$

then it is trivial that, if p is an even integer, then

$$\|A\|_{p} \leq \|B\|_{p}$$

when (1) holds. For one need only write out the trace explicitly in terms of matrix elements. In a more general context, we conjectured in [5] that (1) implies (3) whenever $p \ge 2$. The attractiveness of this conjecture is shown by the fact that I know of at least five people other than myself who have worked on proving it.

It was thus quite surprising that Peller [3] announced that (3) fails for some infinite matrices whenever p is not an even integer. In correspondence, Peller described his counterexample which relies on his beautiful but elaborate theory of \mathscr{I}_p Hankel operators (4) and on a paper of Boas (2). It follows from Peller's example that (3) must fail for some finite N but it is not clear for which N. Our purpose here is to give explicit N and to avoid the complications of Peller's \mathscr{I}_p -Hankel theory.

The idea of the construction is very simple. Boas [2] constructed polynomials f(z), g(z) with $\int |f(e^{i\theta})|^p d\theta > \int |g(e^{i\theta})|^p d\theta$ even though the coefficients, a_n , of f and coefficients, b_n , of g obey $|a_n| \leq b_n$. a and bshould be thought of as Fourier coefficients of $f(e^{i\theta})$ and $g(e^{i\theta})$. It is obvious that for sufficiently large N, $\sum_{j=0}^{N-1} |f(e^{ij\theta_N})|^p \geq \sum_{j=0}^{N-1} |g(e^{ij\theta_N})|$ where $\theta_N = 2\pi/N$. Again f and g should be viewed as functions on Z_N and the coefficients of the polynomial (if N is larger than the degrees) as Z_N -Fourier components. But the functions on Z_N are naturally imbedded in $N \times N$ matrices in such a way $||A||_p^p$ is just $\sum |f(e^{ij\theta_N})|^p$ and so that the order (1) is equivalent to the order on Fourier coefficients. To be explicit, given N and c_0, \dots, c_{N-1} let A be the matrix

$$egin{pmatrix} c_0 & c_1 & \cdots & c_{N-2} & c_{N-1} \ c_{N-1} & c_0 & \cdots & c_{N-3} & c_{N-2} \ c_{N-2} & c_{N-1} & \cdots & c_{N-4} & c_{N-3} \ dots & & & dots \ c_1 & c_2 & & & c_0 \end{pmatrix}$$

 $z_N = \exp(i\theta_N)$ and let φ_j be the vector with components $(1, z_N^i, z_N^{2j}, \cdots, z_N^{(N-1)j})$; $j = 0, \cdots, N-1$ and observe that

$$(4)$$
 $A arphi_j = f(j) arphi_j$

where

(5)
$$f(j) = \sum_{i=0}^{N-1} c_{\ell} \chi_{\ell}(j)$$

with

$$(6) \qquad \qquad \chi_{c}(j) = z_{N}^{\mathcal{E}_{j}}$$

We use (6) to define χ_{ϵ} for any integer ℓ although, of course, χ_{ϵ} is periodic in ℓ with period N.

Of course, we have just exploited the fact that if σ is the matrix which cyclicity permutes the coordinates by one component, then $A\sigma = \sigma A$ (indeed $A = \sum c_p \sigma^k$) and since $= \sigma^N = 1$, σ is naturally diagonalized in terms of the group Z_N . The χ 's are just the characters of Z_N . (In Physicist's language, since A has periodic boundary conditions, one diagonalizes it in momentum space.)

Since the φ_j are orthogonal vectors, A is a normal operator. For such an operator $||A||_p^p$ is just the sum of the *p*th powers of the eigenvalues, i.e.,

(7)
$$||A||_{p}^{p} = \sum_{j=0}^{N} |f(j)|^{p}$$
.

We take

(8a)
$$k = \left[\frac{1}{2}p\right] + 2$$

(8b)
$$N = 2k + 1 = 2\left[\frac{1}{2}p\right] + 5.$$

Motivated by Boas' example, we choose

$$(9)$$
 $c_0 = 1$; $c_1 = r$; $c_k = \lambda r_k$; $c_\ell = 0$, if $\ell \neq 0, 1, k$
where r is sufficiently small and

(10)
$$\lambda = \left(\frac{1}{2}p - 1\right)\left(\frac{1}{2}p - 2\right)\cdots\left(\frac{1}{2}p - k + 1\right)/k! .$$

Notice that since p is not an even integer and since p/2 + 1 < k < p/2 + 2, we have that $\lambda < 0$. Let $d_j = |c_j|$ and let B the corresponding matrix so (1) certainly holds.

We compute $||A||_{p}^{p}$ using (7) and the binomial theorem which is certainly legitimate if r is sufficient small

$$egin{aligned} &|f(j)|^{p/2} = \sum\limits_{arepsilon=0}^{\infty} {p/2 \choose arepsilon} \sum\limits_{m=0}^{arepsilon} {arepsilon \choose m} r^{arepsilon+m(k-1)} \lambda^m \chi_{arepsilon+m(k-1)}(j) \ &= f_1(j) + f_2(j) + f_3(j) + \mathbf{0}(r^{2k+1}) \end{aligned}$$

where

$$egin{aligned} f_1 &= \sum\limits_{arepsilon=0}^{k-1} inom{p/2}{arepsilon} r^arepsilon \chi_arepsilon \ f_2 &= \sum\limits_{arepsilon=k}^{2k-1} iggin{bmatrix} p/2 \ arepsilon \end{pmatrix} + \lambda inom{p/2}{arepsilon-k+1} inom{arepsilon-k+1}{1} iggingle r^arepsilon \chi_arepsilon \ f_3 &= r^{2k} \chi_{2k} iggl[inom{p/2}{2k} + \lambda (k+1) inom{p/2}{k+1} + \lambda^2 inom{p/2}{2} iggingle iggingle . \end{aligned}$$

Because N = 2k + 1, the characters χ_0, \dots, χ_{2k} are orthogonal so squaring and summing:

$$\|A\|_p^p = \sum\limits_{1=0}^{k-1} {{p/2}\choose{j}}^2 r^{2j} + \, r^{2k} \!\! \left[{{p/2}\choose{k}} + \lambda \!\! \begin{pmatrix} p\!/2 \\ 1 \end{pmatrix}
ight]^2 + \, 0 (r^{2k+1}) \; .$$

The formula for $||B||_p^p$ is identical, except λ is replaced by $|\lambda| = -\lambda$. But λ is exactly chosen so that

$$\binom{p/2}{k} - \lambda \binom{p/2}{1} = 0 \; .$$

Thus, for *r* small, $||A||_p > ||B||_p$.

It was necessary to take N = 2k + 1 rather than just k + 1 to avoid cross terms between the r_0 and r^{\checkmark} ($\checkmark \leq 2k$) factors which have the wrong sign and only vanish because χ_0 and χ_{\checkmark} are orthogonal for $\checkmark \leq 2k$.

We close this paper with a series of remarks:

(1) Peller constructs infinite matrices A, B which are matrices of compact operators on \mathcal{L}_2 with (1) holding, $B \in \mathscr{I}_p$ and $A \notin \mathscr{I}_p$. It is easy to get such operators from our examples as follows: normalize A, B so that $||A||_p > 1 > ||B||_p \ge ||B|| \ge ||A||$. Let us view \mathcal{L}_2 as the tensor algebra over \mathbb{C}^N , i.e., as $\mathbb{C} \oplus \mathbb{C}^N \oplus \mathbb{C}^{N^2} \oplus \cdots$ and let $\Gamma(A) =$ $1 \oplus A \oplus (A \otimes A) \oplus \cdots$. Then $|\Gamma(A)_{ij}| \le |\Gamma(B)_{ij}|$ and $\Gamma(A), \Gamma(B)$ are compact, $\Gamma(B) \in \mathscr{I}_p$ but $\Gamma(A) \notin \mathscr{I}_p$. (2) Given any measure space, (M, μ) with $L^2(M, \mu)$ infinite dimensional, we cannot have that $||A||_p \leq c||B||_p$ for some fixed c and all A, B with $|(Af)(m)| \leq (B|f|)(m)$. For one can always imbed C^N into $L^2(M, \mu)$ in a way preserving $||A||_p$ norms and order (map (a_1, \dots, a_n) into $\sum a_i f_i(m)$ with f_i multiples of characteristic functions of disjoint sets). If $||A||_p \leq c||B||_p$ held for $L^2(M)$ it would hold for any C^N . But by taking tensor products of our example one can arrange that $||A||_p/||B||_p$ is arbitrarily large. [It is interesting that this tensor product/operator theory version of Katznelson's remark (quoted in Bachelis [1]) is more natural than the function theoretic construction.]

(3) Let N(p) be the smallest N for which there exist matrices for which (1) holds but (3) fails. Clearly we have shown

$$N(p) \leq 2\left[rac{1}{2}p
ight] + 5$$

but equality is most unlikely for any p. Indeed for $1 \leq p < 2$, we have N(p) = 2 since if

$$A = egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix} \qquad B = egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$$

then $||B||_{p}^{p} = 2^{p}$, $||A||_{p}^{p} = 2(\sqrt{2})^{p} > ||B||_{p}^{p}$ if p < 2. Moreover, we owe to S. Friedland the following simple argument showing that $N(p) \ge 3$ if p > 2. If C, D are positive matrices with

$$(11) |c_{ij}| \le d_{ij}$$

then with $\mu_{i}(\cdot) = \text{singular values}$, we trivially have

$$\mu_1(C) \leq \mu_1(D) \; ; \qquad \mu_1(C) + \mu_2(C) \leq \mu_1(D) + \mu_2(D)$$

(since for 2×2 positive matrices $\mu_1(C) + \mu_2(C) = \text{Tr}(C)$). By general rearrangement inequalities [5]

$$\mathrm{Tr}\left(C^{p}\right) \leq \mathrm{Tr}\left(D^{p}\right)$$

for any $1 \leq p \leq \infty$. Given A, B obeying (1) and applying this remark to $C = A^*A$, $D = B^*B$, we see that (3) holds for any $p \geq 2$ if N = 2. It would be interesting to know the precise value of N(p). Two natural guesses are [p/2] + 1 and 2[p/2].

It is a pleasure to thank V. Peller for most valuable correspondence and S. Friedland for useful discussions.

References

1. G. F. Bachelis, On the upper and lower majorant properties in $L^{p}(G)$, Quiro. J. Math., 24 (1973), 119-128.

2. R.P. Boas, Majorant problems for trigonometric series, J. Anal. Math., 10 (1962), 253-271.

3. V. V. Peller, Dokl. Acad. Nauk. Math., 252 (1980), 43-47; and paper in prep.

4. _____, Nuclearity of Hankel operators and Hankel operators of the class $\tilde{\gamma}_p$ and projecting $\tilde{\gamma}_p$ onto the Hankel operators, Leningrad preprints.

5. B. Simon, Trace Ideals and Their Applications, Cambridge University Press, 1979.

Received December 19, 1980. Research partially supported by NSF Grant MCS-78-01885. Sherman Fairchild Visiting Scholar; on leave from Departments of Mathematics and Physics, Princeton University.

California Institute of Technology Pasadena, CA 91125