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ON STRATIFYING PAIRS OF LINEAR MAPPINGS

C. G. GIBSON AND T. D. WARD

The complex linear representations (of fixed dimension)
of an oriented graph form a finite dimensional vector space
M with a natural action of a product G of general linear
groups. It is interesting to look for natural Whitney strati-
fications of M invariant under G. For the Dynkin diagrams
Av, Dn, E6, EΊi E8 such stratifications are provided by the
orbits; and for thQ extended Dynkin diagrams An, Dn, E6,
E7, E8 one might expect to obtain such stratifications by
'neglecting moduli', in an obvious way. This is known to be
the case for Ao. For At we show that this procedure does
yield a stratification, and that at least the regular strata
satisfy the Whitney conditions.

A question of general interest in singularity theory is whether,
given a Lie group G acting differentiably on a differentiate mani-
fold M (we are thinking primarily of the algebraic case) there
exists a natural stratification of M, invariant under the action,
subject at least to the proviso that all the orbits in a given
stratum have the same dimension. A more difficult question is
whether there exist Whiney stratifications [8] with the same prop-
erties.

An interesting class of examples where these questions are
decidedly nontrivial arises in the study of complex linear represen-
tations of finite graphs. The general situation is as follows. One
starts with a finite connected graph Γ, allowing the possibility that
two vertices may be joined by several edges, or that an edge may
join a vertex to itself. It is assumed that Γ is endowed with a
fixed orientation, i.e., to each edge e is assigned a vertex a{e) called
the starting point, and a vertex β(e) called the end point: moreover
it is assumed that the orientation is admissible, in the sense that
there do not exist circuits in the graph with the end point of each
edge the starting point of the next edge. Now suppose that to
each vertex a of Γ is assigned a finite dimensional complex vector
space Uaf yielding a family U= (£7J, and that to each edge e is
assigned a linear mapping fe: Ua{e)—> Uβ{e), yielding a family /=(/ β ) .
One refers to the pair (U, f) as a complex linear representation of
the oriented graph Γ. One can take the complex linear representa-
tions to be the objects of a category £f(Γ): a morphism φ: (U, /)—>
(V, g) is then a family of linear mappings φ: Ua —> Va with the
property that for any edge e the following diagram of linear map-
pings commutes
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TT f* >> TT
Ua(e) * Uβ(e)

Φaίe)

One can define the direct sum of two objects (U, f) and (V, g) to
be the object (W, h) where Wa = Ua® Va and he=fe®ge. A non-
zero object (U, f) is then indecomposable when it cannot be written
as the direct sum of two nonzero objects. By the Krull-Remak-
Schmidt theorem [4] any object (U, /) in the category Jίf(Γ) is
isomorphic to the direct sum of finitely many indecomposable objects,
unique up to order and isomorphism.

The situation of particular interest to us is the following. Sup-
pose that to each vertex a is assigned a nonnegative integer na,
and that we restrict our attention to those objects for which Va —
C71". These objects then form a finite dimensional complex vector
space M on which one has a natural differentiate action of a Lie
group G, namely a product of general linear groups GL(naf C) each
corresponding to changes of basis in Va: and the isomorphism types
in the category correspond to the orbits under this action. Note
that the action is algebraic so that by well-known results [3] the
orbits are constructible submanifolds of M. We pose now the general
question of the opening paragraph for this class of examples, and
look for restrictions which will at least provide us with candidates
for natural stratifications.

The obvious approach here is to follow the classification of
graphs in the algebraic theory. In the early 1970's it was shown
that there are only finitely many indecomposable objects (up to
isomorphism) in the category ^f{Γ) if and only if Γ is one of the
Dynkin diagrams An (n 7> 1), Dn (n ^ 4), E6, E7 or EQ: a proof of
this result, and a description of the indecomposable objects was
given in [2]. Thus for the Dynkin diagrams there are only finitely
many orbits in M, providing the required stratification: indeed, since
the orbits are constructible one has a Whitney stratification [8],
hence a complete answer to the original question.

The next stage in the algebraic theory is to consider the
extended Dynkin diagrams Άn (n ^ 0), Dn (n ^ 4), EQ, E7 and EQ.
Here one identifies two types of indecomposable, namely discrete
and homogeneous. The discrete indecomposables are classified up to
isomorphism, but the homogeneous indecomposables only up to
dimension. An account of the extended Dynkin diagrams can be
found in [5] and [6]. Now we ask for a candidate for a natural
stratification of M for the extended Dynkin diagrams. This time
we cannot simply take the orbits as the strata, as they are no
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longer locally finite, and have to look more closely. For each homo-
geneous indecomposable one has a "modulus" appearing, and the
obvious way of producing a finite partition of M invariant under
the action is just to neglect moduli. We conjecture that this pro-
vides a stratification of M for all the extended Dynkin diagrams,
and probably a Whitney stratification. The simplest example here
is the extended Dynkin diagram Ao illustrated in Fig. 1. Here M
can be thought of as the space of all complex n x n matrices, G as

FIGURE 1 FIGURE 2

the group of all invertible complex n x n matrices, and the action
G x M —> M is given by (P, A) -> P~ιAP with the orbits equivalence
classes of n x n matrices, under the relation of similarity. In this
example only homogeneous indecomposables occur, namely Jordan
matrices, and the partition of M obtained by neglecting moduli is
precisely the Segre stratification of [7]: there it was shown that
the partition is indeed a Whitney stratification of M, so establishing
our conjecture for the extended Dynkin diagram Ao. The next
simplest example is Άlf illustrated in Fig. 2. In this case M is the
space of all pairs of linear mappings Cm —> Cn

f under the action of
change of basis in domain and target. The problem of finding the
indecomposables was solved by Kronecker in 1890; he obtained four
types, two discrete and two homogeneous, and it is the interaction
of these types which renders Ά1 a significantly harder example than
ΆQ from our viewpoint. In this paper we shall prove that the
partition of M obtained by neglecting moduli is indeed a stratifica-
tion of M. We are unable as yet to prove that this is a Whiteny
stratification, though we do show that the so-called regular strata
form a Whitney stratification. In another paper [11] we manage to
get some way towards understanding the nonregular strata by pro-
ducing a complete list of specializations between strata: see [10].

1* The Kronecker stratification* For practical purposes it is
convenient to work not with the linear mappings themselves, but
rather with their matrices relative to the standard bases. Thus
we take M = M(m, n) to be the complex vector space of all pairs
{A, B) of complex m x n matrices. And we take the Lie group G
to be the product of the complex general linear groups GL(m) x
GL(n). The action Φ: G x M—> M is then given by

Φ((P, Q), (A, B)) = (PAQ, PBQ) .
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The next step is to describe the canonical indecomposables in
the category of linear representations of the extended Dynkin
diagram A±. For this it will be convenient to introduce some special
matrices. We set

with Ik the identity k x k matrix: and for any complex number X
we set

X

J(k; λ) = X . λ .

1 X /kxk

With this notation it turns out that any indecomposable is
isomorphic to one of the following four types [6]

type I: k = (Pk, Qk) (k ^ 0)

type II: k = (Pk

τ,Ql) (k^O)

type III: k*(μ) = (J(fc, μ\ Ik) (k ^ 1)

type IV: k(X) = (Ik, J(k9 X)) (k ^ 1) .

Note that when μ = 0 a canonical indecomposable of type III with
modulus μ is isomorphic to one of type IV with modulus μ~λ: these
provide the only isomorphisms in the above list. Types I, II are
discrete whilst types III, IV are homogeneous, in the sense of [5].
Any matrix pair which is a direct sum of canonical indecomposables
will be called a canonical element: thus any matrix pair is isomor-
phic to some canonical element, whose summands are unique, up to
order. It will be convenient to reserve the term regular element
for an element of M for which the canonical element to which it is
isomorphic contains only indecomposables of types III, IV: the reason
for this is that the regular elements form an open subset of M, in
the Zariski topology, for which the partition we are about to intro-
duce can actually be proved to be a Whitney stratification.

To describe the partition of M we require more notation. First,
for a sequence α = (alf , a8) of positive integers with αx <; α2 ^ •
<^αs, and a complex number λ, we introduce the block diagonal
Jordan matrix

J(a; X) = diag ( J ^ : λ), , J(as: X)) .

Suppose now that we are given nondecreasing sequences of
nonnegative integers σx — (pu , pβ), σ2 = (qu , qh), sets of non-
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decreasing sequences of positive integers σ3 — {rlf , re}, σ4 =
{si, * , Sd} distinct complex numbers μu , μc, and distinct complex
numbers Xl9 , Xd subject to the proviso that we have X^d Φ 1 for
all indices i, j . To these we associate the canonical elements

Eσx = Φ &: Eσ2 = 0 qt

and

Eσ*(μ» , /O = © (J(n; μ<), I)
ΐ = l

Eσ,(Xlf , λd) = φ (I, J(s,; λ,))

where in all cases the identity matrix I has the same order as the
Jordan block matrix. Now any matrix pair is certainly isomorphic
to a canonical element of the form

Eσλ 0 Eσ2 0 EσB(μlf -, μc) 0 #σ 4(V , λd) .

Moreover, if two such canonical elements are isomorphic they must
have the same σlf σ2, the same c + d, and the same σδ — σ3 U <τ4.
One refers to the pu - -, pa as the minimal row indices, and the
9i, '",Qb as the minimal column indices: σx and σ2 are the minimal
row and column index types. Finally we dub σ5 the invariant
factor type, and take the triple σ = (σl9 σ2, σδ) to be the canonical
type.

The set Σσ of all matrix pairs in M of a given canonical type
will be called a stratum in Λf: this yields a finite partition of M,
which we shall dub the Kronecker stratification, and our main
objective is to prove that this partition is indeed a stratification of
M. Note particularly that with these definitions the canonical inde-
composables

(J(k; 0), Ik) {Ik, J(k, λ))

always belong to the same stratum. Note also that the strata are
constructible subsets of M: this uses a standard argument based on
Chevalley's theorem, and is written out in full in [10].

In practice one needs to be able to compute the canonical type
of a given matrix pair (A, B). A procedure for calculating the
minimal indices was first described in [12], and goes as follows.
Introduce sequences of matrices Mlf , Mm and Nl9 , Nn by
taking
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IAB

A B

A B

A

B A

B
A

Bl

where A, B appear ί times in Mif and j times in N$. Now define
sequences of integers aly "*f am and βlf , βn by setting

at = im — rank (Mi)

β. — jn — rank (Nj) .

It then turns out that the number of minimal row indices of value
k is exactly ak+1 + ah^ — 2αfe, and that the number of minimal
column indices of value k is exactly βk+1 + βk-i — 2/3*.

The computation of the invariant factor type of a matrix pair
(A, B) is a more familiar process. To the pair one associates the
matrix XA + YB over the ring of homogeneous complex polynomials
in X, Y. Write Dk(X, Y) for the greatest common divisor of all
k x k minors of XA + YB and set

for 1 <̂  k ^ r, where r denotes the rank of XA + YB. The homo-
geneous polynomials E^X, Y), , Er(X, Y) are the invariant factors
of the matrix pair (A, B): each can be factorized as a product of
powers of distinct linear factors, and these powers are the elementary
divisors. Now suppose that the elementary divisors divisible by Y
are YTi with 1 <̂  i <i c, and set σz — {(ru , rc)}. And suppose that
the remaining elementary divisors are (X + XtY)8*** with 1 ^ i ^ d,
1^3^ vi9 say: set σ, = {sly •••,**} where st = (s4>1, , 8itVt). It
now follows from [6] that the matrix pair (A, B) is isomorphic to
the canonical element

Ex © J52 0 #3(0) Θ # 4 (^, , λd)

with σλ and σ2 the minimal row and column index types.

2* Construction of versal unfoldings* In subsequent sections
it will be necessary for us to have explicit versal unfoldings [9]
of elements of M under the action of G. Thus we need to know
the tangent space to the orbit through an element (A, B), and an
explicit supplement for the tangent space in M.

(2.1) The tangent space at (A, B) to its orbit is the subspace
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of M comprising all pairs (PA + AQ, PB + BQ) with P, Q arbitrary
square matrices of orders m, %.

Proof The natural mapping G~-> M onto the orbit given by
(P, Q) —> (PAQ, PBQ) is a submersion [9]: thus the required tangent
space is the image of the differential of this map, at the identity
in G, which is the mapping (P, Q) ~> (PA + AQ, PB + BQ) with P, Q
arbitrary square matrices of orders m, n.

Now we have to construct a supplement to the tangent space
(of complementary dimension). A simple device to achieve this end
is to introduce a scalar product on M, and compute the normal
space. We define the scalar product of two elements (A, B) and
(C, D) in M to be

<(A, B), (C, D)) = tr (AC*) + tr (BD*)

where tr denotes the trace, and * the adjoint matrix.

(2.2) The normal space at (A, B) to its orbit is the subspace of
M comprising all pairs (U, V) which satisfy the equations

VA* + VB* = 0: A*U + B*V = 0 .

Proof. (£/, V) lies in the normal space if and only if it is
orthogonal to every vector in the tangent space, i.e., for all square
matrices P, Q of orders m, n we have

<(Z7, V), (PA + AQ, PB + BQ)) - 0 .

A line or two of manipulation shows that this is equivalent to

tr ((UA* + VB*)P*) + tr (Q(A* U + B* Vf) = 0

for all square matrices P, Q of orders, m, n. The result follows.
The general situation now is that one has a canonical element

with (Ai9 Bi) a canonical indecomposable in M(mίf nt) and one requires
an explicit description of the matrix pairs (U, V) in the normal
space to the orbit at (A, B). Suppose that the (i, j)th block entry
of (U, V) is (Ui3 , Vi3') in M(mif nd). It is then a trivial consequence
of (2.2) that we require

Uί3Af + VίάBr - 0: AfUiS + B?VU = 0

for all indices if j . One now has to compute UiJf Vi3- explicitly for
each possible pair (A*, Bt) and (A3, B3 ) of canonical indecomposables.
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Since there are four types of canonical indecomposable we have
sixteen cases to consider. In every case the above homogeneous
system of linear equations (in the entries of Ui5 and ViS) solves
rather easily: in some cases the solution space is trivial, but in all
other cases one can pick out a list of entries which form a basis
for the solution space. Now let SiJf Tti denote the matrices obtained
from Uijy Vi5 by setting equal to zero all the entries, except for
the basis entries: and let (Sf T) be the matrix pair whose (i, j)th
block entry is (Sij9 Tti). Notice that the scalar product of ([/, V)
and (S, T) is nonzero, so that the subspace of matrices (S, T) has
trivial intersection with the tangent space at (A, B) to its orbit:
but the subspace of matrix pairs (S, T) has the same dimension as
the subspace of matrix pairs (U, V) so forms a supplement to the
tangent space. The advantage of the matrix pairs (S, T) over the
(U, V) is that they have far fewer nonzero entries, an important
practical consideration in view of the sheer complexity of some of
the versal unfolding we shall have to consider. The results of the
computations are presented in the following table: we omit the com-
putations themselves, which were written out in full in [10], as
they are perfectly elementary, and consume undue space. Each
entry in the columns headed Sth Tti is a condition on two positive
integers α, b and means that only the (α, δ)th entries satisfying
this condition are allowed to be nonzero: there are no further
conditions on the entries. When an entry involves only one of α, b
it is tacitly understood that the other can take all possible values.
A zero entry 0 indicates that the matrix in question is the zero
matrix.

(Aif B%)

Pi

Λ

P

Λ

P

i>

q

ί>2

%

T*(μ)

s(λ)

P

r*(μ)

0

0

α = p + l & 6 = 1

a=q+l

0

0

0

l^α^gΊ—q 2 —1

6 = 1

0

τtJ

0

α = l

l^b^Pz-Pi-l

α = l or 6 = 1

0

α = l

0

0

0

0

conditions

P2-Pi~1^0

p2~Pi-l>0

none

none

none

none

<2Ί-tf2-l>0

none

Continued/
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(Ait Bt)

Q

r*(μ)

r*(μ)

r*(μ)

r*(μ)

s(λ)

s(λ)

*lWl)

(AJ9 Bj)

s(λ)

V

%

r*(μ)

s(λ)

P

%

r*(μ)

S2U2)

Sij

0

0

6 = 1

0

b = T2

α = l

0

0

0

0

0

0

0

Tjt

0

0

0

0

0

0

0

0

b=q+l

0

0

b = S2

a = l

conditions

none

none

none

μι=μ*

λμφl

none

none

none

hΦh

2,=λ2

Si£S2

h — h

Si^S2

Given m, n and a canonical element (A, B) it is now a purely
mechanical matter to write down a versal unfolding of (A, B) in
the space M(m, ri). For instance when m — 3, n = 2 a versal
unfolding of the canonical element 0 + 2*(λ) comprises all pairs of
matrices

with sufficiently small unfolding parameters s, t, u, v. (This is not
quite the unfolding obtained from the above table, but equivalent
to it.) For fixed v the unfolding space is 3-dimensional with co-
ordinates s, t, u. The unfolding has type 2 exactly on the comple-
ment of the cubic surface given by f = us2: this is the so-called
Whitney umbrella comprising a surface with two connected compo-
nents, and a line, appropriately dubbed the handle. On the umbrella,
but off the handle, the unfolding has type 1 + l*(λ): on the handle,
but away from the origin, one obtains ϊ φ l * ( λ ) 0 1 * ( λ ) : and finally
at the origin one obtains precisely the original stratum.
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FIGURE 3

Of course one can systematically compute the codimensions of
orbits by counting the number of unfolding parameters in the versal
unfoldings constructed according to the above prescription. Unlike
the case of Ao the codimension is not additive, in the obvious
sense of the word, so when computing the codimension of a direct
sum one has to take into account the unfolding terms which arise
from the interaction of pairs of summands. A simple example of
this is provided by the canonical element pλ 0 pa with px<L ^pa:
each Pi has codimension zero, in the space of pairs of matrices
of the same size, but the direct sum has codimension. ΣΛ<SPH

where we write piS = max(0, ps — p* — 1), And similarly the co-
dimension of the canonical element ? i φ φ ? 6 with qt <Ξ S Qb
is Σi<i&i with qiS = max (0, ps — pt — 1). Finally, the codimension
of the mixed direct sum

will be

3* The regular strata* In § 1 we defined a regular element of
M(n, n) to be an element for which the canonical representative on
the orbit is a direct sum of indecomposables of types III and IV.
We shall say that a stratum Σ ίn M(n, n) is regular when one, and
hence every, element contained in it is regular. Note that an
element (A, B) is regular if and only if the matrix XA + YB has
nonzero determinant. Thus the regular elements in M(n, n) form
an open set; moreover, only regular strata can specialize to a regular
stratum, i.e., contain it in their frontiers. What we intend to
prove is

(3.1) The Kroneeker stratification of the regular elements in
M(n, n) is a Whitney stratification.

Let us concentrate first on showing that any regular stratum
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Σ is indeed a submanifold of M(n, n). The proof is based on a
well-known lemma [7] that it suffices to show that Σ appears as a
manifold in a versal unfolding of any element (A, B). Indeed it
will turn out that Σ appears as an affine subspace in the unfolding.
Moreover, the method of proof will also yield Whitney regularity.
Our starting point is

(3.2) Let (A, B) be a direct sum of canonical indecomposables
of type III, all having the same eigenvalue μ; and let (P, Q) be any
matrix-pair in the versal unfolding of (A} B) constructed in § 2.
Then the highest common factor Δh{X, Y) of all the k x k minors
of XP + YQ is a homogeneous polynomial of degree k in X, μX+ Y
whose coefficients are all products of unfolding parameters, and
hence independent of the eigenvalue μ.

Proof. By the construction of § 2 the matrix-pair (P, Q) is, in
a natural way, a block matrix-pair (Pih Qiό). And the construction
yields exactly three possibilites for the form of the matrix XPid +
YQίjf depicted below. The symbol * simply denotes an unfolding
parameter.

μX +

O

0

0

- Y +

0

• 0

• 0

• 0

*x *X
μX +

Cast

*X\

*X

*X

0

ι*x
0

\o

j

*x
0

0

• •• *x

. . . . 0

•μX +

•• *X

• 0

• 0

Yl

Case i < j Case i > j

The proposition now follows immediately by sheer inspection of the
matrices.

(3.3) Let (A', J3') be a direct sum of canonical indecomposables
of type IV, all having the same eigenvalue λ; and let (P', Q') be
any matrix-pair in the versal unfolding of (A\ B') constructed in
§ 2. Then the highest common factor Δ'k(X9 Y) of all the k x k
minors of XPf + YQf is a homogeneous polynomial of degree k in
X + XY, Y whose coefficients are products of unfolding parameters,
and hence independent of λ.
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The proof of (3.3) follows exactly the same lines as that of (3.2).
Consider now a general regular canonical element {A, B). This we
can certainly write in the form

{ y ) @ { u i ) ®
< = 1 3=1

where each (Aί9 Bt) is of the type described in (3.2) with associated
eigenvalue μi9 and each (A), Bj) is of type described in (3.3) with
associated eigenvalue λ,-. Moreover, we can assume that μlf - ,μc

are distinct, that Xu , xd are distinct, and that /ι,λy Φ 1 for all
indices i, j . Observe now that the versal unfolding of (A, B) con-
structed in § 2 comprises matrix-pairs

(p, Q) = Θ (P,, Qd e (P;, Q;)

with (P^ Q,) in the versal unfolding of (Aί9 Bt), and with (PJ, QJ) in
the versal unfolding of (A), B,'). Now (P, Q) must itself be regular,
vide the opening remarks of this section, so by § 1 its type depends
only on the invariant factor type of XP + YQ, i.e., the elementary
divisors of its determinant. Let us write Dk(X, Y), Eli](X, Y),
F£j)(X, Y) respectively for the highest common factors of the kxk
minors of XP + YQ, XPi + YQt, XP'ά + YQ). Further, we write st

for the common order of the matrices Aί9 Bi and ts for the common
order of the matrices A), B'ό. By inspection we see that the deter-
minants

E«XX, Y) = (Λ.X + YY* + elX, μtX + Y)

x,Y, Y)

where eif f3- are homogeneous polynomials of degrees sif tjf whose
coefficients are products of unfolding parameters, so can be supposed
as small as we please. It follows that we can suppose that no two
of the E^ have a common factor, since they certainly do not when
all the unfolding parameters are zero: likewise we can suppose that
no two of the Ft

{p have a common factor. Finally, it is clear that
Es]\ Ftf have no common factor. We use these facts as follows.
For 0 <; k < n we have

Dn_k(X, Γ) = Π EliUX, Y) Π FitUX, Y)
i=l 4=1

so that in view of (3.2), (3.3) and the remarks above the invariant
factor type of XP + YQ is independent of the choices of eigenvalues
μlf , μe, \u , Xd. Thus we have proved.

(3.4) Let (A, B) be a regular canonical element: then the type
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of a matrix-pair (P, Q) in its versal unfolding is invariant under
small changes in the eigenvalues μu , μc, Xly , λd.

The first consequence of this fact is that the stratum Σ c o n ~
taining (A, B) must be a manifold. We have already remarked in
§ 1 that Σ is certainly a constructible subset of M(n, ri). Thus the
singular set of Σ is of strictly lower dimension than Σ But the
homogeneity property expressed by (3.4) ensures that if Σ ^ a s a

singular point then the intersection of a neighborhood of that point
with Σ lies wholly in the singular set of Σ> yet has the same
dimension as Σ That contradiction establishes that Σ is a non-
singular constructible set, hence a manifold. In fact this style of
reasoning also establishes the Whitney regularity conditions over Σ
For this we have only to observe that by Whitney's theorem [8]
the subset of Σ where other strata fail to be Whitney regular over
Σ is constructible of strictly lower dimension, and that the homo-
geneity property expressed by (3.4) will certainly preserve Whitney
regularity. That concludes the proof of (3.1).

It is well worth remarking that (3.1) can be extended to cover
elements in M(n + 1, n) which are isomorphic to the direct sum of
a single canonical indecomposable of type I and a regular element;
or dually to elements in M(n, n + 1) which are isomorphic to the
direct sum of a single canonical indecomposable of type II and a
regular element. The proof follows that of (3.1) very closely, and
is written out in full in [10].

The computation of codimensions for regular strata in M(n, n)
is straightforward. Suppose we are given a finite list of distinct
complex numbers a, β, and corresponding nondecreasing sequences
of positive integers a = (al9 α2, •), b = (bl9 b2, •), * * * giving rise
to the regular element

αi(α) θ αa(α) θ Uβ) θ h(β) © .

Counting the number of unfolding parameters in the versal unfold-
ing constructed in § 2 we see that the codimension of the orbit
containing the above normal form is precisely

(a, + 3α2 + 5α3 + •) + (6X + 3δ2 + 5δ3 + •) +

And the codimension of the stratum containing the normal form
will be obtained by deleting from this integer the number of distinct
eigenvalues a, β, , i.e., it will be

(αL + 3α2 + -1) + (&! + 3δ2 + -1) + .

On the basis it is an easy matter to list the regular strata of
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low codimension in M(n, n).
the normal form * by

Let us denote the stratum containing

where a, βf are now regarded as dummy symbols. Note that
the codimension of the stratum does not depend on the simple
eigenvalues in the list a, β, i.e., those which appear with multi-
plicity 1; we can therefore adopt the convention of deleting from
the above symbol those parts corresponding to simple eigenvalues.
With this convention the strata of positive codimension ^ 4 are
given by the following table.

One can gain a very clear idea of how the strata of codimen-
sion ^ 3 fit together by sketching their appearance in versal unfold-

Codimension 1

Codimension 2

Codimension 3

FIGURE 4
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codimension

1

2

3

4

strata having that cndimension

a2

α 3 : a2β2

α 4 : aa: a3β2: a2β2f

α 5 : a2a: a*β2: aaβ2: a*β2γ2: azβ*: a2β2fδ2

ings of normal forms-vide the example in § 2. A certain amount
of elementary computation gives rise to the following pictures, some
of which are familiar from catastrophe theory, and were first
obtained for the Segre stratification in [1].

4* Smoothness of the general stratum* It remains for us to
prove that the general stratum Σ ίn M(n, m) is smooth, i.e., a
differentiate (embedded) submanifold. As we observed above, it
suffices to show that Σ appears as a manifold in a versal unfolding
of each element in Σ We adhere to the notation of § 1 and write
Σ σ for the stratum in M(n, m) with canonical type σ — (σlf σ2, σ5)
where σ5 — σz U σ4: thus Σ* contains the canonical element Eσx φ
Eσ2 φ Eσlμ) φ Eσ,(X) where μ = (μlf , μc) and λ = (λ, , Xd).
Evidently, it suffices to show that the appearance of Σ* ίn a versal
unfolding of this canonical element is diff eomorphic to the appearance
of Σtf,*,#δ> *n a v e r s a l unfolding of Eσz(μ) + Eσ^X), which is a
manifold by the results of the previous section.

(4.1) Suppose Σ ^as canonical type σ, and that (P, Q) is an
element of the versal unfolding of Eσλ φ Eσ2 φ Eσz(μ) φ EσA(X) such
that (P, Q) also has canonical type σ. Then (P, Q) = Eσx φ Eσ2 φ
(P', Qr) where (P', Q') feαs canonical type (φ, φf σδ) and is an element
of the versal unfolding of Eσz(μ) + Eσ±(X).

Proof. We sketch the main steps in the proof, suppressing the
detail as it involves writing out rather complicated matrix pairs: a
complete version of the proof appears in [10]. By examination of
the table in § 2 we see that the matrix XP + YQ has the form of
a block matrix

0 U2 0

0 Uδ Usi

where Ux corresponds to Eσlf U2 corresponds to Eσ2, and Us corres-
ponds to EσΆ(μ) φ Eσ^X).

The first step is to establish that (P, Q) has canonical type σ
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only if U4 and U6 are zero matrices. Suppose σλ — (plf , pa), a2 —
(Qit ' -,Qb) where Σ Pt = Ί>> ΈAQJ = Q and that Eσ3(μ) φ Eσ4(X) is a
k x k matrix. Then by examining the minors in XP + YQ of order
p + q + k one can check that the binary form Dp+q+k(X, Y) has
degree k only if Ϊ74 = 0, £75 = 0 as was required. These minors are
written out explicitly in [10].

The second step is to show that U6 = 0, U1 = J E ^ and U2—Eσ2.
Note that the stratum which contains Eσx φ JSΌ̂  is a single orbit,
and so the appearance of this stratum in the unfolding of Eσ^Eσ2

is the single point given by the vanishing of the unfolding para-
meters. Now

0 U2

correponds to a matrix-pair in the unfolding of Eσx φ Eσ2, by the
observation immediately following (2.2), and so has canonical type
(σlt σ2, φ) only if Uι = Eσlt U2 = Eσ2 and U6 = 0. Further, !73 corres-
ponds to a regular matrix-pair, which does not therefore have any
minimal row or column indices, so that (P, Q) has canonical type a
only if Ux = ί?^, i72 = jBσ8 and U6 = 0.

Finally, by the observation immediately following (2.2), Ϊ73 cor-
responds to a matrix-pair (P', Q')> say, in the unfolding of EσB(μ)ξ&
Eσ4(X). That completes the proof of (4.1), and hence the proof that
the general stratum is smooth.

REFERENCES

1. V. I. ArnoΓd, On matricεs depending on parameters, Uspechi Mat. Nauk, 26 (1971),
101-114 (Russian Math. Surveys, 26 (1971), 29-43).
2. I. N. Bernstein, I. N. Gelfand, and B. A. Ponomarev, Coxeter functors and Gabriel's
theorem, Uspechi Mat. Nauk 28 (1973), 19-33: translated in Russian Math. Surveys,
28 (1973), 17-32.
3. A. Borel, Linear Algebraic Groups, W. A. Benjamin Inc., New York, 1969.
4. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associa-
tive Algebras, Interscience, New York-London, 1962.
5. V. Dlab and C M . Ringel, Representations of Graphs and Algebras, Carleton Math.
Lecture Notes No. 8, 1974.
6. P. Gabriel, Representations indecomposables, Seminaire Bourbaki, 444 (1973/74).
7. C. G. Gibson, Regularity of the Segre stratification, Math. Proc. Cam. Phil. Soc.,
80 (1976).
8. C. G. Gibson, K. Wirthmuller, A. A. du Plessis, and E. J. N. Looijenga, Topologi-
cal Stability of Smooth Mappings, Springer Lecture Notes in Mathematics, 552, 1974.
9. C. G. Gibson, Singular Points of Smooth Mappings, Research Notes in Mathema-
tics, Pitman, 1979.
10. T. D. Ward, On stratifying spaces of matrix pairs, Thesis, University of Liverpool,
1979.
11. T. D. Ward and C. G. Gibson, Specializations for the Kronecher stratification,
in preparation.



ON STRATIFYING PAIRS OF LINEAR MAPPINGS 345

12. J. Williamson, On the equivalence of two singular matrix pencils, Proc. Edin.
Math. Soc., Series 2, Volume 4, (1934/36).

Received July 25, 1980.

THE UNIVERSITY

LIVERPOOL

L69 3BX ENGLAND






