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A NOTE ON ε-SUBGRADIENTS AND
MAXIMAL MONOTONICITY

J. M. BORWEIN

It is our desire in this note to provide certain formulae
relating subgradients, directional derivatives and ε-sub-
gradients of proper lower semi-continuous convex functions
defined on a Banach space.

Our aim is to provide these formulae, which somewhat extend
those in [5], [6], [7], as a direct and hopefully straightforward
consequence of Ekeland's non convex-version [3], of the Bishop-
Phelps-Bronsted-Rockafellar Theorem [1], [2], [3], [4].

As a by-product we obtain somewhat more self contained proofs
of the maximality of the subgradient as a monotone relation and
of some related results.

1* Preliminaries* Throughout X is a real Hausdorff locally
convex space (l.c.s) with topological dual X*. A function /: X —>
[—ooy co] is said to be convex if its epigraph, Epi/ = {(#, r)\f(x)^r}
is a convex subset of X x R. Also / is lower semi-continuous
(l.s.c.) if Epi / is closed. We will restrict our attention to proper
convex functions. These are the functions which are somewhere
finite and never — °°. The domain of /, dom /, is the set of points
in X for which f(x) is finite.

With each convex function we associate its (one-sided) direc-
tional derivative at x in dom / given by

(1) Ax; h) = lim /<* + »> ~
no

li .
no t

Then /'(#;•) is well defined as a (possibly improper) convex
positively homogeneous function. We also define, for each ε ^ 0,
the e-subgradient set for / at x by

(2) dj(x) = {a* e X* I x*(h) + f(x) ^ f(x + h) + ε, Vfe e X) .

When ε = 0, we supress ε and the object is the ordinary sub-
gradient. We now may also write

(3) df(x) = {x* e X* I x*(h) ^ f'(x; h), VheX} .

For amplification about these concepts the reader is referred to
[3], [4], [7].

2* The main result* We begin with a subsidiary proposition
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which may be found in [5] with a different proof.

PROPOSITION 1. Let f be a lower semi-continuous proper convex
function defined on a locally convex space X. For any x in the
domain of f one has the following formula:

( 4) f(x; h) - inf sup {xΐ(h) \ xΐ 6 dεf(x)} .
ε JO

Proof. Let ε > 0 and let x*edεf(x). Then (2) shows that for
t > 0

x ΐ { h ) <; fix + th) - f(x) + ε m

We let t — V ε and derive

(5) xt(h) gg /<* + ^ ~ /<*> + l / T .
v e

Then (5) and (1) combine to show that

( 6 ) f(x; h) ^ lim sup {x*(h) \ xΐ 6 3./(a?)} .
e l O

Conversely, let d be any real number less than fix; h), and let
ε > 0 be given. For 0 <; t <̂  1 one has

( 7) fix + th) 2: fix) + td .

Thus the line segment

( 8 ) L = {{x, fix) - e) + t(fc, d) |0 ^ ί ^ 1}

can be strictly separated from the closed convex set Epi/, [4].
Simple and standard calculation shows that any separating functional
(a?*, - r*) in X* x iί satisfies r* > 0 and that

(9) ( £ l ) ( Λ ) s> d _ e ;

The nature of d and (9) show that

(10) sup {x*(h) I x* 6 3./(aO} ^ /f(«; fc) - e .

It is clear from (6) and (10) that (4) holds. •

If / is actually continuous at x then dtf(x) is weak-star compact
[4], and (4) reduces to the standard formula

(11) fix; h) = sup {x*Qι) I x* e df{x)} .
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Even in finite dimensions (11) can fail at a point of discontinuity,
while in Frechet space it is possible that df is empty [4], [5]. In
Banach space Rockafellar [5], [6], has given formulae replacing (11),
in terms of approximations by subgradients at nearby points.
Taylor [8] has given an alternative stronger formula. All these
results follow from some form of the Bishop-Phelps [1] or Bronsted-
Rockafellar [2] theorems. We now proceed to derive a strong
version of Taylor's formula which uses Ekeland's variational form
of the previously mentioned theorems [3].

THEOREM 1. Let f be a proper convex lower semi-continuous
function defined on a Banach space (X, || ||). Suppose that ε > 0
and t ^ 0 are given. Suppose that

(12) xϊedεf(x0) .

Then one may find points xε and x? such that

(13) xΐedf(x9),

and such that

(14) \\xε - xo\\ ̂  VT >

(15) I f(x£) - f(x0) I ̂  i/

(16) || sf -xϊ\\£Ve (l + ί||ajo*||),

(17) \xT(h) - atfWI ^ l/T"(j|Λ|| + t\x?(h)\) ,

(18) α?β* G d2ε/(£0) .

Proo/. We renorm X using the equivalent norm given by

(19) | |x | | t = ||a?|| + t\xo(x)\ .

We set g(x) = /(a?) — α?0*(a?) and observe that g is Ls-c. and that

(20) g(x0) ^ ε + inf g(x) .

We now apply Ekeland's theorem [3, p. 29] to g and || || ίβ We
are promised the existence of xε in X such that, for x Φ xs9

(21) g{x) + VT\\x-x,\\t > g(xe)

and

(22) g(xe) + VT || x0 - xε \\t ̂  g(x0) .
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Now (21) can be read as saying that

(23) 0 e d(g + vΊh)(xt); h(x) = || x - xs \\t .

Since h is continuous, and since

(24) dh(x.) = {α* + αα0* 11| x* || ^ 1, | a | ^ «} ,

we may write, using the subgradient sum formula [4],

(25) 0 6 df{xε) - xt + VTdh{xε) .

Hence there is some point xf in df(xε) of the form

(26) xt = VTx* + (1 - VTa(f))xt

with |α(ί)| ^ t and ||OJ* || ^ 1. Thus (16) holds. Since (20) holds (22)
shows that

(27) i / T || x0 - a. || + l/Tί | «o*(a?0 - ».) I ̂  β .

In particular (14) holds and

(28) \χϊ(χo-Xe)\ ^VT\t.

Combined use of (20) and (22) shows that

(29) I f(xε) - f(xQ) I ̂  I xϊ{xε - aj0) I + e .

Now (15) follows from (28) and (29). Also (26) shows that

II xΐ(h) - s?(fc) || ^ i/J( | |Λ || + Iα(ί) 11a??(Λ) |)
( ^ l / e ( | | f c | | + t|ai(fc)|).

Finally, since x?edf(xε),

xf{x — x0) ̂  ίcε*(α; — a?β) + x*(xt — x0)

(31) ^ /(») - /(a?o) + [/(a?o) - /(«.) + aϋΓ(». - a?0)]

Since (12) holds, f(x0) — f(xε) + x*(xε — x0) ̂  ε, and since (26) holds,

I (a?,* - fltfXα. — a?0)| ^ V^Tdlα?, - a?0|| + «I «?(<*. - α?0)|) ^ e ,

on using (27). Then (31) establishes (18). Observe that, with the
convention that 1/0 = °o, the arguments are preserved when t — 0.
Let us also observe that back substitution of (29) into (27) produces
a strengthening of (15) to

(15/ ||xε - xQ\\ •+ t\f{xε) - f(xo)\ ^\/Ύ + U,



A NOTE ON e-SUBGRADIENTS AND MAXIMAL MONOTONICITY 311

which is slightly less convenient for application. •

REMARKS. (1) Our purposes in producing this proof with a
parameter t are three-fold: (a) it leads to a unified development of
the Bronsted-Rockafellar theorem (ί = 0) and the improvement of
the Taylor result (t = 1) and allows one to see the differences in the
relative approximations in, for example, (15) and (16); (b) since one
wishes to approximate in direction x* it is intuitively plausible that
|| \\t is the appropriate norm to use; (c) for all the details the
proof is really very straightforward and essentially reduces to
"apply Ekeland's theorem to g and || | | t". Notice that (17), which
is critical to the next result, is considerably more useful than (16)
in relating x*(h) and x?(h) as ε varies. This is because while \\xf \\
typically will grow unboundedly as ε shrinks, \xf(h)\ can generally
be given a uniform bound independent of ε.

THEOREM 2. Let f be a proper convex lower semi-continuous
convex function on a Banach space (X, || | |). Then, for any x0 in
the domain of f and any h in X,

(32) f'(χ0; h) = inf sup {x?(h) \ x? e Sε(x0)}

where

' ( i ) xϊedf(xt),

(in) I f(xε) - f(χ0) I ̂  ε ,

(iv) x?

Proof Since Sβ(h) adεf(x0), Proposition 1 shows that it suffices
to establish that the right hand side of (32) is no smaller than the
left hand side. Suppose first that f'(x0;h) = d<oo. Set l><5>0 and
pick x*, using Proposition 1(9), so that x*(h) Ξ> d — d and x% edδf(x0).
Let us apply Theorem 1 to this a?0* with t = 1, δ = ε. Then we
obtain points xf and xδ with xf e df(xδ) which on relabeling satisfy
(33) with ε = 2i/T. Also (17) shows that

(34) xt(h) ̂  xϊ(h) - vTdlΛH + \x?(h)\) .

For sufficiently small δ, x*(h) ^ d + 1, as follows from (5). Thus

(35) xf(h) ^ d - δ - l / T ( | | Λ | | - \d\ - 1) .

Since the right hand side of this expression tends to d as δ tends
to zero, (32) is established in this case. Suppose now that /'(a?0; h) =
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°o. Proposition 1 shows that we can pick x£ e dδf(x0) and x$(h) ^
1/δ. As before (33) holds with e = 2i/T. In this case (34) implies
that

(36) x7(h) ^ (l - V^δ)± - \\h\\ ,

and now the right hand side has supremum infinity. Again (32) is
established. •

The approximation in (32) is very strong as we may actually
pick subgradients at points which are nearer and nearer x0 and
have converging function values. Observe that application of
Theorem 1 with t = 0 leads to Theorem 2 except for (33) (iii).

One may recover Taylor's formula [8] on replacing (33) (iii) and
(iv) by

(37) \xΐ(x. - Xo)\ £ e

and observing that (37) follows from (33) (i), (ii), (iv) since

\ x t ( x δ - X o ) \ ^ \f(x8) - /(<*<>) I + δ

if xf edδf(x0) Π δf(xδ). Thus Taylor's approximating subset is a
bigger set than ours. Since (37), (33) (i) and (ii) still force x* ed2εf(xQ)
for small ε, (32) still holds. Indeed, except for scale constants our
Theorem 2 and Taylor's Corollary 1 are inter derivable.

Recall that of is a monotone relation [3]: if x* edf(xt) (i = 1, 2)
then

(38) (x* - x?)(x2 - Xl) ^ 0 .

Rockafellar [5] produced a proof that df is always maximal as
a monotone relation. Rockafellar's proof was irremediably flawed
and he subsequently gave a correct proof using conjugate functions
in [6]. Taylor [8] then produced an essentially correct proof more
in the spirit of [5]. This proof is slightly flawed technically (d<oo
is assumed). We provide here a derivation of the result from
Theorem 2.

COROLLARY 1. If f is a proper lower semi-continuous convex
function on a Banach space X then df is maximal as a monotone
relation in X x X*.

Proof. As in [5], [8] we may assume by translation that
Oίdf(Q). A one dimensional argument now produces a point x0 in
dom/ with f'(xQ;—x0) > 28 > 0. Note that it may well be that
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f'(x0; —%o) is infinite, contrary to the implicit assumption in [8].
By any account, we have, from Theorem 2, points xδ and xf e df(xδ)
with

( i ) xΐ(-xQ)>2δ,

(39) (ii) xΐed8f(x0)f

(iii) \f(x,)-f(xo)\£δ.

Since (ii) holds

(40) χ*(χ9) £ χ*(χ0) + f(χδ) - f{χ,) + δ

and thus (i) and (iii) combine to show

(41) x*(xδ) < -2S + δ + δ < 0 .

Thus one cannot have (x* — O)(cc — 0) > 0 for each #* e df(x) and so
df is maximal. •

COROLLARY 2. If f is a proper convex lower semi-continuous
function on a Banach space X then

(42) f(χ) = lim sup {x*{x) - f*(x*) \ x* e Sε(x)} ,

where f* is the conjugate function

(43) /*(£*) = sup {x*{x) - f(x) I x 6 dom /} .

Proof For any sc* in the nonempty set Ss(x) one has

(44) χ*(y) - fiy) ^ χ*(χ) - fix) + ε

or

(45) χ*(χ) - f*(χ*) ^ f(χ) - e .

Thus the right hand side of (42) dominates fix). The opposite
inequality follows directly from (43) or Young's inequality. •

COROLLARY 3. If f is a proper, lower semi-continuous convex
function on a Banach space X the following mean-value theorem
holds. For each x1 and x2 in dom / one can find z in (xlf x2) and
sequences of points {zn} in X and {z*} in X* with

( i ) \ \ z n - z \ \ £ ± ,
n

( 4 6 ) ( ϋ ) f

(iii) zξedfizn)9
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(iv) z;ed±f(z),
n

and such that

(47) lim zϊfa - x2) = fix,) -
n

Proof. It is straightforward to show that for some % in (xlf x2)
one has

(48) f\z; xλ - x2) ^ /fo) - /fe) ^ - / ' ( * ; x2 - a?x) .

The result now follows from Theorem 1. Π

In the case that / is continuous at z, as observed before
dsf(z) is w* compact, and (47) reduces to the better known

(49) Axd-fixj
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