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JORDAN TRIPLE SYSTEMS WITH COMPLETELY
REDUCIBLE DERIVATION OR
STRUCTURE ALGEBRAS

ERHARD NEHER

We prove that a finite-dimensional Jordan triple system over a field
k of characteristic zero has a completely reducible structure algebra iff it
is a direct sum of a trivial and a semisimple ideal. This theorem depends
on a classification of Jordan triple systems with completely reducible
derivation algebra in the case where £ is algebraically closed. As another
application we characterize real Jordan ftriple systems with compact
automorphism group.

The main topic of this paper is finite-dimensional Jordan triple
systems over a field of characteristic zero which have a completely
reducible derivation algebra.

The history of the subject begins with [7] where G. Hochschild
proved, among other results, that for an associative algebra @ the deriva-
tion algebra is semisimple iff @ itself is semisimple. Later on R. D. Schafer
considered in [18] the case of a Jordan algebra §. His result was that Der §
is semisimple if and only if § is semisimple with each simple component of
dimension not equal to 3 over its center. This theorem was extended by
K.-H. Helwig, who proved in [6]:

Let § be a Jordan algebra which is finite-dimensional over a field of
characteristic zero. Then the following are equivlent:

(1) Der ¢ is completely reducible and every derivation of ¢ has trace
zero,

(2) ¢ is semisimple,

(3) the bilinear form on Der ¢ given by (D,, D,) - trace(D,D,) is
non-degenerate and every derivation of ¢ is inner.

After some preparations in §§1—3 we will show in §4 that the same
theorem holds for Jordan triple systems. The proof in this case is different
from the Jordan algebra case. It relies on a classification of Jordan triple
systems whose derivation algebras are completely reducible. It is easy to
see that V' is an example for such a triple system, if

(a) V is semisimple or if

(b) Vis trivial, i.e. all products vanish.
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Surprisingly there occurs another type of example:
(c) V= X ® M with quadratic representation

P(x®m)(y ®n) = (2(x, y)x — (x, x)y) & ((x, x)n + 2(x, y)m)

where (-, -) is a symmetric non-degenerate bilinear form on X. Our main
result says that these are essentially all examples. To be more precise, let V'
be a Jordan triple system over an algebraically closed field. Then the
following are equivalent:
(I) Der V is completely reducible.

(I) ¥=V'® V? is a direct sum of two ideals V' where—up to
enumeration—one of the following two cases occurs:

(a) V! is semisimple and V2 is trivial,

(B) V' is semisimple and V2 is a direct sum of ideals which are
isomorphic to example (c).

In §5 we apply our results to characterize Jordan triple systems which
have a compact automorphism group. Another application is given in §6
where we prove that a Jordan triple system V" has a completely reducible
structure algebra iff V'is a direct sum of a semisimple and a trivial ideal.

The author thanks M. Koecher and K. McCrimmon for various useful
suggestions and H. P. Petersson for having drawn his attention to [6].

1. A review of known results.

1.1. In this section we recall some known facts from the theory of Lie
algebras and derive a few consequences. Throughout, M denotes a finite-
dimensional vector space over a field k£ of characteristic zero and g is a
subalgebra of gl(M), the Lie algebra of all endomorphisms of M. By
definition, g is completely reducible (in M), if every g-invariant subspace
has a g-invariant complement.

(1.1) ([2] §6.5, Théoreme 4). g is completely reducible iff g is reductive
and the center of g consists of semisimple elements.

As a corollary we get

(1.2) If g is completely reducible, then every ideal of g is completely
reducible, too.

(1.3) ([1] §9.2, Prop. 3). Let K be an extension field of k. Then g is
completely reducible in M iff K ® g is completely reducible in K ® M.
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(1.4) g 1s called almost algebraic (“scindable” in [3]) if g contains the
semisimple and nilpotent components of all of its elements. The Lie
algebra of an algebraic subgroup of GL(M) is almost algebraic ([5). In
particular, the derivation algebra of an algebra or a triple system is almost
algebraic (for a direct proof see [3] Chap. 7, §1, Prop. 4).

The following lemma is contained in [6] p. 28 for the case where g is
the derivation algebra of an algebra:

LeMMA 1.1. Let g be almost algebraic and assume that the bilinear form
p on g defined by p(X,Y) = trace(XY) is non-degenerate. Then ¢ is
completely reducible.

Proof. By [2] §6.4, Prop. 5 we know that g is reductive. Hence, using
(1.1), the assertion follows, if we can show that the center 3 of g consists of
semisimple elements. But 3 is again almost algebraic ([3] §5.1, Corollaire 1
of Prop. 3) and thus it is enough to show that 3 contains no nilpotent
elements. Let Z € 3 be nilpotent, then ZX is nilpotent for every X € g
and therefore trace(ZX) = 0, forcing Z to be zero.

The following lemma is a trivial generalization of [2] §6.1 Proposi-
tion 1:

LEMMA 1.2. Let g be completely reducible. Define p as in Lemma 1.1.
Then p is non-degenerate iff the restriction of p to the center of g is
non-degenerate.

Proof. By (1.1) g is reducitve, i.e. g =g @D [q, g], where [g, g] is
semisimple and 3 is the center of g. Since p is an invariant bilinear form,
this decomposition is orthogonal relative to p. But the restriction of p to
[a, g] is non-degenerate by [2] §6.1 Prop. 1. Hence p is nondegenerate iff
the restriction of p to 3 is non-degenerate.

1.2. In this section we recall some well-known results about Jordan
triple systems which are needed in the sequel. Thereby we also fix our
notation.

A Jordan triple system as it is considered in this paper is a finite-di-
mensional vector space V over a field k of characteristic zero together with a
trilinear map

VXV XV->Vi(u,o,w) = {uow) =:L(u, v)w
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which satisfies the following identities
(1.5) {uow} = {wou}
(1.6) [L(u,v), L(x, y)] = L({uox}, y) = L(x, {vuy})

for all u, v, w, x, y € V. In what follows we just speak of V" as the Jordan
triple system without exhibiting the map { - - - }.

The theory of Jordan triple systems is developed in [10], [11] and [14]
for a more general class of triple systems. Since the proofs of our main
results are only valid in the situation as defined above we restrict ourselves
to this case from the very beginning.

For a Jordan triple system V one defines the quadratic representation
P: V — End V by P(x) = 3{xyx}. This is in fact a quadratic map since its
linearization P(x, z) = P(x + z) — {(x) — P(z) satisfies P(x,z)y =
{xyz}. As a result, V' is uniquely determined by P.

There are many identitites valid in V, see e.g. [11] §2. We need the
following which is a translation of (JP12) in [11]:

(1.7) L(x, y)P(z) + P(z)L(y, x) = P(z, {xyz}).

There are several Lie algebras associated with Jordan triple systems.
In this paper we are concerned with the structure algebra and the
derivation algebra of V. The structure algebra appears in connection with
the derivation algebra of the Jordan pair (V,V) associated to V: By
definition, (A4, B) € Der(V, V) if

[4, L(x, y)] = L(4x, y) + L(x, By)
and
[B, L(x, y)] = L(Bx, y) + L(x, Ay)

holds for all x, y € V. Der(V, V') is a subalgebra of (gl(V), g[(V)) with
respect to componentwise multiplication. The structure algebra S (V') of V
is the image of Der(V, V) under the projection map onto the first
component:

Der(V,V) - 9(V): (4, B) - A.
We point out that this map is in general not injective. It is an immediate
consequence of (1.6) that

(L(u,v), —L(v,u)) € Der(V, V)

for all u, v € V, correspondingly L(u, v) € J(V). The subspace of I (V)
spanned by {L(u,v); u,v € V} is an ideal of (V) called the inner
structure algebra and denoted by inn (V).
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A derivation of V is a k-linear map D: V - V satisfying D{xyz} =
{Dz, y,z} + {x, Dy, z} + {x, y, Dz} for all x, y, z € V, i.e. an endomor-
phism D with (D, D) € Der(V, V). The space Der V of all derivations of
V is a Lie subalgebra of (V). Since (L(u, v), —L(v, u)) € Der(V,V) it
follows easily that

A(u,v) := L(u,v) — L(v,u) € Der V.

The span of {A(u, v); u, v € V} is an ideal of Der V denoted by inn Der V.
The elements of inn Der V are called inner derivations.

If K is an extension field of k and V a Jordan triple system over k, the
triple product of ¥ can be naturally extended to K ® V. In this way
K ® V becomes a Jordan triple system. As for algebras one proves

(18) F(K®V)=K®9(V), Der(K®V)=K® DerV.

A subsystem of V resp. an ideal of V is a subspace U of V such that
{UUU} C Uresp. (VVU} + (VUV} C U. One calls V simple if {VVV'}
# 0 and V contains only the trivial ideals 0 and V. Since {VVV} is an
ideal, we have in this case {(FVV} = V.

The k-linear span of all products in V of degree > n is denoted by
Viny> Where {xyz} resp. {xy{uow}} or {x{yuv}w}... is considered to be of
degree 3 resp. 5.... Obviously, V= V;) D V3D V5, D --- and each V,,
is an ideal of V. If V,,,, = O for some n, then V is said to be nilpotent.

In the situation considered here every Jordan triple system V contains
a unique maximal nilpotent ideal Rad V" which is called the radical of V.
Since (RadV,RadV) is the radical of the Jordan pair (V,V), it is
invariant under the automorphism group of (¥, V') and thus also under its
Lie algebra (see e.g. [S] II §8 Prop. 6) which is Der(V, V). Hence

(1.9) Rad V is invariant under 5 (V).

We will need another property of Rad ¥ which follows from [11] Theorem
14.10:

The subspace L(V,RadV)+ L(RadV,V) of EndV

(1.10) consists of nilpotent endomorphisms.

A Jordan triple V is called semisimple, if its radical vanishes. It is
known ([14] §11) that the following properties are equivalent:
(1.11.a) V is semisimple,

(111.0) the trace form ¢ of V defined by o(u, v)
e = § trace( L(u, v) + L(v, u)) is non-degenerate,

(1.11.c) K @ Vis semisimple for every extension field K of k,



142 ERHARD NEHER

(1.11.9) V is the direct sum of its simple ideals.
It is also proved in [14] §11.6:

If V is semisimple, then 9(¥) = inn (V) and Der V =
(1.12) inn Der V. Moreover, the projection Der(V, V) —» (V)
is an isomorphism.

The existence of a Wedderburn decomposition of ¥ was show in [9]:

For every Jordan triple system ¥V (as defined above)
(1.13) there exists a semisimple subsystem S of ¥ such that
V=RadV & S.

It follows from [14] 11.3 Theorem 4:

If V is a simple Jordan triple system, then either (V)
operates irreducibly on V or V= V" @V~ is the direct
sum of two J(V)-irreducible subspaces V" and ¥V~
satisfying

(1.14)

(VeV-evey C Ve, (VWV} =0 fore= =,

Using (1.11) we get as an easy corollary:
(1.15) If V is semisimple, then (V) is completely reducible.

LEMMA 1.3. Let V be semisimple and define the bilinear form p on 5 (V')
by p(X,Y) = trace( XY). Then p is non-degenerate.

Proof. First we make two reductions:

(1) Let K be an extension field of k. Then K ® V is a semisimple
Jordan triple system by (1.11.c), D ® §(V) =9 (V' ® K) and p defined
for K ® V is the bilinear extension of p |9 (¥). Without loss of generality
we may therefore only consider the case where k is algebraically closed.

QU V=V'®---®V"is the decomposition of V as sum of its
simple ideals, then we have the corresponding decomposition J(V) =
JWVH®---dF(V") where J(V') is canonically imbedded in (V).
Since this decomposition is orthogonal relative to p it is enough to
consider the case where V is simple. Because J (V) is completely reducible
we can apply Lemma 1.2 and see that we have to show that the restriction
of p to the center 3 of T(¥) is non-degenerate.

If §(V) is irreducible, then the centralizer of (V) in End(V) equals
k Id and contains 3. But Id € (V) since (Id, —Id) € Der(V, V') and thus
3 = k1d. Obviously, p | 3 is nondegenerate.
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If (V) is not irreducible, then, by (1.14), we know that V' = V" @V~
is a direct sum of J(V)-irreducible subspaces ¥* and ¥~ . Again, we have
Id e J(V),ie.

Id =X L(u;,v;) = XL(uj 07 ) + ZL(u; ,0]),

thus
| vr=3L(u ,v7 ) €T(V), 1|V =3L(u; ,v])€T(V).

Every endomorphism of ¥ which commutes with Id|V*, ¢ = =, leaves
invariant V¢, This implies 3(J(V)) = kId|V* ®kId|V~ . Obviously,
p|3(J(V)) is non-degenerate.

COROLLARY 14. Let V be semisimple. Then DerV is completely
reducible and the bilinear form p on Der V defined by p( X, Y) = trace( XY)
is non-degenerate.

Proof. Since Der V is almost algebraic it is, by Lemma 1.1, enough to
show the second assertion. Let 7* denote the adjoint of 7 € End V'
relative to the trace form o of V. Taking traces in the defining identitites
for (A, B) € Der(V,V) shows B = —A*. Because also (B, A) €
Der(V, V) we see that I(V) is invariant under * and thus §(V) =9 (V)
® J_(V) where . (V) ={T € J(V); T* = =T}. since D € Der V iff
(D, D) € Dex(V, V) we obtain Der V=9(V).Let S€EJ, (V) and T €
5_ (V). Then

trace(ST) = trace(ST)* = trace(T*S*) = —trace(7'S) = —trace(ST)

shows that I, (V') and 9_ (V) are orthogonal relative to p, in particular
p | Der V is non-degenerate.

An element e € V such that P(e)e = e is called a tripotent. Every
tripotent of V induces a Peirce decomposition

V="V,(e) ®¥i(e) ® ¥y(e)

where Vi(e) = {x € V; {eex} = ix} fori = 0, 1, 2. The Peirce spaces have
the following multiplication rules:

{Vi(e)Vi(e)V,(e)} C V,_;i(e), in particular, V(e) is a

(1.16) subsystem of V.

V,(e) =im P(e) and P(e)|V,(e) is an involutorical

(1.17) automorphism of V,(e), hence
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Vy(e) =V, (e) ® V; (e) with Vj(e) = (x € Vy(e); X
(1.18) =ex} for e = =, where we are using the abbreviation
P(e)x = x.

Together with the algebra product xy = 3{xey} the subspace V,(e)
becomes a Jordan algebra denoted by V,(e)(®. The triple product of V,(e)
can be expressed by the algebra product

(1.19)  {xpz} = 2[x(yz) — y(xz) + (xp)z] forx, y, z € V,(e).

Two nonzero tripotents e and f are called orthogonal if f € V(e)
which is equivalent to e € Vy( f). A nonzero tripotent e is called minimal,
if e cannot be written as the sum of two orthogonal tripotents. We remark
that in this case e is a primitive idempotent of the Jordan algebra
[V5F (e)]1. Using well-known results for Jordan algebras (see e.g. [4] IV
§5.5) we get
If k is algebraically closed and e € V' is a minimal
tripotent, then V" (e¢) = ke ® Rad V' (e).

An orthogonal system is a tuple (e,,...,e,) of pairwise orthogonal
tripotents. In this case V has a Peirce decomposition relative to (e,,...,e,),
i.e. a decomposition
(1.21) V= @ V¥, where

o=sisj<r

(1.20)

Vo = M Vole), Vii=Vale), Il=i=r,

V,=V,=Vl(e)NVle) forl=i<j=r,
Vo, = Vio=Vile;) N [ Vyle,) for0O<j=<r.
i)
Wealsoputforl <i=<r
(1.22) Vi=Vi ®V; with V= V;(e,).

The Peirce spaces satisfy the following multiplication rules

VilViVim} C,
Zero.

(1.23) ins and all other types of products are
The radical of V splits relative to (e,,...,e,). In particular, one

derives from [17] Lemma 6:

(1.24)

If V is semisimple, then all the Peirce spaces V;; are
semisimple, too.
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In general, ¥ need not contain any nonzero tripotents. However, one
knowns ([10] 3.3):

If k is algebraically closed and V is semisimple, then V'

(1 25) contains nonzero tripotents.

By induction, we get:

Let k be algebraically closed and V' semisimple. Then V'
(1.26) contains a maximal set of orthogonal minimal tri-
potents. The corresponding Peirce space V, is zero.

2. Examples of Jordan triple systems with completely reducible de-
rivation algebra.

2.1. As in the preceding section let k be a field of characteristic 0.
Assume X is a finite-dimensional vector space over k and (-, -): X = kisa
_ symmetric bilinear form. We put

(2.1) {xyz) = 2[(x, y)z + (2, y)x = (x, 2)y].

It is well-known ([10]), that this triple system is in fact a Jordan triple
system, called the Jordan triple (system) of the quadratic form (-, -) and
denoted by [ X; (-, -)]. Obviously, its quadratic representation is given by

(2.2) P(x)=2(x, y)x — (x, x)y.

From (2.1) one easily derives that the trace form o is given by a(x, y) =
2(x, y)dim X. Hence, by (1.11.b), we get

A Jordan triple system of a quadratic form is semisim-

(2.3) ple iff the form is non-degenerate.

Also, the next assertion trivially follows from (2.2) and (2.1):

A nonzero element e of X is a tripotent iff (e, e) = 1. In
(2.4)  this case X = X,(e) = ke ® X, (e) with X; (e) = {x
€ X; (e,x)=0}.

Jordan triples of quadratic forms occur in the following connection:

LEMMA 2.1. Let V be a Jordan triple and e € V a tripotent with
V = V,(e) and V; (e) = ke. Then there exists a unique quadratic form
(+, *) on V such that V is the Jordan triple of (-, -).
The form is given by

(ae+ x,Be+y)=aB — L{xey}, x,y €V, (e).
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Proof. Since P(e) is an involutorical automorphism of V we get
{xey} € V; (e) = ke for every x, y € V5 (e). This shows that our form is
—up to a trivial identification—well-defined. From (1.19) we derive
P(u)v = 2u(ud) — uv, uv = %{uev}. Since

uo = (ae +u )(Be+v )=(af—(u ,v ))e+av +Pu"

it is easily seen that (2.2) is valid in V, i.e. V' is the Jordan triple of (-, -).
The uniqueness follows form (2.4) and (2.1).

There is a general method for constructing new Jordan triple systems
out of old ones which is stated in the following

THEOREM 2.2 ([14]10 Theorem 2). Let V be a Jordan triple system with
quadratic representation P and ¢ € End V such that P(¢x) = ¢P(x)¢ for
all x € V. Then the quadratic map P, where P, (x) = P(x)¢ defines on
V the structure of a Jordan triple system.

We use this theorem in the following special case:

LemMA 2.3. Let X, M be nonzero finite dimensional vector spaces over k
and (-, -) a symmetric non-degenerate bilinear form on X. We define a
quadratic representation on V= X © M by

(2.5) P(x®m)(y ®n) = (2(x, y)x — (x,x)y)
' ® ((x, x)n + 2(x, y)m)

where x, y € X and m, n € M. Then

(a) (V, P) is a Jordan triple system,

(b) the decomposition V= X © M is a Wedderburn decomposition with
the semisimple part X and M = Rad V,

o {Vvvvy=v1.

(d) the derivation algebra of V consists of the mappings D(x ® m) =
D x ® D,m where D, € Der| X; (-, )] and D, € gl(M) is arbitrary. In
particular, Der V is completely reducible.

(e) I(V) and inn (V') are not completely reducible.

Proof. (a) We extend (-,-) to a bilinear form on V by setting
(x®m, y®n)=(x,y)and define p € EndV, p(x ® m) = x — m. Let
Q denote the quadratic representation of the Jordan triple system [V (-, -)].
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Then, using (2.2), we derive

Op(x +m))(y +n) = Q(x —m)(y +n)
=2(x, y)(x —=m) = (x, x)(y + n)
= o[2(x, y)(x + m) = (x, x)(y = n)] = 9Q(x + m)p(y + n).

Thus, by Theorem 2.2, we conclude that P = Q) defines on V a Jordan
triple system. But
P(x+m)(y +n)=Q(x+m)(y—n)
=2(x, y)(x + m) = (x, x)(y — n)
which is just (2.5).

(b) From (2.5) and (2.2) it follows that the subsystem X of V is the
Jordan triple system of the quadratic form (-, -) | X. Hence, by (2.3), it is
semisimple. On the other hand, {VVM} = M = (VMV} and {MMM} =
0 shows that M is a nilpotent ideal of V" and therefore M C Rad V. Now
(b) easily follows.

(c) Since X is semisimple we have { XXX} = X. Moreover, there exists
x € X with (x, x) ¥ 0. Then P(x)M = M. Altogether, {FVV} = V fol-
lows.

(d) Let D be a derivation, x € X. So Dx = y © m for some y € X and
m € M. Because DP(x)x = P(x)Dx + {xxDx} we derive from (2.5)

(x, x)(y + m) = P(x)y + {xxp} + (x, x)m + 2(x, x)m,

hence (x, x)m = 0. But since the x with (x, x) 7 0 form an algebraically
dense subset of X we have DX C X. By (1.9) we also know DM C M =
Rad V. A straightforward computation using (D,x, x) = 0 for every D, €
Der[ X; (-, )] and x € X shows now that D € DerV iff D|X €
Der[ X; (-, )] and D|M € gl(M). Since Der[ X; (-, -)] is completely re-
ducible in X by Corollary 1.4 it follows that Der V' is completely reducible
m V.

(e) Since inn J (V) is an ideal of F(V) it follows from (1.2) that is
enough to show: inn 9(V) is not completely reducible. Putting
(xy*)(2) = (p, z)x we get

IL(x®m,yDdn)

= ((x, )y + xp* — yx*) @ (nx* + my* + (x, y)Id ).
This easily implies Id,,, xy* — yx* and nx* € inn (V) for all x, y € X,

n € M. Since the skew adjoint endomorphisms of X are spanned by
xy* — yx* x,y € X, and Hom( X, M) is spanned by nx*, n € M, x € X
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we get
innJ (V) = k1d ® so(X) ® Hom(X, M)

as direct sum of vector spaces. It follows that 0 # Hom(X, M) C inn 9 (V)
is an abelian ideal. If inn (V) is completely reducible, then Hom( X, M)
is also completely reducible and (1.1) implies that every element of
Hom( X, M) is semisimple, but Hom( X, M) consists of nilpotent endo-
morphisms.

REMARK 2.4. (a) We will see later (Theorem 2.7) that there are other
types of Jordan triple systems whose derivation algebras are completely
reducible. In the sequel we will refer to a Jordan triple system considered
in Lemma 2.3 as Example 2.3.

(b) For an Example 2.3 with V= X © M it is easy to see that M is a
bimodule for X and V is the split-null-extension of X by M.

(c) One can show J(V) = k1d @ so( X(+, -)) ® Hom(V, M), but we
don’t need this in the sequel.

2.2. We consider the situation where the Jordan triple system V' is a
direct sum of two ideals V! and V2. We put
glo(V):={degl(V); a4V C V', i=1,2},
gli(V):= {4 egl(V), AV Cc Vv, Av: C V')

Then gl(V) = gl(V) © gl (V) is a Z,-grading of the Lie algebra g[(V).
Correspondingly,

(sU(V), al(V)) = alo(V, V) ® gly(V, V)
where g[,(V, V) = (gl,(V), gL,(V)).

LEMMA 2.5. Let V = V! ® V? be a direct sum of two ideals V'. Then

(a) Der(V, V) = Dery(V, V) © Der(V, V) where Der(V,V) =
Dex(V, V) N gLV, V)

(b) Dery(V,V) = Der(V', V") @ Der(V? V?) is a direct sum of the
ideals Der(V', V') C Dery(V, V).

(©) if (A4, B) € gL(V, V), (4, B) € Der(V, V) iff

AVVVY ={AVi, VI, V) ={V/, AV,V/} =0 and
B{ViViVi} — {BVi,Vj, Vj} = {Vj, BVj, Vj} =0

for (i, j) = (1,2), (2, 1).
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Proof (a) Since 7: x! ® x2 » x' ® —x? defines an automorphism of
V we have (7, 7) € Au(V, V'), thus

(A, B) > (wAw, wBw)

is an involutive automorphism of Der(V, V') and the decomposition in the
assertion is just the eigenspace decomposition of this automorphism.
(b) is obvious and (c) is a straightforward verification.

We will need the following corollary later:

COROLLARY 2.6. Let V= V' ® V? be a direct sum of two ideals V"',
i=1,2.

(a) Der V = Der, V @ DerV where Der; V = Der V N gl (V)

(b) Der, V = Der V' @ Der V2 is a direct sum of the two ideals Der V'
C Der, V.

(c) Let D € gL (V). Then D € Der,V iff

D{VVivi}) = {DV', VI Vi} = (VI DV, Vi} =0
for (i, j) = (1,2), (2, 1).

Proof. This is an immediate consequence of Lemma 2.5, if one
notes that the automorphism (A4, B) — (wAw, wBw) leaves {(D, D) €
Der(V, V)} ~ Der V invariant.

THEOREM 2.7. Let V = V' ® V2 be a direct sum of two ideals V'.

(@) If V' is semisimple and V? is trivial, i.e. {V?V?*V?} =0, then
J(V') and Der(V') are completely reducible.

(b) If V' is semisimple and V* is nonzero and a direct sum of ideals
each of which is isomorphic to an Example 2.3, then Der V is completely
reducible, but (V') is not.

Proof. (a) Since V3 = V' by (1.11.d) and since V' contains no
subspace I with {IV'V'} = 0 = {V'IV}, it follows from Lemma 2.5 that
Der,(V, V) = 0. Consequently T(V) = J(V') © F(V?) is a direct sum of
ideals I (V') C J(V). But J(V") is completely reducible by (1.15) and
J(V?) = g(V?) is also completely reducible, which implies that T(V) is
completely reducible. Since Der V' is a subalgebra of J(V) we have
Der V = Der V! @ Der V2 with Der V2 = g{(V'?). Thus the remaining
assertion 1s a consequence of Corollary 1.4.



150 ERHARD NEHER

(b) Here V is a direct sum of ideals I' which are semisimple or
isomorphic to an Example 2.3. By (1.11.d) and Lemma 2.3.c we know
I’s, = I' for all ideals I'. Thus, by induction Der\(V, V) = 0 and J(V) =
@I(1'), Der vV = @, DerI'.

Since at least one I* is an Example 2.3, the ideal 9 (1°) of 9 (V) is not
completely reducible (Lemma 2.3.¢) and hence 9(¥) is not completely
reducible by (1.2). However, all ideals Der I’ are completely reducible and
therefore Der V' is completely reducible.

3. The center of a Jordan triple system. The center of a Jordan
triple system ¥V is defined as the subspace

C(V)={ceV;L(c,v)=L(v,c) forallo € V}.

LemMA 3.1. (a) For u,v € Vandc, c,, ¢, € C(V') we have
{cou} = {vcu} = {cuv},
[L(u,v), L(¢;, ¢3)] = 0 =[P(u, v), L(¢;, 6,)].
(b) C(V) is a subsystem of V.
Proof. (a) Every ¢ € C(V) satisfies {cou} = {vcu} for all u, v € V.
Since the right side of this equation is symmetric in ¥ and v we also get
{cou} = {cuv} for all u, v € V. From (1.6) we derive for ¢ € C(V):

[L(u, v), L(c, ¢)] = L({uvc}, ¢) — L(c, {vuc}) = 0 because {uvc} =
{vuc}. Now [L(u, v), L(c,, ¢,)] = 0 follows by linearization since

2L(c), ¢;) = L(c, + ¢3¢, + 02) — L(c, ¢)) — L(cy, ¢5).

To prove the last equation we apply formula (1.7) with y = ¢;, x = ¢, and
z, w € V arbitrary. We get

P(z){cic;w} = — {cye, P(2)w) + {zw{cyc 2} }
= {cy, ¢;, —P(2)w + {zwz}} = {c,c, P(z)w}

which shows [P(z), L(c,, ¢,)] = 0. Now the last equation follows by
linearization.
(b) We have for v € V' and ¢, € C(V) by applying (1.6) and (a):

L({Clcz%}’ v) = [L(ch ¢;), L(cs, v)] + L(C3’ {0201'3})
= L({czclv},c3)
=[L(cz, ¢), L(v, 03)] + L(U’ {CICZCB})

= L(v, {cc5¢3}),
1e. {c,c,05} € C(V).
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The following lemma will be used in the next section:

LemMA 3.2. Let V = S © R be a decomposition where S is a semisimple
subsystem and R is an ideal of V contained in the center of V.

(a) Every derivation of V leaves S invariant.

(b) For T € End R we define Dy € End V by D (s © m) = Tm, where
s €S,m € R. Then D, € Der V iff

(1) T € DerR

(2) T{stm} = {stTm} foralls,t € S, m € R and

(3) T{smn} = {sTmn} + {smTn} for all s € S, m, n € R.

Proof. (a) We consider V as a bimodule for S by setting g(x) := P(x),
I(x, y) = L(x, y), x, y € S, and denote by V the split-Null-extension of
S by V (see [9] for details). Let D be a derivation of V. Then D: S - Visa
derivation of S into the bimodule V. Since S is semisimple it follows from
the Remark on page 26 in [9] that there are s,,...,s, € Sand v,,...,0, E V
such that Ds = 3, A(s;, v,)s for s € S where A(s,, v,) is an inner deriva-
tion of V. Since the productin ¥ = § @ V satisfies

{s,®0v,,s,®0,,s;,D0,}
= {55,583} ® {5,503} + {510,55} + {v,5,5;)

it follows that

A(s, ® v, 5, ®0,)(s; D vy)
= A(s,, 5,)53 D A(sy, 55) 05 + A(sy, 0y)s55 + A0y, 5,)55.

Hence A(s,, v,)s =0 ® A(s;, v,)s. We put v, =1, +r, with ¢, €S and
r, € R. Then A(s;, v;) = A(s;, ¢;) and thus

Ds = X A(s;, v;)s = DA(s,, 1;)s € S.

(b) A straightforward computation shows that D, € Der V' is equiva-
lent to (1), (2), (3) and the following two equations: T{smt} = {sTmt},
T{msn} = {Tmsn} + {msTn} for all 5, t €S, m, n € R. But since R C
C(V) these equations are consequences of (2) and (3).

4. Jordan triple systems with completely reducible derivation alge-
bras. For the case where the ground field is algebraically closed we will
prove the converse of Theorem 2.7 inasmuch as the derivation algebras are
concerned. Before stating the theorem we want to recall that we are only
dealing with Jordan triple systems which are finite-dimensional over a
field of characteristic zero.
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THEOREM 4.1. Let V be a Jordan triple system over an algebraically
closed field. Then the following are equivalent:

(a) Der V is completely reducible,

(b) V is a direct sum of two ideals V', i = 1,2, where after a possible
change of numeration one of the following two cases occurs:

(1) V' is semisimple and V?* is trivial,

(2) V' is semisimple and V? is a direct sum of ideals which are
isomorphic to an Example 2.3.

Proof. The implication (b) = (a) was already proved in Theorem 2.7.
To prove the converse, we proceed in several steps ((4.1) to (4.11)). We put
R = RadV.

(4.1) A(V,R) =0, ie.RCC(V).

Proof. By (1.9) R is invariant under every derivation, hence the
formula [ D, A(u, v)] = A(Du, v) + A(u, Dv) for D € Der V implies that
A(V, R) is an ideal of Der V. Now (1.1) and (1.2) show that A(V, R) is
reductive. On the other hand, A(V, R) consists of nilpotent endomor-
phisms by (1.10) and therefore is by Engel’s theorem a nilpotent Lie
algebra. It follows that A(V, R) is abelian and, by applying (1.1) once
more, every element of A(V, R) is semisimple. Thus A(V, R) = 0.

(4.2) If V = R, then Vis trivial, i.e. {VVV} = 0.

Proof. Since V is nilpotent, there exists an m € N such that Vj,,,_,, # 0
but ¥,,,+ = 0. We want to prove m = 1, so we assume m = 2. In this
case the linear span of {L(x, y); x € V;, y E V), i +j=2m — 2} is
abelian by Lemma 3.1.a, contained in Der V' because of {xy{uow}} €
Vii+j+3 = 0, and in fact is an ideal of Der V since DV, C V,,, for every
D € Der V. From (1.1) and (1.2) we derive that L(x, y) for x € V;,,
YEV,, itj=2m—12, is semisimple and from (1.10) we see that
L(x, y) is nilpotent, hence L(x, y) = 0. Since V' = C(V') we have

{tu{owz}} = {H{uow}x} = {{tuo}wz}

for every ¢, u, v, w, z € V, which implies V,,,_, = {(Vp,—3VV} =0

because L(V,,,—3), V') = 0. This is a contradiction and shows m = 1.
Because of (4.2) we assume in the sequel V' # R. We now come back

to the general situation and choose a semisimple subsystem S of ¥ such
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that = R © §, which is possible thanks to (1.13). Then we are in the
situation considered in Lemma 3.2.

DerV=A(V,V)®exDerV (direct sum of ideals)
where AV, V) = A(S,S) ={D € DerV; DS C S,
D|R=0} and exDerV:={D € DerV; DR CR,
D|S =0}.

(4.3)

Proof. By Lemma 3.2 every D € Der V leaves S and R invariant;
hence D | S is a derivation which is inner by (1.12),i.e. D|S = Z, A(s;, 1,) | S
for some s;, ¢; € S. This shows D = T, A(s;, t;) + (D — Z, A(s;, t;)) with
2, A(s;, 1) EAV,V) and D — Z,A(s,, t;) € exDer V. Because A(s;, t;)R
= 0, we have A(S, S) = {D € Der V; DS C S, D|R = 0}. The equality
A(S, S) = A(V, V) is obvious from (4.1). It is also clear that A(V, V') and
ex Der V' are subalgebras which annihilate each other, thus they are ideals
of Der V.

In order to extend derivations, Lemma 3.2.b shows that we need to
study the operation of the structure algebra of S on R. To this end we
choose a maximal orthogonal system (e,,...,e,) of minimal tripotents of
S. This is possible because the groundfield & is algebraically closed (1.26).

We prove next:

(4.4) L(S,S)|S= Y kL(e,, e;)|R.
j=1
Proof. Let V,; resp. S;; be the Peirce spaces of V resp. § relative to
(ey,---,e,). We know S;7 = ke, by (1.20) and S, = 0 by (1.26). Moreover,
for m € R we have {e;e;m} = {e,me,}. Hence, if m = m3 + m; + m, +
m,, is the Peirce decomposition of m relative to e,, we see 2m; + 2m, +
m, = 2m3; — 2m; , which implies m, = 0 = m; . Therefore

RC VS (e)® Vole:)-
i=1
The definition of the Peirce spaces now implies R = @/_ R, with R; =
R N V] where we put V= V. This shows V, = ke, ® R, V;; = S;;
forl=i<rand V=S, fori+j.

We want to investigate L(S, S)R which is a sum of products
{u,, 00Tm}> 4, © €S, r € R. Such a product is zero whenever k, / # m
and {i, j} N {k,!} = & set. The remaining cases are products of type
{4;/0mlim} € Vim O R =8, R,,. Therefore only L(u,,, v,,) can operate
non-trivially on R. Using R C C(V') shows that the product {u,,,0,,7,,,}
€ R, also lies in R; which implies L(u;,,, v;,,)R = 0 unless j = m. In the

jm?
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case j = m we only need to look ata product of the type {u,v,r,}. We

decompose u; = ae; +u;, Be + 0 and get

{ j] .I.I .U} = ZCXB +a{ ]] jj} +B{u]] eJrJJ} { _Ij Jj ]J}

But {e;v; r;} and {u;; ¢ r;} € V; N R=0 which shows VR, =0,
where the left-hand side is the product in the Jordan algebra V)(e, ),
Now (1.19) implies {u;; —2(u; But u;; v; € ke; and

JJ J/ .I/} JJ JJ) JJ I
therefore L(u;;, v;; )| R € kL(e;, €;) | R.

exDer V' = Der R, ® (©,_, Der, R)) is a direct sum of
(4.5)  ideals where D, € Der, R; iff D; € DerR; and for all
m,n € R; D,{me;n} = {D;me;n} + {me;D;n}.

Proof. From (4.3) we know exDerR = {D € DerV; DR CR, D|S
= 0}. Applying Lemma 2.3.b and (4.4) shows D € exDerR iff D = D,
where

T € DerR, [T, L(ej,ej)] =0 forlsj=<r

and
T{smn} = {sTmn} + {smTn} foralls € S,m,n € R.

First of all, [T, L(e;, e;)] = 0 for 1 <j =<r is equivalent to 7R; C R, for

O0<j=r, ie T= 21 —oT; where T,=T|R,. Since R= ®/_ R, is a

direct sum of ideals we get T € DerR iff 7; € Der R j for O=j=r.

Finally, since L(R;, R,) = 0 for j # k we have {smn} = X7_o{smn } =
—olm;s;n;}. The summand j = 0 vanishes since sy, = O moreover
{mj o n;} € R, NV, =0 and thus {smn} = Z7_,{s; m;n,}. This shows

that T{smn} = {sTmn} + {smTn} is equivalent to
T{men} = {Tme;n} + {meTn} forl<j=<r
and all m, n € R,. The assertion now easily follows.
(4.6) R, is an ideal of V with {R,V'V'} = 0.
Proof. We have
{VR.V} = {VVR,} = {SSR,} + {SRR,} + {RRR,}.
Here {SSR,} = 0 by (4.4). Further

{RR,S} = {R,R,S} = é {ROROSOJ} é {R So;R } =0

Jj=1
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and
{RRR,} = {RoR(R,}

Hence (4.6) follows if we can show {R,R,R,} = 0. To this end we note,
using (1.2), that Der R, is completely reducible in R. Therefore
{RoRyR,} = 0is a consequence of (4.2).

(4.7) (RRV} = 0.

Proof. Because of (4.6) and L(R;, R;) = 0 for j # k it is enough to
show (R, R .V} = 0for1=<j=r. Here

{R;R;S} = {R;SR;} = {R;S;R;} = {R;S;; R}

since {R;S;; R;} CRN V; =0. Hence (R,R;S} =0 iff {R;e,R;} =0.
But R; C V;" (e;) and thus (1.19) shows that {Re;R;} = 0 also implies

{R,R;R;} = 0. We therefore have to prove {R;e;R;} = 0. We can as-
sume R; # 0 and for brevity let N = R, ¢ = e;. We define

NO =N, NW={(NNKN fork=1.

Since the associative algebra generated by {L(a, ¢)|N; a € N} is nilpo-
tent ([11] Theorem 14.10), there is an m € N such that N!"! = 0, but
NU"=115£ 0, We assume m = 2. Then the vector space / = {L(a, c)|N;
a € NIm21} is well defined. To prove that / consists of derivations of N
we first note that the subsystem ke @ N coincides with its center, hence,
by Lemma 3.1.a and (1.19) we have form,n,p € N
(*) 2{mnp} = {mc{ncp}} = {{men}cp} = {nc{mep}}.
This implies for a € N2 that {ac{mnp}} € RI"*'1 =0 and
{{acm}np} = 0. Thus L(a, c)|N € Der N. Further, by (), {ac{mcn}} =
0 = {{acm}cn} = {mc{acn}}, which shows L(a,c)|N € Der, N =
Der, R

Let D € Der, N. Then DN C N¥land [D, L(a, ¢)]|N = L(Da,c)
| N. Therefore / is an ideal of Der, N which is abelian, because for
b € N 2land n € N we have

[L(b,c), L(a,c)]n = L({bca}, c)n = {nc{acb}} € NI™ = 0.

Since Der, N is completely reducible in N and L(a, ¢)|N is nilpotent, we
conclude from (1.1) that / = 0, i.e. NI~ = 0 which is a contradiction to
our definition of m. Thus m = 1,1i.e. {R;e;R;} = {NcN} = 0.

If Ry#0, then & _ R =0 and V=S®R, is a
(4.8)  direct sum of the semisimple ideal S and the trivial ideal

R,.
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Proof. We put R* = @'_| R; and compute {V,V,S ® R} using
(4.7). We get

(VVS} + {VVR*} = (SSS} + {RSS) + {SSR*} C S® R*

by (4.4). Similarly, {V, S ® R*,V} C § ® R* . Taking into account (4.6)
we see that ¥ = R, ® (R* ®S) is a direct sum of two ideals. By (4.4) we
have (R ®8); = R" ®S. Since R" is the radical of R* @S, we derive
from Corollary 2.6, (4.6) and (4.7) that

Der V = Der(R* ©S) ® Der R, ® Hom(R,, R*).

Now a comparison with (4.3) and (4.5) shows Hom(R,, R*) = 0. Hence
R™ = 0in case R, # 0 and (4.8) follows.
In what follows we assume R, = 0 and show next

(49) IfR,#0,j#0, then ¥, =0 for 0 <k <r with k # .

Proof. First, we look at the case k = 0 and assume that V;,, = §,; # 0.
Since S, is semisimple by (1.24), it contains a tripotent £, (1.25). By (1.7)
we have

{ffe;} = {fP(e,)e;} = —P(e,){ffe;} + {e,e,{fe;})
= _P(ej){ffej} + z{ffej}a

because {ffe;} € Vy(e;). Thus P(e){ffe,} = {ffe;} € S, (e;) = ke,.
Since f € V)(e;), we know { ffe;} # 0, and P(f)e; € Sy = 0 shows ¢; €
Vi(f) @ Vy(f). Altogether, this gives { ffe;} = e;. Now, for n € R; we get
{ffn} = {fnf} =0, but 2n = {e;e;n} = {e;ne;} € V,(f), a contradic-
tion. Therefore S;; = 0.

Let 1 =k <r. Then V), = Vj; ® V}, where V;; = {x € V};; {e,;xe;}
= *x}. It is obviously enough to prove Vi = 0. We define the Jordan
algebras @ = [V, (e, + ee,)]*"*¥ and B = (S, (e; + e, )] *. Then
% is a subalgebra of the Jordan algebra (¢ with the same unit element. We
assume V; = S; # 0. Then S, contains an element which is invertible in
% (by [4] VIII Lemma 3.3) and hence also in &. Thus P(x) | & is bijective.
On the other hand, we derive for n € R; that P(x)n = ;{xxn} € ¥, N
Vv = 0, which forces n to be zero, a contradiction.

(4.10) If R; # 0, then ¥)(e,) is isomorphic to an Example 2.3.
Proof. We know Vy(e;) = Sy(e;) ® R;. Let s, t € Sy(¢;) and m,
n € R;. Then, using { RRV'} = 0 by (4.7), we derive
P(s®m)(t®n) = P(s)t ® P(s)n + {stm}.
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Because S,(e;) = ke; ® S, (e;) we can apply Lemma 2.1 and (2.3) and
conclude that Sy(e; ) is the Jordan triple of a non-degenerate symmetric
bilinear form (-, -). A comparison with Lemma 2.3 now shows that (4.10)
follows if we can prove P(s)n = (s, s)n. To this end we decompose
s=ae; + s witha € kands™ €S, (e,)). Since {s™ ne;} = 0, we get

P(s)n = a?P(e,)n + P(s™)n = a’n + P(s™ )n.
From (1.19) we derive
P(s )n=14{s"s"n} = —i{{s e, Jen).
But {s”e;s”} =2P(s )e;= —2(s~,s )e, implies
P(s™)n=4(s", s )een} = (s, s )n

and P(s)n = (s, s)n follows. Finally, we complete the proof of Theorem
4.1 by showing

(4.11) Vy(c) and V2 @JeAVz(e) Then V Vi@ V?isa
direct sum of ideals where V! is semisimple.

Proof. By (4.9) and the assumption R, =0 we get V= V'O V?
which is obviously a direct sum of ideals. Since Rad V' = V' N Rad V' =
0, we see that V! is semisimple.

We come back to the general situation considered in the paper: Vis a
finite-dimensional Jordan triple system over a field of characteristic zero.
In this situation we have

COROLLARY 4.2. If Der V is completely reducible, then RadV is con-
tained in the center of V and {V,Rad V,Rad V} = 0.

Proof. Let K be an extension field of k. Then Der(K ® V') =
Der V' by (1.8) and Der( K ® V') is completely reducible in K ® V by (1.3).
Since Rad(K® V)= K® RadV and C(K® V)= K® C(V) we may
assume that k is algebraically closed. But in this case the assertion is just
(4.1) and (4.7).

The following theorem is a generalization of a theorem of K.-H.
Helwig ([6]) which was quoted in the introduction.
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THEOREM 4.3. For a Jordan triple system V the following statements are
equivalent:

(a) Der V is completely reducible and every derivation of V has trace
zero,

(b) V is semisimple,

(c) the bilinear form (D,, D,) — trace(D,D,) of Der V is non-degener-
ate, and every derivation of V is inner.

Proof. We put R = Rad V and choose a semisimple subsystem S of V'
such that V= § ® R, which is possible by (1.13). If (a) or (c) holds, then,
using Lemma 1.1 in case (c), Der V is completely reducible and we can
apply Corollary 4.2 to conclude R C C(V) and { RRV'} = 0. Let T = Idg.
Then D, € Der V by Lemma 3.2.(b). But obviously D} has trace zero or is
inner iff R = 0, i.e. V' is semisimple. Therefore both (a) and (c) imply (b).

If (b) holds, then Der V is completely reducible and the trace form of
Der V' is non-degenerate by Corollary 1.4. Moreover let ¢ be the trace
form of the Jordan triple V. Then o is non-degenerate and every deriva-
tion of V is skew relative to o and therefore has trace zero. It is also
known that every derivation is inner (1.12). Hence (b) implies (a) and (c).

COROLLARY 4.4. If Der V is semisimple, then V is semisimple too.

5. Real Jordan triple systems with compact automorphism group.
We apply Theorem 4.3 to classify real Jordan triple systems with compact
automorphism group.

We first recall that a real Jordan triple system is called compact (resp.
of non-compact type) if its trace form o is positive-definite (resp. negative-
definite).

THEOREM 5.1. Let V be a real Jordan triple system. Then AutV is
compact iff V is semisimple and for every simple component V' of V one of
the following three cases occurs:

(1) V' is compact,

(2) V' is of non-compact type,

(3) V' is isomorphic to the Jordan triple system defined on an Euclidean
space (X, (-, -)) by

(5.1) P(x)y=2(x,7)x —(x,x)7

where ~ is a non-trivial orthogonal reflection.
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Proof. We assume that Aut V' is compact and proceed in several steps:

(5.2) V' is semisimple.

Proof. If AutV is compact, it is well-known that there exists a
positive-definite form on ¥ such that Der V' consists of skew-adjoint
endomorphisms. In particular, Der V' is completely reducible and every
derivation of V has trace zero. Hence (5.2) is a consequence of Theorem
4.3.

(5.3) We can assume: V is simple.

Proof. Let V=V'® --- ®V7 be the decomposition of V into its
simple components. Then Aut '/ is canonically imbedded into Aut V as a
closed subgroup, hence Aut ¥/ is compact.

By [15] Satz 3.3 we know that ¥ has a Cartan involution a. Let
V=V, ®V_ be the corresponding eigenspace decomposition. Then V',
is compact and V_ is of non-compact type. Obviously we may assume
V,#0and V_=#0.

(54) L(x,,x_)=L(x_,x.)=P(x,,x_) foreveryx.€ V..

Proof. We can apply [15] Theorem 2.3.(b) (taking A = trace form) and
see that [D, a] = 0 for every derivation D of V. In particular, we get
aA(x, ,x_)a=A(x,,x_). But aA(x,,x_)a= —A(x,,x_) and
hence A(x, , x_) = 0, which is equivalent to the first equation of (5.4).
To prove the second, let u = u, +u_ € V. Then, by applying the first
equation (5.4), we get

xpxup={x;x u }+{xxu }t={x,ux }+{x xu}
={xjux p+H{xux }={xux_}

re. L(x, ,x_)=P(x,,x_).

We recall from [12] §1.1 that every element x € V/, has a minimal
decomposition, ie. x = X7_;Ae, where A, €R and (ey,...,e,) is an
orthogonal system of minimal tripotents. In particular, ¥, has many
tripotents.

If ¢ is a tripotent in ¥V, then V_ = (V_ NV, (¢)) ®

53 v Aoy,

Proof. Let x_ € V_ have the Peirce decomposition x_ = y," + y, +
i+ v withy;” € ¥, (¢) and y, € Vi(¢),i = 1,0. Then {cx_c} = {x_ cc}
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by (5.4). But the left hand side equals 2 y,” — 2y, , whereas the right hand
side is 2y,” + 2y, + y,. Hence y, = 0 = y,. Since L(¢,c)V_ C V_ and
P(c)V_ C V_, we get the claimed splitting of V_ .

V' = V,(c) where c is a tripotent of V', which is minimal
(5.6) .
mbV,.
Proof. First, we assume: For every minimal tripotent ¢ of V', the
Peirce space V(c) is non-zero.
Let x € V_ NV,(c), c a minimal tripotent of V', . Then L(c, x)V (¢)
= L(x, c)Vy(c) = P(x, c)V(c) = 0. Hence

V_nwyc) CL(c) = {y € ¥s(c); Ly, c)Vi(c) = L(c, y)Vi(c) = 0}.

But 7,(c¢) is an ideal of V,(c) ([16] Corollary 1.8) and V,(c) is simple by
[13]. If I,(¢) = V,(c¢), then ¢ € I,(c) implies V(¢) = 0. Therefore, by our
assumption, V_ N¥V,(c¢) C I,(c) = 0 and, by (5.5), V_ C V,(c). From the
Peirce multiplication rules now follows L(c, V_) = 0. Since this holds for
every minimal tripotent of ¥, and since every element of V', has a
minimal decomposition as mentioned above, we conclude L(V, ,V_) =10
= P(V,,V_). This implies that V=V, ©FV_ is a direct sum of two
non-trivial ideals, a contradiction to (5.3).

Therefore, there exists a minimal tripotent ¢ of V', such that V(¢) = 0.
Since V' is simple, this forces V;(c) to vanish and (5.6) follows.

We denote by X, the underlying vector space of the Jordan triple
system V', . Then

There exists a scalar product (-, -) on X, such that V.
(5.7) is the Jordan triple system associated to (-, -). More-

over, (X, y,ysz_} =2(X., Y, )z .

Proof. By (5.6) we know V_=(V,),(c) where ¢ is a minimal
tripotent of ¥, . Therefore (V)5 (¢) = Rc and Lemma 2.1 says that V',
is the Jordan triple associated to a bilinear form (-, -) on X . It is easy
to compute that the trace form o of V' is

o(x, y) = dtrace(L(x, y) + L(y, x)) = 2(x, y)dim X

which implies that (-, -) is positive-definite.

Letd € V', and assume (d, d )= 1. Then by (2.4) d is a tripotent of
V,=(V,.),(d). In particular, ¢ € V,(d) and L(c,c)(V_NVy(d)) = 0.
But V_ C ¥,(c¢) and therefore L(c, ¢)|(V_ NV,(d)) = 21d which shows
V_NVy(d)=0 and, by (5.5), V_ C V; (d). Hence, for x, € V, arbi-
trary, {x, x,z_} =2(x,,x, )z .Since {x,y,z }={y,x,.z_ }, we
get by linearization{x,y, z_ } =2(x,,y,)z_.
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We denote by X_ the underlying vector space of the Jordan triple
V_ . Then

There exists a scalar product (-, -) on X_ such that V_
(5.8) is the Jordan triple associated to —(-,-). Moreover,

{x_y_z,}=—2x_,y_)z,.

Proof. Let { -- -} denote the Jordan triple product of V" and V™ the
Jordan triple system with triple product —{ ---}. Then V" is simple,
Aut V™ = AutV is compact and —« is a Cartan involution of ¥V, hence .
V7 ),=V_,(V")_=V,. We therefore can apply (5.7) to V_ and get
(5.8).

Let X be the underlying vector space of V. Then X has a scalar
product (-, ), given by (x, +x_, y, ty_)=(x., y. )+ (x_, y_).
We define X =x, +x_ = x, —x_. Then ~ is a nontrivial orthogonal
reflection. Moreover, we have for x, y,z € V

(5.9) {(xz} =2[(x, 7)Yz + (z, 7 )x — (x,z) y].
Proof. From (5.7) resp. (5.8) and (2.1) we derive
{xsyeze} = 28[<x£’ yE>zE + <Z€’ y€>x€ - <x5’ ZE>y€]'

Moreover, by (5.4), we know {x,y,z }={x,z_y,}={z_x,y.}
and {x_y_z, }={x_z,y } ={z,x_y_}. Hence, by (5.7) resp. (5.8),
we get fore = =:

{xeyez-—e} = 2£<xe’ ys>Z—s’
{xey“szs} = 28<x£’ Z£>y—£ and
{x—syeze} = 28<y£’ Zs>‘x*e'

It is now a straightforward verification, that in all cases the triple product
{x.).25}, & 1, 8§ = £, can be expressed by the right-hand side of (5.9).
This proves (5.9).

Since P(x)y = 3{xyx} = 2(x, y)x — (x, x) y by (5.9) we have fi-
nally proved one direction of Theorem 5.1. We consider now the other
direction: Let V=V'® --- ®V be the decomposition of V into its
simple ideals and G = (Aut V') X - - - X(Aut V7). Then Aut V /G is finite,
since it is represented by automorphisms which map isomorphic ideals
onto each other. It is therefore enough to show that Aut V7 is compact for
1 <j =<gq. This is clear if ¥/ is compact or of non-compact type since
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every automorphism is orthogonal relative to the trace form. Hence it
remains to prove that AutV is compact for a Jordan triple V given by
(5.9).

Let ¢ € Aut V. Then ¢ is orthogonal relative to the trace form o of V'
which is o(x, y) = 2{x, y)dim V. Hence (x, y)= (px,py) forx,y € V.
Moreover

2(x, yyox — (x, x)9(7) = o(P(x)y)
= P(px)py = 2{px,9y) px — {px, px )@y

implies ( x, x)Y@(7) = (@x, px)gy forall x,y € V, i.e. (7) = agy with
a €R, a >0. Taking the determinant shows a = 1. Thus ¢ is also
orthogonal relative to (-, -). Conversely, it is obvious that a map with
o(¥) =¢(y) and (px, py)= (x, y) for every x, y € V is an automor-
phism of ¥, ie. AutV = {p €0V,(-,-)); o(7) =¢(y) for all y € ¥V}
which clearly is a compact group.

6. Jordan triple systems with completely reducible structure algebras.

As a further application of Theorem 4.1 we will classify Jordan triple

systems with completely reducible structure algebras, even in the case

where the ground field is not algebraically closed. The link to Theorem 4.1
is provided by the following

LEMMA 6.1. If S(V') is completely reducible, then Der V is completely
reducible..

Proof. Since (V) is completely reducible there is a decomposition
V=W'®---®W9I where the W' are J(V)-irreducible subspaces. This
yields a decomposition

(V,V)=(W,0)®--- & (W9,0)® (0, W) ®--- & (0, W9)

into Der(V, V')-irreducible subspaces. Hence Der(V, V') is completely re-
ducible.

The map 6: Der(V, V') - Der(V,V): (A, B) - (B, A) is an involutive
automorphism of Der(V, V') inducing a decomposition

Der(V,V) =H® N

where K = {(4, 4) € Der(V,V)} and 9N = {(4, —A4) € Der(V,V)}.
Since Der(V, V') is completely reducible, every nilpotent element can be
imbedded in a three-dimensional split simple subalgebra of Der(V, V) ([8]
III Theorem 17.1). Because [K, K] C K and [HK, 9] C 9N the same
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property holds for K by [8] III Lemma 8. Moreover & is almost algebraic
and thus the center of ¥ is almost algebraic, too. Thus [8] III Theorem
17.2 implies that K is completely reducible.

Now K — Der V: (4, A) - A is an isomorphism, in particular Der V
is reductive. If D is in the center of Der V, (D, D) is in the center of K
and thus semisimple, which shows that D is semisimple. By (1.1) Der V' is
completely reducible.

THEOREM 6.2. For a Jordan triple system V the following are equivalent:
(a) (V) is completely reducible,
(b) V is the direct sum of a semisimple and a trivial ideal.

Proof. Since (b) = (a) was already proved in Theorem 2.7 it remains
to show (a) = (b).

We first consider the case where the ground field & is algebraically
closed. Since Der V' is completely reducible we can apply Theorem 4.1
which in conjunction with Theorem 2.7(b) shows (b), i.e.

V= {VVV)®RadV

where {VVV} is a semisimple ideal and Rad V' is a trivial ideal.

In general, let k be an algebraic closure of k. Since k ® (V¥V} =
{(k®V,k®V, k®V) we see that {V'VV) is a semisimple deal, similarly
Rad Vis a trivial ideal. Because k ® V = (k ® {VVV}) ® (k ® Rad V') we
get V= {VVV} @ RadV.

REMARK 6.3. If V=1'® I? is a direct sum of ideals where I' is
semisimple and I? is trivial, then I' = {V'VV} and I* = RadV, ie. the
decomposition in Theorem 6.2(b) is unique.

It seems to be worthwhile to mention the following

COROLLARY 6.4. Let § be a unital Jordan algebra. Then § is semisimple
iff the structure algebra of § is completely reducible.
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