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ALGEBRAIC ELEMENTS OF A BANACH ALGEBRA
MODULO AN IDEAL

BRUCE A. BARNES

Let A be a Banach algebra and rad(Λ) its Jacobson radical. It is
classical that if f2 — / e rad(Λ), then 3 e e A such that e2 = e and
e — f G. ΐ&d(A). Calkin and Olsen have proved related results when A is
the algebra of all bounded linear operators on a Hubert space H and the
ideal is the ideal of compact operators on H. In this paper we consider a
Banach algebra A with unit and an ideal K of A and prove generaliza-
tions of some of these results.

Introduction. Let A be a Banach algebra and let rad(^ί) be the
Jacobson radical of A. A useful classical result in the theory of Banach
algebras states that if/2 - / e rad(v4), then 3e ^ A such that e2 = e and
e - f e md(A) [13, Theorem (2.3.9)]. A related result proved by Calkin in
1941 concerns the Banach algebra A = &(H), the algebra of all bounded
linear operators on a Hubert space H, and the ideal Jf(H) of compact
operators on H. He proved that if F = F* and F2 - F e Jf(H)9 then
3 E e # ( # ) such that E = E2 = E* and F - £ e Jf ( # ) [5, Theorem
2.4]. In [12] C. Olsen proved a surprising generalization of Calkin's result:
If p(z) is a polynomial and /?(Γ) e Jf(H), then 3 5 e ^ ( i / ) such that
p(S) = 0 and T - S <Ξ Jf(H). An element S of an algebra is algebraic if
p(S) = 0 for some nonzero polynomial />. Thus Olsen's Theorem char-
acterizes an operator that is algebraic modulo Jf(H) (a polynomially
compact operator) as the sum of an algebraic operator in &(H) and a
compact operator. Other theorems of this type have been proved by C.
Akemann and G. Pedersen [1] and by R. Miers [11]. In this paper we look
at the general situation of algebraic elements modulo an ideal. The setting
is a Banach algebra A and an ideal K of A (K need not be closed). For
convenience we assume that A has a unit (a unit could be adjoined
without loss of generality). First we prove a useful lemma concerning
when an algebraic element modulo K is the sum of an algebraic element of
A and an element of K. The result is elementary, yet strong enough to
allow us to prove generalizations of many of the results mentioned above
and give some other applications besides.

At this point we establish some notation. For / e i we denote the
spectrum of / in A as oA(f) or σ(/) when A is understood. If σ is a
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spectral set of/(an open and closed subset of σ(/)), then e(a) is the usual
spectral idempotent associated with σ [4, pp. 36-37]. Some of the applica-
tions concern algebras of operators. Throughout, X will denote a Banach
space, &S( X), the algebra of all bounded linear operators on X, Jt( X), the
ideal of compact operators on X, έΓ( X\ the ideal in 3S{ X) of finite rank
operators, a n d ^ ( ^ ) , the ideal of inessential operators on X[6, p. 33]. On
the algebraic side, the socle of A9 denoted soc(^4), plays a role; see [13, pp.
46-47]. In particular we prove an Olsen-type theorem for elements
algebraic modulo soc(A). Note that when A = &(X), soc(A) =

1. Algebraic elements modulo an ideal. Throughout this paper A is
a Banach algebra with unit 1, and K is an ideal of A. Our first order of
business is to prove our main tool. This tool reduces many questions
concerning algebraic elements in A modulo K to the verification of the
following hypothesis, labeled HN.

HN: N is a fixed positive integer such that for any k,
1 < k <N, and any idempotent e G A, if / G A, efe = /,
and / * G K, then 3g^A,g = ege, gk = 0, and 3 h e K

such that/= g + h.

Note that Hλ is always true. The tool we use is the following.

LEMMA 1. Assume K is an ideal of A which satisfies HN. Let p(z) =
ΠjLi(z - λj)nJ be a polynomial with 1 < n} < N for 1 <j < m. If f ^ A
has the properties

(l)p(f)eK;and
(2) o(f) = UyLi Oj where {σ1?... ,σw} is a disjoint collection of spectral

sets off with λj G o. for 1 <j < m;
thenf= g + h wherep(g) = 0 andh G K.

Proof. For eachy'let e} = e(θj). Then {ev...,em} is an orthogonal set

of idempotents with 1 = Σ j β l βj. Let

m

k = \9kΦj

Set Aj = ejAeJ9 and note that from spectral theory we have σA (/ey) = σy.
Thus for each j 3 η G AJ such that

Φ*j)rj = *r

It follows that
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By hypothesis HN 3 gJ9 hj such that βjgjβj = gj9 g^ = 0, Λy <E # , and

fey - λj€j = gj + hj.

Let g = Σy^iλjβj + gy ), and A = ΣJ = 1 Ay. Note that / = g + A and
A e ϋΓ. It remains to verify that/?(g) = 0. Now for eachy, (g — λy)e7 = gy ,
so that

Therefore

p(g) = \ Π U - λ J J (^1 + ̂ 2 + •• + O β 0 .

REMARK. Assume that σ(/) is totally disconnected and {λ l9... ,λm}
c α(/). Then it is easy to see that there exists a disjoint collection of
spectral sets of/, {σ1?., .,σm} with σ(/) = UJ β lσ y and λy e σy for 1 < j
< m. Thus in this case (2) of Lemma 1 holds automatically for /. This
remark applies in the following situation. Let A = 3&{X) and K c J(X).
If p(z) is a nonzero polynomial such that/?(Γ) e ίC, then by the Spectral
Mapping Theorem p(σ(T)) = σ(p(T)) which is a countable set. There-
fore a(T) is countable, hence totally disconnected.

For / G yl, let 3ί(/) be the closed subalgebra of A generated by / and
the unit element, and let (f)cc denote the collection of all elements of A
that commute with everything that commutes with/.

For T a compact subset of C, let f denote the polynomial convex hull
of T [4, Def. 10, p. 101].

The case where p(z) has simple zeros is of special importance. We
derive a corollary concerning this case.

COROLLARY 2. Assume that the polynomial p has only simple zeros, and
assume that (1) and (2) hold in Lemma 1.

(1) The algebraic element g in Theorem 1 can be chosen to be

(2) If {ό δm} is a disjoint collection, then
m

8= ΣV(«*)

Proof. Of course Hι is always satisfied by any ideal K. Then as
constructed in Theorem 1, g = Σ^ = 1 λke(σk), and g e (f)cc since e(σk) e
(/) c c for all &. Thus (1) holds. Now assume that/?(z) has simple zeroes
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and σ(/) = U™=1 σk as in (2) of Lemma 1. Suppose further that {όl9...9σm}
is a disjoint collection. By [4, Theorem 11, p. 101]

Therefore
m

P" = / Λ i € \ O i )
σ Lmd k V kf

is in 3t(/) and has the propertiesp(g) = 0 and/ — g ^ K.

li A= @(H) and AT is any ideal, Kcjίί(H), then Corollary 2
applies. However, Olsen has noted that there exists an operator T e SS(H)
such that Γ 2 is trace class, but (T - J)2 Φ 0 for any trace class operator /
[12, Example 4.6]. Thus although Corollary 2 holds for K, there is no
general extension of Corollary 2 to the situation wherep(z) does not have
only simple zeroes.

Now we give two examples to show that even when solutions g to
p(f — g) = 0 exist, there need not exist a solution that commutes with/;
and even when there are commuting solutions, there need not be a
solution in 2l(/).

EXAMPLE 3. Let H be a separable Hubert space, and / the identity
operator on H. Fix an orthonormal basis of H, and let / be the diagonal
operator relative to this basis with diagonal entries Jkk = l//c, k > 1. Of
course/ e Jf(H) and

(1) If S G # ( # ) and 57 = /S, then S is a diagonal operator.
Now define T e # ( # Θ # ) by

Γ = ( 0 /

Then

By Olsen's Theorem [12, Theorem 2.4] 3R^JΓ(H θ H) such that
(!Γ— i?)2 = 0. We prove that R cannot commute with T. Assume on the
contrary that RT = 77?. Write
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From the fact that TR = RT, one easily computes that

(2) Rλ = i?4, RxJ = JRl9 and R2 = JR3 = R3J.

Then using (2) and the assumption (T — i?)2 = 0 one can derive

(3) RX(I - R3) = 0 and (/ - R3)
2J = - i? 2 .

By (1) and (2) Rλ and i?3 are diagonal operators in Jf(H), and thus

( Λ J ^ ^ O and (Λ 3 ) Λ Λ -*0

as A: -> oo. Using the equation Rτ(I — R3) = 0, we have that (Rι)kk = 0
for all but a finite number of A:. But this contradicts the equation in (3):
(/ — R3)

2J = — I?2. Thus no commuting compact solution of (T — R)2

= 0 exists.

EXAMPLE 4. Let Ω be the compact subset of C given by

Ω = { Z E C : \Z\ = 1} U{-2,2}.

Let A be the algebra of all complex-valued continuous functions on Ω. Let

Set/(z) = z for \z\ = l ,/(-2) = 0,/(2) = 1. Then/ 2 - / e K. If e is the
idempotent e(-2) = 0 and e(z) = 1, z e Ω\ {-2}, then ( / - e) e .SΓ.
But

Since this set is connected, 2l(/) contains only the idempotents 0 and 1.
Now we consider several applications. In considering general roots

and logarithms in a Banach algebra, the roots and logarithms of the unit
element play a significant role; see [9] or [4, p. 43, pp. 89-90]. We look
briefly at the situation concerning roots and logarithms modulo an ideal K
of operators on a Banach space X where K a J>(X). In particular the
results apply when K is one of the Von Neumann-Schatten/j-classes.

We adopt the terminology in [4, p. 89].

PROPOSITION 5. Let A = $${X) and K be an ideal of A with K <zj( X).
Assume that T^A is inυertible mod(A^), and that o(T) is irrotational
mod(2τr/fl). // Tn = Rn mod(^), then T and R commute mod(j^) and
T = SR + J, where S commutes with T and R mod(K), Sn = /, and
J e K.

Proof. That TR = RT mod(i^) follows as in the proof of [4, §18,
Prop. 11 part (i)] (in the proof interpret equality as equality mod(^Γ)).
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Now let R' be an inverse for Rmod(K) and set Q = TR\ Then

Qn - /mod(iθ (note that TR' = R'Tmod(K)). By Corollary 2 3 S e

91(77?') such that Sn = / and 77?' - S e K. Since T and R commute with

TR! mod(K), both operators commute with Smod(2Π.

A result similar to Proposition 5 holds for logarithms modulo an ideal

K c J{X). If T e $${X) and /(z) is a nontrivial holomoφhic function

defined on some connected open set U with σ(Γ) c [/, then/has at most

a finite number of zeros on σ(T). Thus /is of the form/(z) = p(z)g(z),

where g is holomoφhic in U and has no zeroes on σ(Γ), and p is a

polynomial. Therefore if f(T) & K, then p(T) ̂  K and we can use

Lemma 1. These remarks apply to the entire function/(z) = exp(z) — 1.

These ideas can be used to establish the following result. We omit the

proof (see [4, p. 90]).

PROPOSITION 6. Let A = SS{ X) and K be an ideal of A with K c J{ X).

Assume that T e A, and σ(T) is incongruent mod(2ττ/). // exp(Γ) =

exp(i?)mod(ϋ:), then T and R commute mod(i^) and T = (S + R) + J

where S commutes with TandRmod(K), exp(>S) = 7, andJ e K.

Next we consider the classical case where the ideal K is rad(^4). We

denote the center of A by Z(A).

THEOREM 7.

(1) Ifp(z) has simple zeroes andp(f) e rad(v4), then 3 g G 3 l ( / ) such

thatf - g ε r a d ( ^ ) andp{g) = 0.

(2) If f & Z(A) and p is a nonzero polynomial with p(f) e rad(v4),

then the minimal polynomial for f modulo rad(yl) has simple zeroes. Thus (1)

applies.

Proof. Assume that p(z) has simple zeros and /?(/) G rad(^l). Then

P(°(f)) = °(p(f)) = {0} [13, Theorem (2.3.2) (iv)], so that σ(f) is finite.

Therefore (2) of Lemma 1 is automatically satisfied, and Corollary 2

implies that (1) holds.

Now suppose / e Z(A) and/?(/) e rad(yl) where p(z) is a nonzero

polynomial. Since/e Z(A)9 we have ek = e(σk) G Z(^4) for all k. As in

the proof of Lemma 1,

((f-λk)ekΓ<Emd(A).

Now if h e Z(^4) and Λ" e rad(^ί), then (Ah)n e rad(^ί). This implies by

[13, Theorem (2.2.9)] that Ah is included in every primitive ideal. Since
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rad(^) is the intersection of all primitive ideals of A [13, Theorem
(2.3.2)(i)]? ftGiAc rad(Λ). It follows from this argument that

( / - \k)ek e rad(i4), 1 < k < m.

Let

q(z)= Y\(z-λk).

Then
m

f~g= Σ (f-λk)ekend(A)9 <?(g) = 0, and q(f)eτad(A).

2. Algebraic elements modulo the socle. In this section we prove
that if A is a semisimple Banach algebra, p a polynomial with p(T) e
soc(Λί), then 3 / e soc(̂ 4) such that/?(Γ - /) = 0, As one application of
this result, we have an Olsen-type theorem for A = £#( X) relative to the
ideal K = JΓ( X) = soc(^(X)).

Let X be a Banach space, and let Xf be the dual space of X. For
x & X and α e X\ we write α(x) = (x9 α). A subspace Γ of Xf is total if
(x,ct) = 0 for all α e Γ => x = 0. Also, we use the notation α ® x to
denote the operator

(α ® x)(^) = α(^)x, J ^ X.

For Γ E ^ ( I ) we denote by T the usual adjoint operator of T on ΛΓ'. We

let Jί(T) denote the null space of T.

LEMMA 8. Assume X is α normed linear space and Γ is a total subspace
of X\ Let T e #(JjΓ) be such that T\T) c Γ. Suppose {x1 ?...,xπ} is α
linearly independent subset of X, and set M = spanj j^, . . . ,xn). Assume
further that M Π Jf(T) = {0}. Then 3 { α l v . . , α π ) c Γ such that ak(Xj)

Proof. Assume n = 1. If (xv To) = 0 for all α G Γ , then (ΓJC1? a) =
0 for all a e Γ, and this implies that Txγ = 0, a contradiction. Thus
3 α E Γ with (Txva) = ( j c f α ) = 1. Set α2 = Γ'α, and note that
ai(<^(T)) = {0}. Now assume that the result holds for n — 1, and let
{x l 9...,x n} be as in the statement of the lemma. Choose {av...,an_ι}
c Γ such that (xk, αy> = δ^, 1 < k < n - 1, and α^(>"(Γ)) = {0}.
Define 5 and G o n l a s follows:

n-l

G= Σ ak® xk, and S = Γ ( / - G).
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Then

, and

Sxn=T\xn-

As in the argument at the beginning of the proof, we can choose an e Γ

such that an{xn) = 1 and an(^(S)) = {0}. Then an(xj) = 0 for 1 <j <

n — 1 and an(jV{T)) = {0}. Thus the result follows by induction.

Now fix Γ a total closed subspace of X'. Let

ST(X9 Γ) = span{α <g> JC: a e Γ, x e X}, and

j/(X,Γ) = ( Γ G f ( l ) : r ( Γ ) c Γ ) .

Then $~{X, Γ) is an ideal in the algebra s/(X9 Γ). The previous lemma

can be restated as follows:

Suppose T e s/(X9 Γ) and M is a finite dimensional subspace of X

with Λf Π JΓ{T) = (0). Then there exists a projection JF G &~(X9 Γ) such

Here F is the projection,
n

F = £ αΛ β

where {xk} and {α^} are as in Lemma 8.

LEMMA 9. Assume Γ E J / ( I , Γ) α«d Tn e ^"(Z, Γ).

X, Γ) swcΛ /to [Γ(/ - G)]n = 0.

. Suppose n = 1. Then since Γ G f ( I , Γ ) we have I = M θ

for some finite dimensional subspace M c I By Lemma 8 3 F a

projection in ^ ( Z , Γ) such that F{X) = M and F{Jf(T)) = {0}. Thus

Γ(/ - F) = 0.

Now assume that the result holds for n - 1, and Γ" e ^(X, Γ). Set
R = T(X). Since Γ""1]/? is an operator with finite dimensional range,

there exists a finite dimensional subspace M c R such that

R = M ®[R ΠΛ^Γ*- 1)].

By Lemma 8 3 £ G J ( I , Γ ) such that £(X) = M and

{0}.Then

and it follows that
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Applying the induction hypothesis, 3 F e ^(R, Γ) such that

[T(I - E)(I - F)]'-\R) - {0}.

Of course we can consider F as an operator in &~( X, Γ). Then

[T(I - E)(I - F)]"(X) c [T(J - E)(I - F)} -\R) = {0}.

This proves the lemma.
Let A be a primitive Banach algebra. By [13, Theorem (2.4.12)] there

exist a Banach space X and a total closed subspace Γ of Xr such that A
can be represented as a subalgebra of s/(X9 Γ) and soc(̂ 4) as 1Γ(X9 Γ).
Using this representation, we prove that Lemma 1 applies when A is
primitive and K = soc(^4).

THEOREM 10. Let A be a primitive Banach algebra with unit. If T G A
and p is a polynomial with p(T) e soc(^4), then there exists J e soc(A)
such thatp(T - J) = 0.

Proof. As noted above, we may assume that A is a subalgebra of
s/(X9 Γ) and that soc(A) = SΓ{X, Γ). We verify that HN holds relative to

9 Γ) for N > 1. Suppose that Γ" e ^"(X, Γ) and E = £ 2 e ^ with
= Γ. By Lemma 9 3 G G ^ ( X, Γ) such that (T(I - G))n = 0. Then

- EGE)]n = 0. Thus T = T(I - G)E + ΓG£, ΓGE e ^(X, Γ),
- G)£) = T(I - G)E9 and (T(I - G)E)n = 0. This verifies HN.

Finally, since / ; (Γ)e f (JT, Γ), we have σ(p(T)) is finite, and thus
σ(Γ) is finite. Therefore Lemma 1 applies.

Recall that SΓ{ X) is the ideal of bounded operators on X with finite
dimensional range. The following corollary was noted by Olsen [12,
Theorem 4.5] in the case where X is a Hubert space.

COROLLARY 11. Let X be a Banach space. If T e <Ά\X) and p is a
polynomial withp(T) e SΓ{X\ then 3J e 2Γ(X) such thatp(T - /) = 0.

Now we extend Theorem 10 to the case where A is semisimple.

THEOREM 12. Let A be a semisimple Banach algebra with unit. Let K be
an ideal of A with K c soc(^4). Iff^A and p is a polynomial with
p(f) e K, then 3 A E Ksuch thatp(f- h) = 0.

Proof. The ideal K is an algebraic direct sum of minimal ideals of A.
There exists a finite set of minimal ideals of A9 {Ml9...9Mn}9 such that
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p(f) e Mx θ φ Mn. Let Jy. = { g € i : gMy = {0}}. Let *. be the
quotient projection, my A -> >l//7 . Then fly(^) is a primitive Banach
algebra with unit and IΓJ(MJ) = soc(wy(i4)). Also,

Therefore by Theorem 10 3 h} e M, such that

Thusp(f - hj) e 7,.. Let A = Σ" = 1 hΓ Now

Since p(f — ΛA) e Ik, we have for wA e Λίfc,

It follows that

p(f-h)e Γ\[M1Φ -- θ M j = {0}.

We note one application of this result. Let G be a compact group, and
let M(G) be the measure algebra on G [7, p. 269]. Then soc(M{G)) =
^(G), the ideal of all trigonometric polynomials on (z [8, p. 5]. This is
verified in [3, Lemma A.6.1].

COROLLARY 13. If μ e M(G) andp is a polynomial withp(μ)
3 / e ^"(G) .ywcΛ thatp(μ - f) = 0.

3. Applications to C*-algebras. Throughout this section we assume
that A is a C*-algebra. When A = ί?(Jff), then soc(Λ) = Jf(ff). Olsen's
Theorem [12, Theorem 2.4] involves algebraic elements modulo soc(^4) in
this specific situation. We prove a result that generalizes Olsen's Theorem:
If A is a general C*-algebra and K is a closed ideal, K c soc(^4), then Up
is a polynomial with/?(Γ) G ,SΓ, then 3 / e ίΓsuch that^ίΓ — /) = 0.

First we prove a lemma.

LEMMA 14. Let K be an ideal of A. Assume that e = <?2 e A, E = £ * =
£ 2 e 4̂ and that

(1) Ee = e and eE = e.
Assume further that the ideal EKE in the C*-algebra EAE has the property:

(2) ifk e £^4£ απJ &" e £ ^ £ , r/ẑ π 3 A G EAE swcA rtα/ (k - h)n =
0.

If / = ς/fe and fn e JS:, then 3 g G ^ with g = ^gβ, gπ = 0, and
3 A e K such that/ = g + h.
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Proof.

Therefore (EfE)n = EfnE e EKE. By (2) EfE = EgE + EhE where
(EgEY = 0 and h e K. NOW

/ = e/= £<>/ = £/e = Ege + Ehe.

Also, e(Ege)e =

and Ehe <Ξ jί.
If 4̂ is a semisimple normed algebra and E = E2 ^ A, then it is not

difficult to prove that

soc(EAE) = Esoc(A)E.

We use this fact in the proof of the theorem.

THEOREM 15. Let A be a C*-algebra with unit, and let K be a closed
ideal of A such that K c (soc(yί))~\ IfT^A and p is a polynomial with
p(T) e K, then 3 / e Ksuch thatp(T - J) = 0.

Proof. Since K c (soc(yl))~, K is a Riesz-algebra [3, p. 60]. This
implies that σ(p(T)) is countable. Therefore o(T) is countable by the
Spectral Mapping Theorem. Thus (2) of Theorem 1 is automatically
satisfied for T. We verify that K satisfies HN for any N. Using the
construction given in [3, pp. 79-81], A has a representation as a closed
*-subalgebra of B(H) with the properties:

(i) there is an index set Λ such that {Hλ: λeΛ}U{jHΓ0} is a
collection of mutually orthogonal closed A -invariant subspaces of H with
H = i/0 θ Σ λ e Λ //λ (Hubert space direct sum);

(ii) for all λ e Λ, A\Hλ D Jt(Hx).
Also, using the fact that K is a Riesz (or annihilator, or dual) C*-algebra,
we have from [13, Theorem (4.10.14)]:

(iii) R e K if and only if Rλ = i?| Hλ G Jf(Hλ) for all λ e A , and
for each ε > 0,

( λ G Λ : | |i?J > ε} is finite.

Let V be the von-Neumann algebra generated by A as a subalgebra of
&(H). The characterization of Kin (iii) implies the key fact that

K is a closed ideal in F.
Assume Tn <E ίΓ. By [10, Theorem 2] 3 £ = E* a projection in F such that

K.
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We prove that 3 / e K such that (T - J)n = 0 by induction. Certainly
this is true if n = 1. Assume it holds true for n — 1. Now let E be as
above.

T= ET + (I- E)T and (/ - E)T e K.

Therefore 3 Jo e if such that Tn~ι = ( J E Γ ) " " 1 + Jo. Thus

(ETE)n~ι = (ETn~ιE - EJ0E) e £iGE.

As noted before the statement of the theorem, soc^Fl?) = Esoc(V)E.
Therefore EKE is a closed ideal in the closure of soc( EVE). Applying the
induction hypothesis we have 3 / ^ EKE such that (ETE - Λ)"" 1 = 0.
Set Sλ = ETE - Jλ (note ESλE = S )̂. Let / = Jλ + (I - E)T e if, and
S = T-J = ESλE + £Γ( J - £) . Then

£) = 0.

Now suppose Tn <Ξ K and e = ^ 2 e >4 with Γ = e7>. Choose E = E*
= E2 <=A such that £e = ^ and eE = E [14, Theorem 6.1]. We have EKE
is a closed ideal contained in the closure of the socle of the C*-algebra
EAE. Thus the previous argument establishes that (2) of Lemma 14 holds.
Then it follows from that lemma that HN is true for K for all N.

The West Decomposition in a C*-algebra A states that if K is a closed
ideal, K c soc(yl), and / is quasinilpotent modulo K, then / '= q + h
where q is quasinilpotent (ll?"!!17" -» 0 as /? -» oo) and h e if [3, C*.2.5].
We note that in this same situation, Theorem 15 implies that when
fn^K, then / = g + Λ where gw = 0 and A E I Whether this property
holds when K is an arbitrary closed ideal is an open question [1, Question
2.7]. Akemann and Pedersen prove that this is so for n = 2 [1, Prop. 2.8].
We use their result and Lemma 1 to prove our next theorem. If the
question of Akemann and Pedersen [1, Question 2.7] has an affirmative
answer, then the next result would be true with no restriction on the
integers Πj.

THEOREM 16. Let A be a C*-algebra and K be a closed ideal of A. let

p(z)~ Π ( z - λ , Γ
7 = 1

where nj = 1 or 2 for all j . Iff^A has properties (1) and (2) listed in
Lemma 1, thenf= g + h wherep(g) = 0 andh e K.

Proof. It is enough to verify H2 holds for K. Assume/ e A, e2 = e e
A9f= efe, and/ 2 e K. By [14, Theorem 6.1] there exists E = E* = E2 e
A such that Ee = e and eE = E. Also, by the Akemann-Pederson result
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[1, Prop. 2.8] property (2) of Lemma 14 is satisfied with n = 2. Thus by
that lemma, 3g e A with g = ege, g2 = 0, and Ξ h e K such that / =
g + h.
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