# THE SET OF PRIMES DIVIDING THE LUCAS NUMBERS HAS DENSITY 2 / 3

# J. C. LAGARIAS

Dedicated to the memory of Ernst Straus

The Lucas numbers  $L_n$  are defined by  $L_0 = 2$ ,  $L_1 = 1$  and the recurrence  $L_n = L_{n-1} + L_{n-2}$ . The set of primes  $S_L = \{p: p \text{ divides } L_n \text{ for some } n\}$  has density 2/3. Similar density results are proved for sets of primes  $S_U = \{p: p \text{ divides } U_n \text{ for some } n\}$  for certain other special second-order linear recurrences  $\{U_n\}$ . The proofs use a method of Hasse.

1. Introduction. There has been a good deal of study of the structure of the set of prime divisors of the terms  $\{U_n\}$  of second order linear recurrences. M. Ward [15] showed that there are always an infinite number of distinct primes dividing the terms  $\{U_n\}$ , provided we exclude certain degenerate cases such as  $U_n = 2^n$ . In fact, under the same circumstances it is believed that the set of primes dividing the terms  $U = \{U_n\}$  of any nondegenerate second order linear recurrence has a positive density d(U) depending on the recurrence. This can be proved under the assumption that the Generalized Riemann Hypothesis is true by a method analogous to Hooley's conditional proof [4] of Artin's Conjecture for primitive roots. P. J. Stephens [13] has done this for a large class of second-order linear recurrences.

The point of this paper is that there are special second order linear recurrences where it is possible to give an unconditional proof of the existence of a density. This was shown by Hasse [3] for certain special second order linear recurrences having a reducible characteristic polynomial, in the process of solving a problem of Sierpinski [12]. Sierpinski's problem concerns the existence of a density for the set of primes p for which ord  $_p 2$  is even. This set of primes is exactly the set of primes dividing some term of the sequence  $V_n = 2^n + 1$ ; this sequence satisfies the reducible second order linear recurrence  $V_n = 3V_{n-1} - 2V_{n-2}$  with  $V_0 = 2$  and  $V_1 = 3$ .

THEOREM A. (Hasse) The set of primes  $S_V = \{p: p \text{ is prime and } p \text{ divides } 2^n + 1 \text{ for some } n \ge 0\}$  has density 17/24.

Hasse's result [3] actually covers all the sequences  $\{a^n + 1: n \ge 0\}$ , where a is an integer, and the density of the associated set of primes is 2/3 when  $a \ge 3$  is squarefree.

Here we observe that Hasse's method with some extra complications extends to cover certain second-order linear recurrences with irreducible characteristic polynomials. The most interesting example of this phenomonon is the Lucas numbers  $L_n$  defined by  $L_1 = 2$ ,  $L_2 = 1$  and the recurrence  $L_{n+1} = L_n + L_{n-1}$ .

THEOREM B. The set of primes  $S_L = \{ p: p \text{ is prime and } p \text{ divides some Lucas number } L_n \}$  has density 2/3.

Theorem B also can be derived from polynomial-splitting criteria of M. Ward [16] for membership in  $S_L$ . The full proof is then essentially the same proof as given here.

The following recurrence discussed in Laxton [8] provides another interesting example.

THEOREM C. Let  $W_n$  denote the recurrence defined by  $W_0 = 1$ ,  $W_1 = 2$ and  $W_n = 5W_{n-1} - 7W_{n-2}$ . Then the set  $S_W = \{p: p \text{ is prime and } p \text{ divides } W_n \text{ for some } n\}$  has density 5/8.

The parameterized families of recurrences  $A_n(m)$  and  $B_n(m)$ , both of which satisfy the recurrence

$$U_n = mU_{n-1} - U_{n-2}$$

with initial conditions  $A_0(m) = B_0(m) = 1$  and  $A_1(m) = m + 1$ ,  $B_1(m) = m - 1$ , are also recurrences to which Hasse's method applies. In the case that  $\varepsilon = \frac{1}{2}(m + \sqrt{m^2 - 4})$  is the fundamental unit in  $K = Q(\sqrt{m^2 - 4})$  the sets  $S_A(m) = \{p: p \text{ is prime and } p \text{ divides } A_n(m) \text{ for some } n\}$  and  $S_B(m) = \{p: p \text{ is prime and } p \text{ divides } B_n(m) \text{ for some } n\}$  each have density 1/3. I omit the details.

In what circumstances is Hasse's method applicable? Any irreducible second-order recurrence  $\{U_n\}$  whose terms  $U_n$  are rational numbers can be expressed in the form

$$U_n = \alpha \theta^n + \overline{\alpha} \theta^n$$

where  $\alpha$  and  $\theta$  are in the quadratic field K generated by the roots of the characteristic polynomial of  $\{U_n\}$ , and  $\overline{\alpha}$ ,  $\overline{\theta}$  are the algebraic conjugates of  $\alpha$ ,  $\theta$  in K. Hasse's method applies whenever:

(i)  $\theta/\bar{\theta} = \pm \phi^k$  where k = 1 or 2 for some  $\phi$  in K.

(ii)  $\bar{\alpha}/\alpha = \zeta \phi^j$  where  $\zeta$  is a root of unity in K and j is an integer. The actual densities of the sets of primes obtained depend in an idiosyncratic way on  $\alpha$  and  $\theta$ , which makes it awkward to state and prove a general result. For this reason I have applied the method to special cases. From the pattern of these proofs one should be able in principle to work out the density of a set of primes associated to any particular recurrence to which the method applies.

The proofs actually show that the sets of primes  $S_U = \{p: p \text{ is prime} and p | U_n \text{ for some } n\}$  for these particular recurrences  $\{U_n\}$  covered by Hasse's method have a special property. To state this property, we need some definitions. A set  $\Sigma$  of primes is a *Chebotarev set* if there is some finite normal extension L of the rationals Q such that a prime p is in  $\Sigma$  if and only if the Artin symbol

$$\left[\frac{L/Q}{(p)}\right]$$

is in specified conjugacy classes of the Galois group Gal(L/Q), cf. [5]. Chebotarev sets of primes  $\Sigma$  are guaranteed to have a natural density  $d(\Sigma)$  given by the Chebotarev density theorem, cf. [10]. The special property is:

Property D. Both the set S of primes and its complement  $\overline{S} = \{ p: p \text{ is } prime \text{ and } p \notin S \}$  have a decomposition into disjoint countable unions of Chebotarev sets of primes. That is,

$$S = \bigcup_{j=1}^{\infty} S^{(j)}, \qquad \overline{S} = \bigcup_{j=1}^{\infty} \overline{S}^{(j)}$$

where  $S^{(j)}$  and  $\overline{S}^{(j)}$  are Chebotarev sets. The densities of these sets satisfy

$$\sum_{j=1}^{\infty} d(S^{(j)}) + \sum_{j=1}^{\infty} d(\overline{S}^{(j)}) = 1.$$

It is easy to show that any set of primes S having property D has a natural density d(S) given by

$$d(S) = \sum_{j=1}^{\infty} d(S^{(j)}).$$

For most second order recurrences  $\{U_n\}$  the set of primes  $S_U$  associated to the recurrence is not known to have Property D, and probably it doesn't. However, it seems a difficult problem to show that there exists even one set  $S_U$  that doesn't have Property D. As a test case, does the set  $S_Y$  of primes dividing the terms of the recurrence given by  $Y_n = Y_{n-1} + Y_{n-2}$  with  $Y_0 = 3$  and  $Y_1 = 1$  not have Property D?

I give a proof of Theorem A in §2 for comparison with the more involved details of the proofs of Theorem B and C in §§3 and 4, respectively.

2. Proof of Theorem A. The condition that  $p|2^n + 1$  for some *n* can be rewritten as:

(2.1) 
$$2^n \equiv -1 \pmod{p}$$
 is solvable.

Now let  $m = \operatorname{ord}_p 2$ , the least positive integer with

$$(2.2) 2m \equiv 1 \pmod{p}.$$

Now (2.1) is solvable if and only if *m* is even and the smallest solution to (2.1) in that case is  $n = \frac{1}{2}m$ . Now suppose  $2^{j}$  exactly divides p - 1. Then we have:

(2.3)  $2^{j} || p - 1$  and  $\operatorname{ord}_{p} 2$  is  $\operatorname{odd} \Leftrightarrow 2^{(p-1)/2^{j}} \equiv 1 \pmod{p}$ .

Hasse observes that the condition on the right side of (2.3) is a splitting condition for primes in a certain algebraic number field  $K_j$ ; such sets of primes have a density by the Frobenius density theorem.

Consequently we proceed by decomposing the set  $S_V$  into disjoint sets

$$(2.4) S_V = \bigcup_{j=1}^{\infty} S_V^{(j)}$$

given by

$$S_V^{(j)} = \{ p : p \equiv 1 + 2^j \pmod{2^{j+1}} \text{ and } p \in S_V \}.$$

We also define

$$\overline{S}_{V}^{(j)} = \left\{ p \colon p \equiv 1 + 2^{j} \left( \mod 2^{j+1} \right) \text{ and } p \notin S_{V} \right\}.$$

and observe  $p \in \overline{S}_{V}^{(j)}$  if and only if  $p \equiv 1 + 2^{j} \pmod{2^{j+1}}$  and (2.3) holds. To state Hasse's observation precisely, let  $C_{j}$  denote the cyclotomic field  $Q(\sqrt[2^{j}]{1})$ , let  $K_{j} = Q(\sqrt[2^{j}]{1}, \sqrt[2^{j}]{2})$  and let  $L_{j} = Q(\sqrt[2^{j+1}]{1}, \sqrt[2^{j}]{2})$ .

LEMMA 2.1. (1) The primes p in  $\overline{S}_{V}^{(j)}$  are exactly the primes p that split completely in  $K_{j}$  but not in  $L_{j}$ .

(2) The degree  $[K_j: Q]$  is 2, 8 and  $2^{2j-2}$  for j = 1, j = 2 and  $j \ge 3$ , respectively. The index  $[L_jK_j] = 2$  except for j = 2 where  $K_2 = L_2$ .

(3) The primes p in  $\overline{S}_{V}^{(j)}$  have densities  $d_{j}^{*}$  equal to 1/4, 0 and  $2^{-2j+1}$  for j = 1, j = 2 and  $j \ge 3$ , respectively. The primes p in  $S_{V}^{(j)}$  have densities

$$\begin{split} d_{j} &= 2^{-j} - d_{j}^{*} \text{ for all } j \geq 1. \text{ That is,} \\ &= \left\{ p \leq x \colon p \in \overline{S}_{V}^{(j)} \right\} \sim d_{j}^{*} \frac{x}{\ln x}, \\ &= \left\{ p \leq x \colon p \in S_{V}^{(j)} \right\} \sim \left( 2^{-j} - d_{j}^{*} \right) \frac{x}{\ln x}, \end{split}$$

as  $x \to \infty$ .

*Proof.* To prove (1) we observe that the fields  $C_j = Q(\sqrt[2^{j-1}]{-1})$ ,  $K_j = C_j(\sqrt[2^{j}]{2})$  and  $L_j = C_{j+1}(\sqrt[2^{j}]{2})$  are all normal extensions of the rationals. The condition that the ideal (p) split completely over a cyclotomic field  $Q(\sqrt[m]{1})$  is well known to be  $p \equiv 1 \pmod{m}$  ([2], Lemma 4), hence  $p \equiv 1 \pmod{2^j}$  holds if and only if p splits completely in  $C_j$ . The condition that a prime ideal p in  $C_j$  split completely in the Kummer extension  $K_j = C_j(\sqrt[2^{j}]{2})$  is exactly that

(2.5) 
$$x^{2^{j}} \equiv 2 \pmod{(p)} \quad \text{for } x \in O_{j}$$

be solvable over the ring of integers  $O_j$  for  $C_j$  ([2], Lemma 5). If p is of degree 1 then any algebraic integer x in  $C_j$  is congruent to a rational integer (mod p) so in this case equation (2.5) is solvable if and only if

(2.6) 
$$x^{2'} \equiv 2 \pmod{p} \quad \text{for } x \in \mathbb{Z}$$

is solvable. By Euler's criterion (2.6) is solvable if and only if

(2.7) 
$$2^{(p-1)/2^j} \equiv 1 \pmod{p}$$

is solvable. This is exactly (2.3), and we have shown (p) splits completely in  $K_j$  iff  $p \equiv 1 \pmod{2^j}$  and (2.7) holds. Similarly (p) splits completely in  $L_j$  iff  $p \equiv 1 \pmod{2^{j+1}}$  and (2.7) holds. This proves (1).

To prove (2), we first observe that  $[C_j: Q] = \phi(2^j) = 2^{j-1}$ . The special circumstance that  $C_3 = Q(\sqrt{-1}) = Q(\sqrt{-1}, \sqrt{2})$  shows that  $K_2 = L_2 = Q(\sqrt{-1}, \sqrt[4]{2})$ , and that  $\alpha = \sqrt{2}$  is in  $C_j$  for  $j \ge 3$ . The fact that  $K_2 = C_2(\sqrt[4]{2})$  is a nonabelian extension of Q guarantees that  $\sqrt[4]{2}$  is not in any of the abelian extensions  $C_j$ . Now observe that  $K_j = C_j(2^{j-1}\sqrt{\alpha})$  for  $j \ge 3$  is a Kummer extension so that  $[K_j: C_j]$  divides  $2^{j-1}$ . In fact for  $j \ge 3 \alpha$  is of order  $2^k$  in  $C_j^*/(C_j^*)^{2^k}$  for any k because  $\sqrt[4]{2}$  isn't in  $C_j$ , hence using [2], Lemma 1 we have  $[K_j: C_j] = 2^{j-1}$  for  $j \ge 3$  and also  $[L_j: C_{j+1}]$  $= 2^{j-1}$  for  $j \ge 3$  using  $L_j = C_{j+1}(2^{j-1}\sqrt{\alpha})$ . Thus  $[K_j: Q] = [K_j: C_j][C_j: Q]$  $= 2^{2j-1}$  for  $j \ge 3$  and  $[L_j: Q] = 2^{2j-1}$  for  $j \ge 3$  so that  $d_j^* = 2d_j$  for  $j \ge 3$ . Finally one checks that  $[K_1^*: Q] = 2, [L_1: Q] = 4$  and  $[K_2: Q] = 8$ , to prove (2).

#### J. C. LAGARIAS

To prove (3) we observe that for a normal extension K/Q of degree [K:Q] the set of primes p that split completely in K has density  $[K:Q]^{-1}$ , which is a consequence of the prime ideal theorem (e.g. [6], p. 315 Theorem 4), a special case of both the Frobenius and Chebotarev density theorems. Thus using (1) we find that the set of primes in  $\overline{S}_V^{(j)}$  is the difference of a set of primes of density  $[K_j:Q]^{-1}$  less a class of primes contained in it of density  $[L_j:Q]^{-1}$ . Using (2) we compute this density  $d_j^*$  to be equal to 1/4, 0 and  $2^{-2j+1}$  for j = 1, j = 2 and  $j \ge 3$ , respectively. Finally the primes in  $S_V^{(j)}$  are the difference of the class of primes  $\{p \equiv 1 + 2^j \pmod{2^{j+1}}\}$  of density  $2^{-j} = [C_j:Q]^{-1} - [C_{j+1}:Q]^{-1}$ , and the class of primes  $\overline{S}_V^{(j)}$  of density  $d_j^*$  contained in it. This proves (3).

To complete the proof of Theorem A, we observe that for any fixed  $m \ge 3$ ,

$$\bigcup_{j=1}^{m} S_{V}^{(j)} \subseteq S_{V} \subseteq \mathbf{P} - \bigcup_{j=1}^{m} \overline{S}_{V}^{(j)}$$

where  $\mathbf{P}$  denotes the set of all primes. Using (3) of Lemma 2.1, the first inclusion gives

$$\# \{ p \le x : p \in S_{\nu} \} \ge \left( \frac{17}{24} - 2^{-m} - \frac{4}{3} 2^{-2m+1} \right) \frac{x}{\ln x} + o\left( \frac{x}{\ln x} \right)$$

as  $x \to \infty$ , since all the  $S_V^{(j)}$  are disjoint. The second inclusion gives

$$\# \{ p \le x : p \in S_V \} \le \left( \frac{17}{24} + \frac{4}{3} 2^{-2m+1} \right) \frac{x}{\ln x} + o\left( \frac{x}{\ln x} \right).$$

as  $x \to \infty$ . Letting  $m \to \infty$  shows that

$$\#\{ p \le x : p \in S_V \} \sim \frac{17}{24} \frac{x}{\ln x}.$$

REMARKS. (1) By a careful analysis of error terms in this argument using an effective version of the Chebotarev density theorem, Odoni [11] has proved the stronger result that:

$$\#\left\{p \le x : p \in S_V\right\} = \frac{17}{24}\operatorname{Li}(x) + O\left(\operatorname{Li}(x)\exp\left(-c\frac{\ln\ln x}{\ln\ln\ln x}\right)\right)$$

where  $\operatorname{Li}(x) = \int_2^x dt / \ln t$ .

(2) The sets  $S_{V}^{(j)}$  are sets of primes determined by systems of polynomial congruences in the sense of [5, Theorems 1.1 and 1.2].

3. Proof of Theorem B. The Lucas numbers  $L_n$  satisfy (3.1)  $L_n = \epsilon^n + \overline{\epsilon}^n$  where

$$\varepsilon = \frac{1+\sqrt{5}}{2}$$
 and  $\overline{\varepsilon} = \frac{1-\sqrt{5}}{2}$ 

Hence

(3.2) 
$$p \mid L_n \Leftrightarrow \varepsilon^n + \varepsilon^{-n} \equiv \theta \pmod{p} \Leftrightarrow \theta^n \equiv -1 \pmod{p}$$
  
where

$$\theta = \frac{\varepsilon}{\overline{\varepsilon}} = -\varepsilon^2 = -\frac{3+\sqrt{5}}{2}$$

and the congruences are in the ring  $\mathbb{Z}[(1 + \sqrt{5})/2]$  of algebraic integers in  $Q(\sqrt{5})$ . Thus  $S_L$  is exactly the set of primes p for which the exponential congruence over  $\mathbb{Z}[(1 + \sqrt{5})/2]$  given by

(3.3) 
$$\theta^x \equiv -1 \pmod{p}$$

is solvable for some integer x.

We now proceed analogously to the proof of Theorem A. We must treat several cases according to the behavior of the ideal (p) in  $\mathbb{Z}[(1 + \sqrt{5})/2]$ . If  $p \equiv \pm 1 \pmod{5}$  then  $(p) = \pi \overline{\pi}$  splits into two conjugate degree 1 prime ideals, while if  $p \equiv \pm 2 \pmod{5}$  then (p) is a degree 2 prime ideal in  $\mathbb{Z}[(1 + \sqrt{5})/2]$ . Let  $S_L = S_A \cup S_B$  where

$$S_A = \{ p : p \in S_L \text{ and } p \equiv \pm 1 \pmod{5} \}$$

and

$$S_B = \{ p \colon p \in S_L \text{ and } p \equiv \pm 2 \pmod{5} \}.$$

Case 1. The primes in  $S_A$  have density 5/12.

Write 
$$(p) = \pi \overline{\pi}$$
 in  $\mathbb{Z}[(1 + \sqrt{5})/2]$ . In this case (3.3) is equivalent to  
(3.4)  $\theta^x \equiv -1 \pmod{\pi}$ 

being solvable. To see this, suppose (3.4) holds and apply the automorphism taking  $\sqrt{5}$  to  $-\sqrt{5}$  to (3.4) to get

(3.5) 
$$\bar{\theta}^x \equiv -1 \pmod{\bar{\pi}}.$$

Since  $\theta \overline{\theta} = 1$  we have  $\theta^x \overline{\theta}^x = 1$  so (3.5) implies

$$\theta^x \equiv -1 \; (\mathrm{mod} \; \bar{\pi}).$$

Combining this with (3.4) shows (3.3) holds. The reverse direction is clear. Now we have the equivalence

(3.6) 
$$\operatorname{ord}_{\pi_1} \theta \text{ is even } \Leftrightarrow \theta^x \equiv -1 \pmod{p} \text{ is solvable.}$$

If  $p \equiv 1 + 2^{j} \pmod{2^{j+1}}$  we obtain

$$2^{j} \| p - 1 \text{ and } \operatorname{ord}_{\pi} \theta \text{ is odd} \Leftrightarrow \theta^{(p-1)/2^{j}} \equiv 1 \pmod{\pi}.$$

This leads us to split  $S_A$  into the disjoint union of sets

$$S_{\mathcal{A}} = \bigcup_{j=1}^{\infty} S_{\mathcal{A}}^{(j)},$$

where

$$S_{\mathcal{A}}^{(j)} = \left\{ p : p \equiv 1 + 2^{j} \left( \mod 2^{j+1} \right) \text{ and } \operatorname{ord}_{\pi} \theta \text{ is even} \right\}.$$

We set

$$\overline{S}_{A}^{(j)} = \left\{ p : p \equiv 1 + 2^{j} \left( \mod 2^{j+1} \right) \text{ and } \operatorname{ord}_{\pi_{1}} \theta \text{ is odd} \right\}.$$

The associated fields are

$$K_j^* = Q\left(\sqrt[2^{j}]{1}, \sqrt{5}, \sqrt[2^{j}]{\theta}\right) \text{ and } L_j^* = Q\left(\sqrt[2^{j+1}]{1}, \sqrt{5}, \sqrt[2^{j}]{\theta}\right).$$

LEMMA 3.1. (1)  $\overline{S}_{A}^{(1)}$  is empty. For  $j \ge 2$  the primes p in  $\overline{S}_{A}^{(j)}$  are exactly the primes that split completely in  $K_{j}^{*}$  and which do not split completely in  $L_{j}^{*}$ .

(2) The primes in  $\overline{S}_{A}^{(1)}$  and  $S_{A}^{(1)}$  have densities 0 and 1/4, respectively. For  $j \ge 2$  the primes in  $\overline{S}_{A}^{(j)}$  have density  $2^{-2j}$  and those in  $S_{A}^{(j)}$  have density  $2^{-j-1} - 2^{-2j}$ .

*Proof.* Similar to that of Lemma 2.1. The relation  $\theta = -\varepsilon^2$  leads to  $K_1^* = L_1^* = Q(\sqrt{-1}, \sqrt{5})$ ; this causes  $\overline{S}_A^{(1)}$  to be empty. For  $j \ge 2$  one checks that  $[K_j^*:Q] = 2^{2j-1}$  and  $[L_j^*:Q] = 2^{2j}$ . In fact for  $j \ge 2$ ,  $K_j^* = Q(\omega_j, \sqrt{5}, \phi_{j-2}, \sqrt{\omega_j \phi_{j-2}})$  where  $\omega_j = \sqrt[2^{j-1}]{-1}$  and  $\psi_{j-2} = \sqrt[2^{j-2}]{\sqrt{\varepsilon}}$ , and  $L_j^* = Q(\omega_{j+1}, \sqrt{5}, \phi_{j-1})$ . Finally note that the set  $S_A^{(j)} \cup \overline{S}_A^{(j)} = \{p: p \equiv \pm 1 \pmod{5}\}$  and  $p \equiv 1 + 2^j \pmod{2^{j+1}}$  has density  $2^{-j-1}$ .

As in the proof of Theorem A we find the primes in  $S_A$  have density  $\frac{1}{4} + \sum_{j=2}^{\infty} (2^{-j+1} - 2^{-2j}) = \frac{5}{12}$ .

Case 2. The primes in  $S_B$  have density 1/4.

The primes  $p \equiv \pm 2 \pmod{5}$  remain inert in  $\mathbb{Z}[(1 + \sqrt{5})/2]$ , and in this case

 $\theta^x \equiv -1 \pmod{p}$  is solvable  $\Leftrightarrow \operatorname{ord}_{(p)} \theta$  is even.

Now

(3.7) 
$$\theta^{(p+1)/2} = (-1)^{(p+1)/2} \varepsilon^{p+1} \equiv a \pmod{p}$$

for some  $a \in \mathbb{Z}$  because  $GF(p)^* = \{\psi^{p+1} : \psi \in GF(p^2)^*\}$ . Applying the nontrivial automorphism of  $Q(\sqrt{5})$  gives

$$\bar{\theta}^{(p+1)/2} \equiv a \pmod{p}$$

hence

$$1 = (\theta \overline{\theta})^{(p+1)/2} \equiv a^2 \pmod{p}.$$

Thus

(3.8) 
$$\theta^{p+1} \equiv a^2 \equiv 1 \pmod{p}$$

Consequently  $\operatorname{ord}_{(p)} \theta | p + 1$ . Now when  $p \equiv -1 + 2^{j} \pmod{2^{j+1}}$  we have

(3.9) 
$$\theta^{(p+1)/2^{j}} \equiv 1 \pmod{p} \Leftrightarrow \operatorname{ord}_{(p)} \theta \text{ is odd.}$$

We now decompose

$$S_B = \bigcup_{j=1}^{\infty} S_B^{(j)}$$

where

$$S_B^{(1)} = \{ p : p \equiv 1 \pmod{4} \text{ and } p \in S_B \}.$$

and for  $j \ge 2$ 

$$S_B^{(j)} = \{ p : p \equiv -1 + 2^j (\text{mod } 2^{j+1}) \text{ and } p \in S_B \}.$$

We complete case 2 with the following lemma.

**LEMMA 3.2.** (1)  $S_B^{(1)}$  is empty.

(2) For  $j \ge 2$  all  $S_B^{(1)} = \{ p: p \equiv -1 + 2^j \pmod{2^{j+1}} \text{ and } p \equiv \pm 2 \pmod{5} \}$  and  $S_B^{(j)}$  has density  $2^{-j-1}$ .

*Proof.* (1) When j = 1 we have

(3.10) 
$$\theta^{(p+1)/2} \equiv 1 \pmod{p} \Leftrightarrow \operatorname{ord}_{(p)} \theta \text{ is odd.}$$

Now  $\theta = -\epsilon^2$  so

(3.11) 
$$\theta^{(p+1)/2} \equiv (-\varepsilon^2)^{(p+1)/2} \equiv -\varepsilon^{p+1} \pmod{p}.$$

We claim that

$$\varepsilon^{p+1} \equiv -1 \; (\mathrm{mod}(p))$$

## J. C. LAGARIAS

which with (3.11) shows  $\theta^{(p+1)/2} \equiv 1 \pmod{p}$  and so by (3.10)  $\operatorname{ord}_p \theta$  is odd and  $S_B^{(1)}$  is empty.

To prove the claim, set

$$\varepsilon^{(p+1)/2} \equiv \phi \left( \operatorname{mod}(p) \right)$$

so that

(3.12) 
$$\varepsilon^{p+1} \equiv \phi^2 \pmod{p}.$$

By algebraic conjugation  $\bar{\epsilon}^{(p+1)/2} \equiv \bar{\phi} \pmod{p}$  and  $\epsilon \bar{\epsilon} = -1$  so that

(3.13) 
$$-1 = (-1)^{(p+1)/2} \equiv (\varepsilon \overline{\varepsilon})^{(p+1)/2} \equiv \phi \overline{\phi} \pmod{p}.$$

By (3.8)  $\varepsilon^{p+1} \equiv \pm 1 \pmod{p}$ . We suppose that  $\varepsilon^{p+1} \equiv 1 \pmod{p}$  and get a contradiction. In that case (3.12) gives  $\phi^2 \equiv 1 \pmod{p}$ , hence  $\phi \equiv \pm 1 \pmod{p}$ . Hence  $\phi \equiv \overline{\phi} \pmod{p}$  and (3.13) now gives

$$\phi^2 \equiv -1 \; (\mathrm{mod}(p)),$$

the desired contradiction.

(2) We must show that in the case  $j \ge 2$  ord<sub>(p)</sub>  $\theta$  is even for any  $p \equiv -1 + 2^{j} \pmod{2^{j+1}}$  and  $p \equiv \pm 2 \pmod{5}$ . We argue by contradiction. Suppose ord<sub>(p)</sub>  $\theta$  were odd, so that by (3.8) we have

(3.14) 
$$\theta^{(p+1)/2^{j}} \equiv 1 \pmod{p}.$$

Set

$$\varepsilon^{(p+1)/2^{j}} \equiv \phi \left( \operatorname{mod}(p) \right)$$

and observe  $\theta = -\epsilon^2$  and (3.14) give

 $(3.15) \qquad \qquad -\phi^2 \equiv 1 \; (\mathrm{mod}(\; p\;)).$ 

Now

 $\bar{\varepsilon}^{(p+1)/2^{j}} \equiv \bar{\phi} \pmod{p}$ 

and

(3.16) 
$$-1 = (-1)^{(p+1)/2'} \equiv (\epsilon \bar{\epsilon})^{(p+1)/2'} \equiv \phi \bar{\phi} \pmod{p}.$$

Now by (3.15)  $\phi^2 \equiv -1 \pmod{p}$  and since  $p \equiv 3 \pmod{4}$  we have  $\overline{\phi} \equiv -\phi \pmod{p}$ . Hence  $\phi \overline{\phi} \equiv -\phi^2 \equiv 1 \pmod{p}$ , contradicting (3.16).

As in the proof of Theorem A Lemma 3.2 implies the density of primes in  $S_B$  is  $\sum_{i=2}^{\infty} 2^{-j-1} = 1/4$ . This proves Theorem B.

REMARK. It is possible to prove that

$$\# \{ p \le x : p \in S_L \} = \frac{2}{3} \operatorname{Li}(x) + O\left(\operatorname{Li}(x) \exp\left(-c \frac{\ln \ln x}{\ln \ln \ln x}\right)\right)$$

by the method of Odoni [11].

#### PRIMES DIVIDING THE LUCAS NUMBERS

# 4. Proof of Theorem C (Sketch). We have

(4.1)  

$$V_{n} = \left(\frac{1}{2} + \frac{1}{6}\sqrt{-3}\right) \left(\frac{5}{2} + \frac{1}{2}\sqrt{-3}\right)^{n} + \left(\frac{1}{2} - \frac{1}{6}\sqrt{-3}\right) \left(\frac{5}{2} - \frac{1}{2}\sqrt{-3}\right)^{n}.$$
Letting  $\alpha = \frac{1}{2} + \frac{1}{6}\sqrt{-3}$  and  $\gamma = \frac{5}{2} + \frac{1}{2}\sqrt{-3}$  we have  
(4.2)  

$$V_{n} \equiv 0 \pmod{(p)} \Leftrightarrow \phi^{n} \equiv \frac{\overline{\alpha}}{\alpha} \pmod{(p)},$$

where

$$\phi = \frac{\gamma}{\overline{\gamma}} = \frac{11 + 5\sqrt{-3}}{14}$$
 and  $-\frac{\overline{\alpha}}{\alpha} = \frac{-1 + \sqrt{-3}}{2}$ 

is a cube root of unity. Hence (4.1) gives

(4.3)  $p \text{ divides } V_n \text{ for some } n \ge 0 \Leftrightarrow \operatorname{ord}_{(p)} \phi \equiv 0 \pmod{3}.$ 

We consider separately the cases in which (p) splits completely or remains inert in  $Q(\sqrt{-3})$ .

Case 1.  $p \equiv 1 \pmod{3}$ .

Then 
$$(p) = \pi \overline{\pi}$$
 in  $\mathbb{Z}[(1 + \sqrt{-3})/2]$ . Now as in Theorem B we have  
(4.4)  $\operatorname{ord}_{(p)} \phi \equiv 0 \pmod{3} \Leftrightarrow \operatorname{ord}_{\pi} \phi \equiv 0 \pmod{3},$ 

using the fact that  $\phi \overline{\phi} = 1$ . Now let  $3^{j} || p - 1$ , and observe that in this case

(4.5) 
$$\operatorname{ord}_{\pi} \phi \not\equiv 0 \pmod{3} \Leftrightarrow \phi^{(p-1)/3^{j}} \equiv 1 \pmod{\pi}.$$

Then

(4.6) 
$$\theta^{(p-1)/3'} \equiv 1 \pmod{\overline{\pi}} \Leftrightarrow \pi$$
 splits completely in  
 $F_j = Q\left(\sqrt[3']{1}, \sqrt[3']{\overline{\theta}}\right) / Q\left(\sqrt[3]{1}\right)$   
 $\Leftrightarrow (p)$  splits completely in  $F_j/Q$ .

Hence the density of primes satisfying (4.6) is  $[F_j: Q]^{-1} = (2 \cdot 3^{2j-1})^{-1}$ , and the density  $d_j$  of primes with  $3^j || p - 1$  and (4.4) holding is

$$d_j = 2(2 \cdot 3^j)^{-1} - (2 \cdot 3^{2j-1})^{-1}.$$

The total contribution of such primes has density

(4.7) 
$$D_1 = \sum_{j=1}^{\infty} d_j = \frac{5}{16}.$$

Case 2.  $p \equiv 2 \pmod{3}$ .

Then (p) is inert in  $\mathbb{Z}[(1 + \sqrt{-3})/2]$  and as in Theorem B we have  $\phi^{p+1} \equiv 1 \pmod{p}$ 

and if  $3^{j} || p + 1$  then

$$\operatorname{ord}_{(p)} \phi \not\equiv 0 \pmod{3} \Leftrightarrow \phi^{(p-1)/3^{j}} \equiv 1 \pmod{p}.$$

Now we have

(4.8) 
$$\phi^{(p+1)/3^{j}} \equiv 1 \pmod{p} \Leftrightarrow p \equiv 2 \pmod{3} \text{ and } (p) \text{ splits}$$
  
completely in  $F_{i}/Q(\sqrt{-3})$ .

We claim that the set of primes defined by the right side of (4.8) has density  $(2 \cdot 3^{2j-1})^{-1}$ . To verify this, one checks that  $F_j/Q$  is Galois over Q with dihedral Galois group of order  $2 \cdot 3^{2j-1}$ , that the splitting condition (4.8) on primes in  $F_j/Q$  corresponds exactly to the Artin symbol

$$\left[\frac{F_j/Q}{(p)}\right]$$

being the conjugacy class  $\langle \sigma \rangle$ , where  $\sigma$  is the unique element of order two in Gal( $F_j/Q$ ). Then the Chebotarev density theorem implies that the set of primes in (4.8) has density  $[F_j:Q]^{-1} = (2 \cdot 3^{2j-1})^{-1}$ , as claimed.

Hence the density  $d_j^*$  of primes with  $3^j || p + 1$  and (4.4) holding is

$$d_i^* = 2(2 \cdot 3^j)^{-1} - (2 \cdot 3^{2j-1})^{-1}$$

and the total density of such primes is

$$D_2 = \sum_{j=1}^{\infty} d_j^* = \frac{5}{16}.$$

Acknowledgments. I am indebted to J. P. Serre for informing me of the work of Hasse, and to C. Pomerance for helpful comments.

### References

- [1] A. Aigner, Bemerkung und Lösung zum Problem 29, Elem d. Math., 15 (1960), 66–67.
- B. J. Birch, Cyclotomic Fields and Kummer Extensions, in: Algebraic Number Fields (J. W. S. Cassels and A. Fröhlich, Eds.), Academic Press, London 1967, 85–93.
- [3] H. H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw. ungerader Ordung mod p ist., Math. Annalen, 168 (1966), 19-23.

- [4] C. Hooley, On Artin's Conjecture, J. Reine Angew. Math., 225 (1967), 209-220.
- [5] J. C.. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. Math., 27 (1983), 224–235.
- [6] S. Lang, Algebraic Number Theory, Addison-Wesley Publ. Co., New York 1970.
- [7] R. R. Laxton, On groups of linear recurrences I, Duke Math. J., 26 (1969), 721-736.
- [8] \_\_\_\_\_, On groups of linear recurrences II. Elements of Finite Order, Pacific J. Math., **32** (1970), 173–179.
- [9] \_\_\_\_\_, Arithmetic Properties of Linear Recurrences, in: Computers and Number Theory (A. O. L. Atkin and B. J. Birch, Eds.), Academic Press, New York, 1971, 119-124.
- [10] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Polish Scientific Publishers, Warsaw 1974.
- [11] R. W. K. Odoni, A conjecture of Krishnamurthy on decimal periods and some allied problems, J. Number Theory, 13 (1981), 303-319.
- W. Sierpinski, Sur une decomposition des numbers premiers en deux classes, Collect. Math., 10 (1958), 81-83. (Also: Problem 29, Elem. d. Math., 14 (1959), 60.)
- P. J. Stephens, *Prime divisors of second order linear recurrences I.*, J. Number Theory 8 (1976), 313–332.
- [14] \_\_\_\_\_, Prime divisors of second order linear recurrences II, J. Number Theory, 8 (1976), 333-345.
- [15] M. Ward, Prime divisors of second order recurring sequences, Duke Math. J., 21 (1954), 178–188.
- [16] \_\_\_\_, The prime divisors of Fibonacci numbers, Pacific J. Math., 11 (1961), 379-386.

Received September 12, 1984 and in revised form September 28, 1984.

AT & T Bell Laboratories Murray Hill, NJ 07974