THE SET OF PRIMES DIVIDING THE LUCAS NUMBERS HAS DENSITY $2 / 3$

J. C. Lagarias
Dedicated to the memory of Ernst Straus

Abstract

The Lucas numbers L_{n} are defined by $L_{0}=2, L_{1}=1$ and the recurrence $L_{n}=L_{n-1}+L_{n-2}$. The set of primes $S_{L}=\left\{p: p\right.$ divides L_{n} for some $n\}$ has density $2 / 3$. Similar density results are proved for sets of primes $S_{U}=\left\{p: p\right.$ divides U_{n} for some $\left.n\right\}$ for certain other special second-order linear recurrences $\left\{U_{n}\right\}$. The proofs use a method of Hasse.

1. Introduction. There has been a good deal of study of the structure of the set of prime divisors of the terms $\left\{U_{n}\right\}$ of second order linear recurrences. M. Ward [15] showed that there are always an infinite number of distinct primes dividing the terms $\left\{U_{n}\right\}$, provided we exclude certain degenerate cases such as $U_{n}=2^{n}$. In fact, under the same circumstances it is believed that the set of primes dividing the terms $U=\left\{U_{n}\right\}$ of any nondegenerate second order linear recurrence has a positive density $d(U)$ depending on the recurrence. This can be proved under the assumption that the Generalized Riemann Hypothesis is true by a method analogous to Hooley's conditional proof [4] of Artin's Conjecture for primitive roots. P. J. Stephens [13] has done this for a large class of second-order linear recurrences.

The point of this paper is that there are special second order linear recurrences where it is possible to give an unconditional proof of the existence of a density. This was shown by Hasse [3] for certain special second order linear recurrences having a reducible characteristic polynomial, in the process of solving a problem of Sierpinski [12]. Sierpinski's problem concerns the existence of a density for the set of primes p for which ord 2 is even. This set of primes is exactly the set of primes dividing some term of the sequence $V_{n}=2^{n}+1$; this sequence satisfies the reducible second order linear recurrence $V_{n}=3 V_{n-1}-2 V_{n-2}$ with $V_{0}=2$ and $V_{1}=3$.

Theorem A. (Hasse) The set of primes $S_{V}=\{p: p$ is prime and p divides $2^{n}+1$ for some $\left.n \geq 0\right\}$ has density $17 / 24$.

Hasse's result [3] actually covers all the sequences $\left\{a^{n}+1: n \geq 0\right\}$, where a is an integer, and the density of the associated set of primes is $2 / 3$ when $a \geq 3$ is squarefree.

Here we observe that Hasse's method with some extra complications extends to cover certain second-order linear recurrences with irreducible characteristic polynomials. The most interesting example of this phenomonon is the Lucas numbers L_{n} defined by $L_{1}=2, L_{2}=1$ and the recurrence $L_{n+1}=L_{n}+L_{n-1}$.

Theorem B. The set of primes $S_{L}=\{p: p$ is prime and p divides some Lucas number $\left.L_{n}\right\}$ has density $2 / 3$.

Theorem B also can be derived from polynomial-splitting criteria of M. Ward [16] for membership in S_{L}. The full proof is then essentially the same proof as given here.

The following recurrence discussed in Laxton [8] provides another interesting example.

Theorem C. Let W_{n} denote the recurrence defined by $W_{0}=1, W_{1}=2$ and $W_{n}=5 W_{n-1}-7 W_{n-2}$. Then the set $S_{W}=\{p: p$ is prime and p divides W_{n} for some $\left.n\right\}$ has density 5/8.

The parameterized families of recurrences $A_{n}(m)$ and $B_{n}(m)$, both of which satisfy the recurrence

$$
U_{n}=m U_{n-1}-U_{n-2}
$$

with initial conditions $A_{0}(m)=B_{0}(m)=1$ and $A_{1}(m)=m+1, B_{1}(m)$ $=m-1$, are also recurrences to which Hasse's method applies. In the case that $\varepsilon=\frac{1}{2}\left(m+\sqrt{m^{2}-4}\right)$ is the fundamental unit in $K=$ $Q\left(\sqrt{m^{2}-4}\right)$ the sets $S_{A}(m)=\left\{p: p\right.$ is prime and p divides $A_{n}(m)$ for some $n\}$ and $S_{B}(m)=\left\{p: p\right.$ is prime and p divides $B_{n}(m)$ for some $\left.n\right\}$ each have density $1 / 3$. I omit the details.

In what circumstances is Hasse's method applicable? Any irreducible second-order recurrence $\left\{U_{n}\right\}$ whose terms U_{n} are rational numbers can be expressed in the form

$$
U_{n}=\alpha \theta^{n}+\bar{\alpha} \theta^{n}
$$

where α and θ are in the quadratic field K generated by the roots of the characteristic polynomial of $\left\{U_{n}\right\}$, and $\bar{\alpha}, \bar{\theta}$ are the algebraic conjugates of α, θ in K. Hasse's method applies whenever:
(i) $\theta / \bar{\theta}= \pm \phi^{k}$ where $k=1$ or 2 for some ϕ in K.
(ii) $\bar{\alpha} / \alpha=\zeta \phi^{j}$ where ζ is a root of unity in K and j is an integer.

The actual densities of the sets of primes obtained depend in an idiosyncratic way on α and θ, which makes it awkward to state and prove a general result. For this reason I have applied the method to special cases. From the pattern of these proofs one should be able in principle to work out the density of a set of primes associated to any particular recurrence to which the method applies.

The proofs actually show that the sets of primes $S_{U}=\{p: p$ is prime and $p \mid U_{n}$ for some $\left.n\right\}$ for these particular recurrences $\left\{U_{n}\right\}$ covered by Hasse's method have a special property. To state this property, we need some definitions. A set Σ of primes is a Chebotarev set if there is some finite normal extension L of the rationals Q such that a prime p is in Σ if and only if the Artin symbol

$$
\left[\frac{L / Q}{(p)}\right]
$$

is in specified conjugacy classes of the Galois group $\operatorname{Gal}(L / Q)$, cf. [5]. Chebotarev sets of primes Σ are guaranteed to have a natural density $d(\Sigma)$ given by the Chebotarev density theorem, cf. [10]. The special property is:

Property D. Both the set S of primes and its complement $\bar{S}=\{p: p$ is prime and $p \notin S\}$ have a decomposition into disjoint countable unions of Chebotarev sets of primes. That is,

$$
S=\bigcup_{j=1}^{\infty} S^{(j)}, \quad \bar{S}=\bigcup_{j=1}^{\infty} \bar{S}^{(j)}
$$

where $S^{(j)}$ and $\bar{S}^{(j)}$ are Chebotarev sets. The densities of these sets satisfy

$$
\sum_{j=1}^{\infty} d\left(S^{(j)}\right)+\sum_{j=1}^{\infty} d\left(\bar{S}^{(j)}\right)=1
$$

It is easy to show that any set of primes S having property D has a natural density $d(S)$ given by

$$
d(S)=\sum_{j=1}^{\infty} d\left(S^{(j)}\right)
$$

For most second order recurrences $\left\{U_{n}\right\}$ the set of primes S_{U} associated to the recurrence is not known to have Property D , and probably it doesn't. However, it seems a difficult problem to show that there exists even one set S_{U} that doesn't have Property D. As a test case, does the set S_{Y} of primes dividing the terms of the recurrence given by $Y_{n}=Y_{n-1}+$ Y_{n-2} with $Y_{0}=3$ and $Y_{1}=1$ not have Property D?

I give a proof of Theorem A in $\S 2$ for comparison with the more involved details of the proofs of Theorem B and C in $\S \S 3$ and 4, respectively.
2. Proof of Theorem A. The condition that $p \mid 2^{n}+1$ for some n can be rewritten as:

$$
\begin{equation*}
2^{n} \equiv-1(\bmod p) \text { is solvable } \tag{2.1}
\end{equation*}
$$

Now let $m=\operatorname{ord}_{p} 2$, the least positive integer with

$$
\begin{equation*}
2^{m} \equiv 1(\bmod p) \tag{2.2}
\end{equation*}
$$

Now (2.1) is solvable if and only if m is even and the smallest solution to (2.1) in that case is $n=\frac{1}{2} m$. Now suppose 2^{j} exactly divides $p-1$. Then we have:

$$
\begin{equation*}
2^{j} \| p-1{\text { and } \operatorname{ord}_{\mathrm{p}} 2 \text { is odd } \Leftrightarrow 2^{(p-1) / 2^{j}} \equiv 1(\bmod p) . . . ~}_{\text {. }} \tag{2.3}
\end{equation*}
$$

Hasse observes that the condition on the right side of (2.3) is a splitting condition for primes in a certain algebraic number field K_{j}; such sets of primes have a density by the Frobenius density theorem.

Consequently we proceed by decomposing the set S_{V} into disjoint sets

$$
\begin{equation*}
S_{V}=\bigcup_{j=1}^{\infty} S_{V}^{(j)} \tag{2.4}
\end{equation*}
$$

given by

$$
S_{V}^{(J)}=\left\{p: p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right) \text { and } p \in S_{V}\right\}
$$

We also define

$$
\bar{S}_{V}^{(j)}=\left\{p: p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right) \text { and } p \notin S_{V}\right\}
$$

and observe $p \in \bar{S}_{V}^{(j)}$ if and only if $p \equiv 1+2^{J}\left(\bmod 2^{J^{+1}}\right)$ and (2.3) holds. To state Hasse's observation precisely, let C_{j} denote the cyclotomic field $Q(\sqrt[2^{j}]{1})$, let $K_{j}=Q\left(\sqrt[2^{j}]{1}, 2^{j} \sqrt{2}\right)$ and let $L_{j}=Q(\sqrt[2^{j+1}]{1}, \sqrt[2^{j}]{2})$.

Lemma 2.1. (1) The primes p in $\bar{S}_{V}^{(j)}$ are exactly the primes p that split completely in K_{j} but not in L_{j}.
(2) The degree $\left[K_{j}: Q\right]$ is 2,8 and $2^{2 j-2}$ for $j=1, j=2$ and $j \geq 3$, respectively. The index $\left[L_{j} K_{j}\right]=2$ except for $j=2$ where $K_{2}=L_{2}$.
(3) The primes p in $\bar{S}_{V}^{(J)}$ have densities d_{j}^{*} equal to $1 / 4,0$ and $2^{-2 J+1}$ for $j=1, j=2$ and $j \geq 3$, respectively. The primes p in $S_{V}^{(j)}$ have densities
$d_{j}=2^{-j}-d_{j}^{*}$ for all $j \geq 1$. That is,

$$
\begin{aligned}
& \#\left\{p \leq x: p \in \bar{S}_{V}^{(J)}\right\} \sim d_{j}^{*} \frac{x}{\ln x} \\
& \#\left\{p \leq x: p \in S_{V}^{(J)}\right\} \sim\left(2^{-j}-d_{j}^{*}\right) \frac{x}{\ln x}
\end{aligned}
$$

as $x \rightarrow \infty$.
Proof. To prove (1) we observe that the fields $C_{j}=Q(\sqrt[2^{\prime-1}]{-1})$, $K_{j}=C_{j}(\sqrt[2]{2})$ and $L_{j}=C_{j+1}(\sqrt[2^{j}]{2})$ are all normal extensions of the rationals. The condition that the ideal (p) split completely over a cyclotomic field $Q(\sqrt[m]{1})$ is well known to be $p \equiv 1(\bmod m)([2]$, Lemma 4$)$, hence $p \equiv 1\left(\bmod 2^{j}\right)$ holds if and only if p splits completely in C_{j}. The condition that a prime ideal p in C_{j} split completely in the Kummer extension $K_{j}=C_{j}\left(2^{\prime} \sqrt{2}\right)$ is exactly that

$$
\begin{equation*}
x^{2^{\prime}} \equiv 2(\bmod (p)) \quad \text { for } x \in O_{j} \tag{2.5}
\end{equation*}
$$

be solvable over the ring of integers O_{J} for C_{j} ([2], Lemma 5). If p is of degree 1 then any algebraic integer x in C_{j} is congruent to a rational integer $(\bmod p)$ so in this case equation (2.5) is solvable if and only if

$$
\begin{equation*}
x^{2^{\prime}} \equiv 2(\bmod p) \quad \text { for } x \in \mathbb{Z} \tag{2.6}
\end{equation*}
$$

is solvable. By Euler's criterion (2.6) is solvable if and only if

$$
\begin{equation*}
2^{(p-1) / 2^{j}} \equiv 1(\bmod p) \tag{2.7}
\end{equation*}
$$

is solvable. This is exactly (2.3), and we have shown (p) splits completely in K_{j} iff $p \equiv 1\left(\bmod 2^{j}\right)$ and (2.7) holds. Similarly (p) splits completely in L_{j} iff $p \equiv 1\left(\bmod 2^{j+1}\right)$ and (2.7) holds. This proves (1).

To prove (2), we first observe that $\left[C_{j}: Q\right]=\phi\left(2^{J}\right)=2^{j-1}$. The special circumstance that $C_{3}=Q(\sqrt[4]{-1})=Q(\sqrt{-1}, \sqrt{2})$ shows that $K_{2}=$ $L_{2}=Q(\sqrt{-1}, \sqrt[4]{2})$, and that $\alpha=\sqrt{2}$ is in C, for $j \geq 3$. The fact that $K_{2}=C_{2}(\sqrt[4]{2})$ is a nonabelian extension of Q guarantees that $\sqrt[4]{2}$ is not in any of the abelian extensions C_{j}. Now observe that $K_{j}=C_{j}(\sqrt[2 j-1]{\alpha})$ for $j \geq 3$ is a Kummer extension so that [$K_{j}: C_{j}$] divides 2^{j-1}. In fact for $j \geq 3 \alpha$ is of order 2^{k} in $C_{j}^{*} /\left(C_{j}^{*}\right)^{2^{k}}$ for any k because $\sqrt[4]{2}$ isn't in C_{j}, hence using [2], Lemma 1 we have [$K_{j}: C_{j}$] $=2^{j-1}$ for $j \geq 3$ and also [$L_{j}: C_{j+1}$] $=2^{J^{-1}}$ for $j \geq 3$ using $L_{j}=C_{j+1}(\sqrt[2^{j-1}]{\alpha})$. Thus $\left[K_{j}: Q\right]=\left[K_{j}: C_{j}\right]\left[C_{j}: Q\right]$ $=2^{2 j-1}$ for $j \geq 3$ and $\left[L_{j}: Q\right]=2^{2 j-1}$ for $j \geq 3$ so that $d_{j}^{*}=2 d_{j}$ for $j \geq 3$. Finally one checks that $\left[K_{1} ’: Q\right]=2,\left[L_{1}: Q\right]=4$ and $\left[K_{2}: Q\right]=8$, to prove (2).

To prove (3) we observe that for a normal extension K / Q of degree [$K: Q$] the set of primes p that split completely in K has density [$K: Q]^{-1}$, which is a consequence of the prime ideal theorem (e.g. [6], p. 315 Theorem 4), a special case of both the Frobenius and Chebotarev density theorems. Thus using (1) we find that the set of primes in $\bar{S}_{V}^{(J)}$ is the difference of a set of primes of density $\left[K_{j}: Q\right]^{-1}$ less a class of primes contained in it of density $\left[L_{j}: Q\right]^{-1}$. Using (2) we compute this density d_{j}^{*} to be equal to $1 / 4,0$ and $2^{-2 J+1}$ for $j=1, j=2$ and $j \geq 3$, respectively. Finally the primes in $S_{V}^{(j)}$ are the difference of the class of primes $\left\{p \equiv 1+2^{\prime}\left(\bmod 2^{j+1}\right)\right\}$ of density $2^{-J}=\left[C_{j}: Q\right]^{-1}-\left[C_{j+1}: Q\right]^{-1}$, and the class of primes $\bar{S}_{V}^{(j)}$ of density d_{j}^{*} contained in it. This proves (3).

To complete the proof of Theorem A, we observe that for any fixed $m \geq 3$,

$$
\bigcup_{j=1}^{m} S_{V}^{(J)} \subseteq S_{V} \subseteq \mathbf{P}-\bigcup_{j=1}^{m} \bar{S}_{V}^{(J)}
$$

where \mathbf{P} denotes the set of all primes. Using (3) of Lemma 2.1, the first inclusion gives

$$
\#\left\{p \leq x: p \in S_{V}\right\} \geq\left(\frac{17}{24}-2^{-m}-\frac{4}{3} 2^{-2 m+1}\right) \frac{x}{\ln x}+o\left(\frac{x}{\ln x}\right)
$$

as $x \rightarrow \infty$, since all the $S_{V}^{(/)}$are disjoint. The second inclusion gives

$$
\#\left\{p \leq x: p \in S_{V}\right\} \leq\left(\frac{17}{24}+\frac{4}{3} 2^{-2 m+1}\right) \frac{x}{\ln x}+o\left(\frac{x}{\ln x}\right) .
$$

as $x \rightarrow \infty$. Letting $m \rightarrow \infty$ shows that

$$
\#\left\{p \leq x: p \in S_{V}\right\} \sim \frac{17}{24} \frac{x}{\ln x}
$$

Remarks. (1) By a careful analysis of error terms in this argument using an effective version of the Chebotarev density theorem, Odoni [11] has proved the stronger result that:

$$
\#\left\{p \leq x: p \in S_{V}\right\}=\frac{17}{24} \mathrm{Li}(x)+O\left(L i(x) \exp \left(-c \frac{\ln \ln x}{\ln \ln \ln x}\right)\right)
$$

where $\operatorname{Li}(x)=\int_{2}^{x} d t / \ln t$.
(2) The sets $S_{V}^{(J)}$ are sets of primes determined by systems of polynomial congruences in the sense of [5, Theorems 1.1 and 1.2].
3. Proof of Theorem B. The Lucas numbers L_{n} satisfy

$$
\begin{equation*}
L_{n}=\varepsilon^{n}+\bar{\varepsilon}^{n} \tag{3.1}
\end{equation*}
$$

where

$$
\varepsilon=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \bar{\varepsilon}=\frac{1-\sqrt{5}}{2}
$$

Hence

$$
\begin{equation*}
p \mid L_{n} \Leftrightarrow \varepsilon^{n}+\varepsilon^{-n} \equiv \theta(\bmod (p)) \Leftrightarrow \theta^{n} \equiv-1(\bmod (p)) \tag{3.2}
\end{equation*}
$$

where

$$
\theta=\frac{\varepsilon}{\bar{\varepsilon}}=-\varepsilon^{2}=-\frac{3+\sqrt{5}}{2}
$$

and the congruences are in the ring $\mathbb{Z}[(1+\sqrt{5}) / 2]$ of algebraic integers in $Q(\sqrt{5})$. Thus S_{L} is exactly the set of primes p for which the exponential congruence over $\mathbb{Z}[(1+\sqrt{5}) / 2]$ given by

$$
\begin{equation*}
\theta^{x} \equiv-1(\bmod (p)) \tag{3.3}
\end{equation*}
$$

is solvable for some integer x.

We now proceed analogously to the proof of Theorem A. We must treat several cases according to the behavior of the ideal (p) in $\mathbb{Z}[(1+\sqrt{5}) / 2]$. If $p \equiv \pm 1(\bmod 5)$ then $(p)=\pi \bar{\pi}$ splits into two conjugate degree 1 prime ideals, while if $p \equiv \pm 2(\bmod 5)$ then (p) is a degree 2 prime ideal in $\mathbb{Z}[(1+\sqrt{5}) / 2]$. Let $S_{L}=S_{A} \cup S_{B}$ where

$$
S_{A}=\left\{p: p \in S_{L} \text { and } p \equiv \pm 1(\bmod 5)\right\}
$$

and

$$
S_{B}=\left\{p: p \in S_{L} \text { and } p \equiv \pm 2(\bmod 5)\right\}
$$

Case 1. The primes in S_{A} have density 5/12.
Write $(p)=\pi \bar{\pi}$ in $\mathbb{Z}[(1+\sqrt{5}) / 2]$. In this case (3.3) is equivalent to

$$
\begin{equation*}
\theta^{x} \equiv-1(\bmod \pi) \tag{3.4}
\end{equation*}
$$

being solvable. To see this, suppose (3.4) holds and apply the automorphism taking $\sqrt{5}$ to $-\sqrt{5}$ to (3.4) to get

$$
\begin{equation*}
\bar{\theta}^{x} \equiv-1(\bmod \bar{\pi}) \tag{3.5}
\end{equation*}
$$

Since $\theta \bar{\theta}=1$ we have $\theta^{x} \overline{\boldsymbol{\theta}}^{x}=1$ so (3.5) implies

$$
\theta^{x} \equiv-1(\bmod \bar{\pi})
$$

Combining this with (3.4) shows (3.3) holds. The reverse direction is clear.
Now we have the equivalence

$$
\begin{equation*}
\operatorname{ord}_{\pi_{1}} \theta \text { is even } \Leftrightarrow \theta^{\mathrm{x}} \equiv-1(\bmod (p)) \text { is solvable. } \tag{3.6}
\end{equation*}
$$

If $p \equiv 1+2^{\prime}\left(\bmod 2^{j+1}\right)$ we obtain

$$
2^{j} \| p-1 \quad \text { and } \quad \operatorname{ord}_{\pi} \theta \text { is odd } \Leftrightarrow \theta^{(p-1) / 2^{\prime}} \equiv 1(\bmod \pi)
$$

This leads us to split S_{A} into the disjoint union of sets

$$
S_{A}=\bigcup_{j=1}^{\infty} S_{A}^{(\jmath)}
$$

where

$$
S_{A}^{(j)}=\left\{p: p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right) \text { and ord }{ }_{\pi} \theta \text { is even }\right\}
$$

We set

$$
\bar{S}_{A}^{(J)}=\left\{p: p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right) \text { and ord }{\pi_{1}} \theta \text { is odd }\right\}
$$

The associated fields are

$$
K_{j}^{*}=Q(\sqrt[2^{\prime}]{1}, \sqrt{5}, \sqrt[2^{\prime}]{\theta}) \quad \text { and } \quad L_{j}^{*}=Q(\sqrt[2^{\prime+1}]{1}, \sqrt{5}, \sqrt[2^{\prime}]{\theta})
$$

Lemma 3.1. (1) $\bar{S}_{A}^{(1)}$ is empty. For $j \geq 2$ the primes p in $\bar{S}_{A}^{(J)}$ are exactly the primes that split completely in K_{j}^{*} and which do not split completely in L_{j}^{*}.
(2) The primes in $\bar{S}_{A}^{(1)}$ and $S_{A}^{(1)}$ have densities 0 and $1 / 4$, respectively. For $j \geq 2$ the primes in $\bar{S}_{A}^{(j)}$ have density $2^{-2 j}$ and those in $S_{A}^{(j)}$ have density $2^{-j-1}-2^{-2 j}$.

Proof. Similar to that of Lemma 2.1. The relation $\theta=-\varepsilon^{2}$ leads to $K_{1}^{*}=L_{1}^{*}=Q(\sqrt{-1}, \sqrt{5})$; this causes $\bar{S}_{A}^{(1)}$ to be empty. For $j \geq 2$ one checks that $\left[K_{j}^{*}: Q\right]=2^{2 J-1}$ and $\left[L_{j}^{*}: Q\right]=2^{2 j}$. In fact for $j \geq 2$, $K_{j}^{*}=Q\left(\omega_{j}, \sqrt{5}, \phi_{j-2}, \sqrt{\omega_{j} \phi_{j-2}}\right)$ where $\omega_{j}=\sqrt[2^{\prime-1}]{-1}$ and $\psi_{j-2}=\sqrt[2^{\prime-2}]{\varepsilon}$, and $L_{,}^{*}=Q\left(\omega_{j+1}, \sqrt{5}, \phi_{j-1}\right)$. Finally note that the set $S_{A}^{(j)} \cup \bar{S}_{A}^{(J)}=\{p: p \equiv$ $\pm 1(\bmod 5)\}$ and $p \equiv 1+2^{j}\left(\bmod 2^{J+1}\right)$ has density 2^{-j-1}.

As in the proof of Theorem A we find the primes in S_{A} have density $\frac{1}{4}+\sum_{j=2}^{\infty}\left(2^{-j+1}-2^{-2 j}\right)=\frac{5}{12}$.

Case 2. The primes in S_{B} have density $1 / 4$.
The primes $p \equiv \pm 2(\bmod 5)$ remain inert in $\mathbb{Z}[(1+\sqrt{5}) / 2]$, and in this case

$$
\theta^{x} \equiv-1(\bmod (p)) \text { is solvable } \Leftrightarrow \operatorname{ord}_{(\mathrm{p})} \theta \text { is even. }
$$

Now

$$
\begin{equation*}
\theta^{(p+1) / 2}=(-1)^{(p+1) / 2} \varepsilon^{p+1} \equiv a(\bmod p) \tag{3.7}
\end{equation*}
$$

for some $a \in \mathbb{Z}$ because $G F(p)^{*}=\left\{\psi^{p+1}: \psi \in G F\left(p^{2}\right)^{*}\right\}$. Applying the nontrivial automorphism of $Q(\sqrt{5})$ gives

$$
\overline{\boldsymbol{\theta}}^{(p+1) / 2} \equiv a(\bmod p)
$$

hence

$$
1=(\theta \bar{\theta})^{(p+1) / 2} \equiv a^{2}(\bmod (p))
$$

Thus

$$
\begin{equation*}
\theta^{p+1} \equiv a^{2} \equiv 1(\bmod (p)) \tag{3.8}
\end{equation*}
$$

Consequently $\operatorname{ord}_{(p)} \theta \mid p+1$. Now when $p \equiv-1+2^{J}\left(\bmod 2^{j+1}\right)$ we have

$$
\begin{equation*}
\theta^{(p+1) / 2^{J}} \equiv 1(\bmod (p)) \Leftrightarrow \operatorname{ord}_{(p)} \theta \text { is odd } \tag{3.9}
\end{equation*}
$$

We now decompose

$$
S_{B}=\bigcup_{j=1}^{\infty} S_{B}^{(j)}
$$

where

$$
S_{B}^{(1)}=\left\{p: p \equiv 1(\bmod 4) \text { and } p \in S_{B}\right\}
$$

and for $j \geq 2$

$$
S_{B}^{(j)}=\left\{p: p \equiv-1+2^{j}\left(\bmod 2^{j+1}\right) \text { and } p \in S_{B}\right\}
$$

We complete case 2 with the following lemma.
Lemma 3.2. (1) $S_{B}^{(1)}$ is empty.
(2) For $j \geq 2$ all $S_{B}^{(1)}=\left\{p: p \equiv-1+2^{j}\left(\bmod 2^{j+1}\right)\right.$ and $p \equiv \pm 2$ $(\bmod 5)\}$ and $S_{B}^{(j)}$ has density 2^{-j-1}.

Proof. (1) When $j=1$ we have

$$
\begin{equation*}
\theta^{(p+1) / 2} \equiv 1(\bmod (p)) \Leftrightarrow \operatorname{ord}_{(p)} \theta \text { is odd. } \tag{3.10}
\end{equation*}
$$

Now $\theta=-\varepsilon^{2}$ so

$$
\begin{equation*}
\theta^{(p+1) / 2} \equiv\left(-\varepsilon^{2}\right)^{(p+1) / 2} \equiv-\varepsilon^{p+1}(\bmod (p)) \tag{3.11}
\end{equation*}
$$

We claim that

$$
\varepsilon^{p+1} \equiv-1(\bmod (p))
$$

which with (3.11) shows $\theta^{(p+1) / 2} \equiv 1(\bmod (p))$ and so by (3.10) $\operatorname{ord}_{p} \theta$ is odd and $S_{B}^{(1)}$ is empty.

To prove the claim, set

$$
\varepsilon^{(p+1) / 2} \equiv \phi(\bmod (p))
$$

so that

$$
\begin{equation*}
\varepsilon^{p+1} \equiv \phi^{2}(\bmod (p)) \tag{3.12}
\end{equation*}
$$

By algebraic conjugation $\bar{\varepsilon}^{(p+1) / 2} \equiv \bar{\phi}(\bmod p)$ and $\varepsilon \bar{\varepsilon}=-1$ so that

$$
\begin{equation*}
-1=(-1)^{(p+1) / 2} \equiv(\varepsilon \bar{\varepsilon})^{(p+1) / 2} \equiv \phi \bar{\phi}(\bmod (p)) \tag{3.13}
\end{equation*}
$$

By (3.8) $\varepsilon^{p+1} \equiv \pm 1(\bmod (p))$. We suppose that $\varepsilon^{p+1} \equiv 1(\bmod (p))$ and get a contradiction. In that case (3.12) gives $\phi^{2} \equiv 1(\bmod (p))$, hence $\phi \equiv \pm 1(\bmod (p))$. Hence $\phi \equiv \bar{\phi}(\bmod (p))$ and (3.13) now gives

$$
\phi^{2} \equiv-1(\bmod (p))
$$

the desired contradiction.
(2) We must show that in the case $j \geq 2 \operatorname{ord}_{(p)} \theta$ is even for any $p \equiv-1+2^{\prime}\left(\bmod 2^{J+1}\right)$ and $p \equiv \pm 2(\bmod 5)$. We argue by contradiction. Suppose ord ${ }_{(p)} \theta$ were odd, so that by (3.8) we have

$$
\begin{equation*}
\boldsymbol{\theta}^{(p+1) / 2^{J}} \equiv 1(\bmod (p)) \tag{3.14}
\end{equation*}
$$

Set

$$
\varepsilon^{(p+1) / 2^{\prime}} \equiv \phi(\bmod (p))
$$

and observe $\theta=-\varepsilon^{2}$ and (3.14) give

$$
\begin{equation*}
-\phi^{2} \equiv 1(\bmod (p)) \tag{3.15}
\end{equation*}
$$

Now

$$
\bar{\varepsilon}^{(p+1) / 2^{J}} \equiv \bar{\phi}(\bmod (p))
$$

and

$$
\begin{equation*}
-1=(-1)^{(p+1) / 2^{\prime}} \equiv(\varepsilon \bar{\varepsilon})^{(p+1) / 2^{\prime}} \equiv \phi \bar{\phi}(\bmod (p)) \tag{3.16}
\end{equation*}
$$

Now by $(3.15) \phi^{2} \equiv-1(\bmod (p))$ and since $p \equiv 3(\bmod 4)$ we have $\bar{\phi} \equiv-\phi(\bmod (p))$. Hence $\phi \bar{\phi} \equiv-\phi^{2} \equiv 1(\bmod (p))$, contradicting (3.16).

As in the proof of Theorem A Lemma 3.2 implies the density of primes in S_{B} is $\sum_{J=2}^{\infty} 2^{-\jmath-1}=1 / 4$. This proves Theorem B.

Remark. It is possible to prove that

$$
\#\left\{p \leq x: p \in S_{L}\right\}=\frac{2}{3} \operatorname{Li}(x)+O\left(\operatorname{Li}(x) \exp \left(-c \frac{\ln \ln x}{\ln \ln \ln x}\right)\right)
$$

by the method of Odoni [11].
4. Proof of Theorem C (Sketch). We have

$$
\begin{align*}
V_{n}= & \left(\frac{1}{2}+\frac{1}{6} \sqrt{-3}\right)\left(\frac{5}{2}+\frac{1}{2} \sqrt{-3}\right)^{n} \tag{4.1}\\
& +\left(\frac{1}{2}-\frac{1}{6} \sqrt{-3}\right)\left(\frac{5}{2}-\frac{1}{2} \sqrt{-3}\right)^{n}
\end{align*}
$$

Letting $\alpha=\frac{1}{2}+\frac{1}{6} \sqrt{-3}$ and $\gamma=\frac{5}{2}+\frac{1}{2} \sqrt{-3}$ we have

$$
\begin{equation*}
V_{n} \equiv 0(\bmod (p)) \Leftrightarrow \phi^{n} \equiv \frac{\bar{\alpha}}{\alpha}(\bmod (p)) \tag{4.2}
\end{equation*}
$$

where

$$
\phi=\frac{\gamma}{\bar{\gamma}}=\frac{11+5 \sqrt{-3}}{14} \text { and }-\frac{\bar{\alpha}}{\alpha}=\frac{-1+\sqrt{-3}}{2}
$$

is a cube root of unity. Hence (4.1) gives

$$
\begin{equation*}
p \text { divides } V_{n} \text { for some } n \geq 0 \Leftrightarrow \operatorname{ord}_{(p)} \phi \equiv 0(\bmod 3) \tag{4.3}
\end{equation*}
$$

We consider separately the cases in which (p) splits completely or remains inert in $Q(\sqrt{-3})$.

Case 1. $p \equiv 1(\bmod 3)$.
Then $(p)=\pi \bar{\pi}$ in $\mathbb{Z}[(1+\sqrt{-3}) / 2]$. Now as in Theorem B we have

$$
\begin{equation*}
\operatorname{ord}_{(p)} \phi \equiv 0(\bmod 3) \Leftrightarrow \operatorname{ord}_{\pi} \phi \equiv 0(\bmod 3) \tag{4.4}
\end{equation*}
$$

using the fact that $\phi \bar{\phi}=1$. Now let $3^{j} \| p-1$, and observe that in this case

$$
\begin{equation*}
\operatorname{ord}_{\pi} \phi \not \equiv 0(\bmod 3) \Leftrightarrow \phi^{(p-1) / 3^{\prime}} \equiv 1(\bmod \pi) \tag{4.5}
\end{equation*}
$$

Then
(4.6) $\quad \theta^{(p-1) / 3^{\prime}} \equiv 1(\bmod \bar{\pi}) \Leftrightarrow \pi$ splits completely in

$$
\begin{gathered}
F_{j}=Q(\sqrt[3]{1}, \sqrt[3]{\theta}) / Q(\sqrt[3]{1}) \\
\Leftrightarrow(p) \text { splits completely in } F_{j} / Q
\end{gathered}
$$

Hence the density of primes satisfying (4.6) is $\left[F_{j}: Q\right]^{-1}=\left(2 \cdot 3^{2 j-1}\right)^{-1}$, and the density d_{j} of primes with $3^{j} \| p-1$ and (4.4) holding is

$$
d_{j}=2\left(2 \cdot 3^{j}\right)^{-1}-\left(2 \cdot 3^{2 j-1}\right)^{-1}
$$

The total contribution of such primes has density

$$
\begin{equation*}
D_{1}=\sum_{j=1}^{\infty} d_{j}=\frac{5}{16} \tag{4.7}
\end{equation*}
$$

Case 2. $p \equiv 2(\bmod 3)$.
Then (p) is inert in $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ and as in Theorem B we have

$$
\phi^{p+1} \equiv 1(\bmod (p))
$$

and if $3^{j} \| p+1$ then

$$
\operatorname{ord}_{(p)} \phi \not \equiv 0(\bmod 3) \Leftrightarrow \phi^{(p-1) / 3^{\prime}} \equiv 1(\bmod (p))
$$

Now we have

$$
\begin{align*}
\phi^{(p+1) / 3^{\prime}} \equiv 1(\bmod (p)) \Leftrightarrow & p \equiv 2(\bmod 3) \text { and }(p) \text { splits } \tag{4.8}\\
& \text { completely in } F_{j} / Q(\sqrt{-3})
\end{align*}
$$

We claim that the set of primes defined by the right side of (4.8) has density $\left(2 \cdot 3^{2 j-1}\right)^{-1}$. To verify this, one checks that F_{j} / Q is Galois over Q with dihedral Galois group of order $2 \cdot 3^{2 J-1}$, that the splitting condition (4.8) on primes in F_{j} / Q corresponds exactly to the Artin symbol

$$
\left[\frac{F_{j} / Q}{(p)}\right]
$$

being the conjugacy class $\langle\sigma\rangle$, where σ is the unique element of order two in $\operatorname{Gal}\left(F_{j} / Q\right)$. Then the Chebotarev density theorem implies that the set of primes in (4.8) has density $\left[F_{j}: Q\right]^{-1}=\left(2 \cdot 3^{2 j-1}\right)^{-1}$, as claimed.

Hence the density d_{j}^{*} of primes with $3^{j} \| p+1$ and (4.4) holding is

$$
d_{j}^{*}=2\left(2 \cdot 3^{j}\right)^{-1}-\left(2 \cdot 3^{2 j-1}\right)^{-1}
$$

and the total density of such primes is

$$
D_{2}=\sum_{j=1}^{\infty} d_{j}^{*}=\frac{5}{16}
$$

Acknowledgments. I am indebted to J. P. Serre for informing me of the work of Hasse, and to C. Pomerance for helpful comments.

References

[1] A. Aigner, Bemerkung und Lösung zum Problem 29, Elem d. Math., 15 (1960), 66-67.
[2] B. J. Birch, Cyclotomic Fields and Kummer Extensions, in: Algebraic Number Fields (J. W. S. Cassels and A. Fröhlich, Eds.), Academic Press, London 1967, 85-93.
[3] H. H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von gerader bzw. ungerader Ordung $\bmod p$ ist., Math. Annalen, 168 (1966), 19-23.
[4] C. Hooley, On Artin's Conjecture, J. Reine Angew. Math., 225 (1967), 209-220.
[5] J. C.. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. Math., 27 (1983), 224-235.
[6] S. Lang, Algebraic Number Theory, Addison-Wesley Publ. Co., New York 1970.
[7] R. R. Laxton, On groups of linear recurrences I, Duke Math. J., 26 (1969), 721-736.
\qquad , On groups of linear recurrences II. Elements of Finite Order, Pacific J. Math., 32 (1970), 173-179.
[9] \qquad , Arithmetic Properties of Linear Recurrences, in: Computers and Number Theory (A. O. L. Atkin and B. J. Birch, Eds.), Academic Press, New York, 1971, 119-124.
[10] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Polish Scientific Publishers, Warsaw 1974.
[11] R. W. K. Odoni, A conjecture of Krishnamurthy on decimal periods and some allied problems, J. Number Theory, 13 (1981), 303-319.
[12] W. Sierpinski, Sur une decomposition des numbers premiers en deux classes, Collect. Math., 10 (1958), 81-83. (Also: Problem 29, Elem. d. Math., 14 (1959), 60.)
[13] P. J. Stephens, Prime divisors of second order linear recurrences I., J. Number Theory 8 (1976), 313-332.
[14] , Prime divisors of second order linear recurrences II, J. Number Theory, 8 (1976), 333-345.
[15] M. Ward, Prime divisors of second order recurring sequences, Duke Math. J., 21 (1954), 178-188.
[16] , The prime divisors of Fibonacci numbers, Pacific J. Math., 11 (1961), 379-386.

Received September 12, 1984 and in revised form September 28, 1984.

AT \& T Bell Laboratories
Murray Hill, NJ 07974

