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THE BIGGER BRAUER GROUP AND ETALE
COHOMOLOGY

IAIN RAEBURN AND JOSEPH L. TAYLOR

The classical Brauer group B(R) is formed from equivalence classes
of Azumaya algebras over the ring R. The bigger Brauer group B(R) is
formed in a similar way from equivalence classes in a larger category of
β-algebras. This larger category is defined through axioms similar to
those defining Azumaya algebras but with the requirement for an identity
dropped. In this paper we identify B(R) with the second etale cohomol-
ogy of Spec(jR) (with Gm as coefficients). The classical Brauer group
consists of the torsion subgroup of this cohomology group. This result
yields a concrete realization of second etale cohomology and also enables
us to settle several questions about the relation of B(R) to i/ 2 (Δ, Z) in
the case where R is a Banach algebra with maximal ideal space Δ.

That B(R) may indeed be a proper subgroup of B(R) is demon-
strated by the fact that there is an isomorphism B(R) -> /f3(Δ,Z) if
R = C(Δ) for a compact Hausdorff space Δ (cf. Prop. 6.6 of [12]). Since
B(R) is carried to the torsion subgroup of i/3(Δ,Z) by this map, B(R)
and B(R) will be distinct if //3(Δ, Z) is non-torsion. In the case R = C(Δ)
the central separable algebras are related to another class of iί-
algebras — the algebras with continuous trace from C*-algebra theory. In
fact, in [11] we use an elementary proof of the surjectivity of the map
B(C(Δ)) -» # 3 (Δ,Z) to give an elementary proof of the existence of
continuous trace C*-algebras of given Dixmier-Douady class (cf. [5]).

The map B(R) -> i/3(Δ, Z) is defined for any Banach algebra R with
maximal ideal space Δ, but in general neither the injectivity nor suqectiv-
ity of this map was established in [12]. It was proved to be an injection on
the sub-group B(R) c B(R) consisting of equivalence classes containing
an algebra finitely presented as an i?-module. The functor B agrees with
B on Noetherian rings and is continuous (commutes with direct limit)
whereas B was not proved to be continuous in [12]. In general, B{R) c
B(R) c B(R). However, the following questions were left unanswered in
[12]: Is B(R) always equal to B(R)Ί Is B(R) always B(R)Ί (This would
force B(R) = B(R) in the Noetherian case — a possibility left open in
[12].) When R is a commutative Banach algebra with maximal ideal space
Δ, is B(R) -> if3(Δ,Z) always surjective? Is it always injective? Is B(R)
-» # 3 ( Δ , Z) always surjective?
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We can now answer these questions. The key is to realize that the
correct cohomology group in which to embed B(R) is the etale cohomol-
ogy group H2(Xet9Gm) where X = Spec(i?) (cf. [10]). This will come as
no surprise to mathematicians familiar with Grothendieck's work on etale
cohomology and the Brauer group (it might have occurred much earlier to
the author of [12] had he known any etale cohomology). The classical
Brauer group B(R) has a natural injection into H2(XeV Gm) ([7], [10]), but
the image is always torsion, while H2(XeVGm) is not always torsion.
Thus, in B and H2( ,Gm) we have two functors that behave like bigger
Brauer groups and it is natural to ask if they agree. In fact, we shall prove
that for X = Spec(i?) there is always an isomorphism B(R) -»
H2(Xet,GJ.

With the above result it becomes easy to answer the questions left
over from [12]: For any ring i?, we have B(R) = B(R) ^
/f2(Spec(/?)et,Gm). Thus, B(R) -> i/3(Δ,Z) is injective if R is a Banach
algebra with maximal ideal space Δ. However, this map need not be
surjective (cf. §4) because, roughly speaking, the etale topology is often
not rich enough to allow other than torsion elements of i/3(Δ,Z) to be
represented by cocycles in the etale topology. Thus, B is not the functor
the second author was seeking when he wrote [12] (cf. §7 of [12]).
However, it may be of interest in commutative algebra as a concrete
realization of H2(XeV G J .

Since the tools used here are those of schemes and etale cohomology,
it is not much extra effort to extend the definition of B to schemes and to
prove a version of the theorem relating it to etale cohomology in this
context.

We introduce B for schemes X in §1. In §2 we define an injection
8: B(X) -> H\XQVGm) following Giraud [7]. We also, in §2, use locali-
zation techniques to settle another question left over from [12]: we prove
the triviality of the module Ώ(A) of §3 of [12]. In §3 we prove that δ is
surjective for schemes which satisfy the hypotheses of Artin's Lemma [1].
Using Grothendieck's continuity results, we extend this result to affine
schemes in §4. With the help of standard results about etale cohomology
we then settle the questions raised in [12].

We would like to thank Gus Lehrer of Sydney University for his
guidance concerning the literature on etale cohomology.

1. The bigger Brauer group of a scheme. By the term ring we shall

mean commutative ring with identity. However, algebras need not be
commutative or have identities.
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If A is an algebra over a ring i?, then A is separable in the sense of

[12] if

(i)A2 = A;

(ii) for each maximal ideal M c ϋ , MA Φ A;

(iii) A is a projective y4-bimodule.

Note that (i) and (ii) are redundant if A has an identity.

We denote the algebra End A . A (A) by Z(A). If the natural map

R -> Z(A) is an isomorphism, we say A is central. A central separable

algebra is one which is both central and separable. If such an algebra also

has an identity, then we shall call it an Azumaya algebra.

The classical Brauer group B(R) consists of Morita equivalence

classes of Azumaya algebras with tensor product as operation. The bigger

Brauer group B(R), introduced in [12], consists of Morita equivalence

classes of central separable i?-algebras under tensor product. The identity

class in B(R) consists of all algebras of the form End Λ (M), where M is a

finitely generated projective i?-module. The identity class in B(R) con-

sists of all algebras of the form M Θ^ N9 where M and N are i?-modules,

λ: N <8>R M -> R is an i?-module surjection, and M ®R N is M ®R N

with multiplication defined by λ through the formula

( m 1 <8> n x ) - ( m 2 <8> n 2 ) = λ ( n ι Θ m 2 ) ( m ι ® n 2 ) ;

we call this the elementary /{-algebra determined by the data (M, N, λ).

Note that if M is finitely generated and projective, N = M' =

H o m Λ ( M , i?), and λ is the standard pairing M ®R M' -» i?, then

M <8>R N is just E n d ^ M ) . Note also, by Proposition 4.6 of [12] there is a

canonical injection B(R) -> B(R).

We now describe a useful alternative characterization of central

separable algebras given in [12]. Let A be an i?-algebra and set

Ae = A ®RAop. Following §3 of [12], we let Ax be A with the left

yle-module structure given by {a Θ b) c = acb, while ylr is A with the

right Ae-modu\ε structure given by c (α 0 6) = όcα. Then ^4e and

yl^ = Ax <8>R Ar are two distinct ^4e-bimodules, although both have

A <8>R A as underlying 7?-module. We set

Ώ{A) = Hom^_

to heredefine /?: Ae ®Λ Ω(v4) -> >4̂  by

0(α 0 co) = ω

and define tr: A ®R 2(A) -> Z(yl) by

where π: Ae -* A is the multiplication map.
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We restate Proposition 3.7 and 3.8 of [12] as follows:

PROPOSITION 1.1. Let A be a faithful R-algebra. If there is an R-sub-

module Ω' c Ω(^4) so that tr maps A ®R Ω' onto R c Z(A), then A is

central separable.

Conversely, if A is central separable, then

(a) tr: A ®Λ Ω(A) -> R is surjectiυe;

(b) θ: Ap <8>Λ ίi(A) -> A6 is an isomorphism', and

(c) Ώ(A) is an invertible R-module.

Actually, Ώ,(A) = R, so that tr yields a surjective trace A -» R and θ

an isomorphism Ap -> Ae. This was conjectured in [12]. We can now

prove it using localization techniques (cf. Proposition 2.2).

The following was used implicitly throughout §4 of [12], but should

be made explicit:

COROLLARY 1.2. If R -> S is a ring homomorphism (preserving identi-

ties) and A is a central separable R-algebra, then A <8>R S is a central

separable S-algebra.

Proof. For ω e Ώ(A) the map ωs = ω <8> id: Ap ®R S ~> Ae ®R S

belongs to (Ώ(A) <8>Λ S). If Ω' c Ω(>4 X R S) is the S-module spanned by

all such elements, then by Proposition 1.1 (a), tr: (A <8>R S) <8>R Ω' => S is

surjective and, hence, A <8>Λ S is a central separable S-algebra.

We shall now define B(X) for schemes X, following the analogous

definition for the classical Brauer group (cf. [10], IV). For terminology and

notation on schemes we follow Hartshorne [9].

DEFINITION 1.3. Let I be a scheme with structure sheaf Φx. A

quasi-coherent sheaf s/ of 0^-algebras will be called a central separable

fi^-algebra if for each x e X there is an affine neighborhood U of x such

that T(U, s?) is a central separable Γ(ί/, Φx) algebra.

Note that by Corollary 1.2, if A is any central separable iί-algebra

and X = Spec 2?, then A ®R Θx is a central separable Θx algebra. Con-

versely, given a scheme X and a central separable fi^-algebra J / , then

T(U,s/) is a central separable T(U, Θx) algebra for each affine open set

U c X. To see this we use Proposition 1.1. The modules Ω(^4), as A

ranges over the algebras T(U, sέ), form a presheaf which satisfies the

conditions to be the pre-sheaf of sections of a sheaf Ω. Then tr defines a

sheaf homomorphism s/<8> Ω -> Ox which is surjective by Proposition

1.1, since J / is locally central separable. On passing to sections over an
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affine open set U and using quasi-coherence (cf. [9], II, 5.2, 5.6, 5.7) we
conclude that

tr: A ®R Q(A) -> R

is surjective with R = Γ(f/, Θx), A = Γ(t/, si), and U any affine open
set. Another application of Proposition 1.1 shows that T(U, si) is central
separable over Γ([/, Θx). In particular, it is easy to see that if X = Speci?
for a ring R, then s/-* T{X,si) is an equivalence between the category
of central separable Θx algebras and the category of central separable
JR-algebras.

We are indebted to A. Verschoren for pointing out that we cannot get
away with simple insisting that each stalk six be central separable in
Definition 1.3 unless we assume that sip is locally a finitely presented
j/e-module. We made this mistake in an earlier version of this paper.

Henceforth, if we are working over a scheme X the symbol Θ will
refer to tensor product relative to the structure sheaf Θx.

We shall say that central separable C^-algebras si and 38 are
equivalent if there exist quasi-coherent β^sheaves Ji and Jf such that
Jΐ is a regular si— Si bimodule, JΓ is a regular 38 — si bimodule,
Jΐ ®@Jf— si as an si bimodule, and JfQ^Ji'=* 38 as a 38 bimodule
(cf. [12], §4). Here, the term regular applied to Jί and Jί means

^Jί %gg38 = Jί dinά 3$<&gsJf%sίίsi= Jf.
Now suppose 38 is a central separable 0^-algebra, Jt is a regular
QgSS^Ji} quasi-coherent right J'-mdoule, Jί is a regular quasi-

coherent left ^-module, and λ: Jf® Jί" -> ^ is a suijective ^ - ^ bimod-
ule homomoφhism. Then one proves as in §4 of [12] that the quasi-coher-
ent 0^-algebra si= Jί ΘĴ ΛΛ with product given by

1 Θ λ ® 1: Jί®gsJΓ®Jt®gBJΓ^J(®gsS8®gsJΓ=Jί®%jy

is a central separable 0^ algebra and is equivalent to 38. Furthermore,
every central separable Θx algebra equivalent to 38 arises in this way. In
particular, the central separable 0x-algebras equivalent to Θx itself are
given as above with 38 = Θx. We call such an algebra the elementary
fi^-algebra determined by the data {Jt\ Jί, λ).

Tensor products of central separable algebras over a ring R are again
central separable (cf. [12], Prop. 2.7) so the same is clearly true over a
scheme. Also, if R -> S is a ring homomorphism and A a central
separable i?-algebra then A <8>R S is, by Corollary 1.2, a central separable
S-algebra. The analogous statement for schemes is that if si is a central
separable β^algebra and /: Y -> X is a morphism of schemes, then / *si
is a central separable 0y-algebra ([9], II. §5).
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DEFINITION 1.4. If X is a scheme, we denote by B(X) the group
under tensor product, of equivalent classes of central separable fi^-alge-
bras (cf. [12], §4).

The identity in B(X) is the class of all elementary (^algebras. For si
central separable, the inverse of [si]^ B(X) is [j^op] (cf. Proposition
3.10 of [12]). That B is a functor from schemes to abelian groups follows
from the comment preceding the definition.

Again proceeding as in §4 of [12], one can prove that the classical
Brauer group B(X) of a scheme X is contained in B(X). It is the
subgroup consisting of equivalence classes which contain a central separa-
ble algebra si for which each six is an Azumaya algebra (has an
identity).

2. Etale cohomology. We shall use Milne [10] as our main reference
for etale cohomology.

Let Gm denote the sheaf on the etale site over X which has Γ(ί/, Θ^)
as its group of sections over U -> X ([10], II.l). Then for any scheme X
there is an injective morphism B(X) -> H2(Xet,Gm) ([10], IV. 2.5). The
same thing is true with B replaced by B and, in fact, the proofs are nearly
identical once one establishes appropriate localizing lemmas.

LEMMA 2.1. Let X be a scheme and si a central separable Θ^algebra.
Then each point of X is covered by an etale morphism of finite type f:
U -> X such that U is affine, T(U,f*si) contains a rank one idempotent,
andf*si is an elementary Θυ-algebra.

Proof. For x e X let x be a geometric point over x and consider
θXχ = limαΓ(C/α, Θv), where the limit is over all etale maps fa: Ua -> X,
Ua affine, through which x -> x factors ([10], I. 4.11). Since Θx- is a
Henselian local ring with algebraically closed residual field, Proposition
4.9 of [12] implies that limαΓ(ί/α,/α*j/) contains a rank one idempotent,
and, hence, that, for some α, Γ(Ua, f* s/) contains a rank one idempo-
tent. By restricting to a smaller open affine set if necessary, we may
assume fa: Ua -* X has finite type. By Proposition 4.3 of [12], Γ(C/α, f*sΐ)
is elementary and, hence, f£sf is as well since Ua is affine (cf. [9], II. 5.2,
5.5).

At this point we digress in order to prove the triviality of the module

PROPOSITION 2.2. // si is a central separable Θx-algebra, then there is
a natural isomorphism ίl(si) -> φχ. Hence, there is an isomorphism
s/p -> sie and a surjective trace tr: J / - > Θx.
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Proof. First, suppose R is a ring and A a central separable i?-algebra
containing a rank one idempotent p. By definition ([12], §4), pAp = Rp.
This implies that Θ: Ap <8>R Ώ(A) -> Ae maps p ® p <8> ti(A) onto
R(p ® p) and, hence, is given by an isomorphism v: Q(A) -> R. In fact,
from the definition of trace one sees that v(ω) = tτ(p ® ω).

It turns out that v is independent of the choice of p. To see this,
let q be another rank one idempotent in A and, for each ω, consider
θ(q 0 /> <S> ω ) G ^4/7 ® Λ /?yίg. S ince TΓ O 0 ( g <g> /? <g> ω ) = tr(/? <8> ω ) # =

v(ω)q, we conclude that (qAp)(pAq) = iίg. If JR is a local ring with max-
imal ideal M, we may choose ux e ^4/?, i; e /^4# with wxt; = rq and
r & M. Then w = r""1^ satisfies uv = q and since yw is a non-zero idem-
potent in Rp it has no choice but to be p. Then tτ(q ® ω) = tr(wy ® ω)
= tr(yw <8) ω) = tr(/? ® ω) by Proposition 3.6 of [12]. That this holds for
local rings means, that for general JR, tr(p <8> ω) and tτ(q ® ω) will have
equal images in each local ring Rx f o r x e Spec(i?) and, hence, will be
equal. It follows that v is independent of p.

Now let X be a scheme and J / any central separable (^algebra.
Choose a cover {/): Lζ -> X) be etale maps as in Lemma 2.1. Thus, U^ is
affine and T{Ui9 f*sf) contains a rank one idempotent. Then for each /,
we have a canonical isomorphism v{. Ω(y)*j^) -» 0^. Clearly, Ω(/f*j^) =
fi*Sl(s/) and, by the independence of J>, the liftings p\vi and /7ĵ y of ^
and Vj to the fiber product UέX x Uj agree for each / and j . It follows that
there is an isomorphism v:Ώ(sf) -> Θx such that each vt is the lift of v to
Ut (cf. [10], II. 1.6).

We return to the task of proving that B(X) has an injection into
H2(XcVGm). This will follow easily once we have two more localization
lemmas.

LEMMA 2.3. // X is a scheme and s/= Jίx ® λ l Jfx and Jt\ ®Xl Jί2

are isomorphic elementary si-algebras over X, then there exists an invertible
& ̂ module & such that Jt\ ^0>%ΘJiγ, Jί2 = &'1 ®ΦJVV and λ2 is λx

composed with Λ^ ®ΘJt2 -> (&>~ι Θ JTλ) ® (0> <8> Jίx) ^Jfx® Jίv

Proof. Note that Jί t is a left j^module and Jft a right
under the action determined by λ, . Also,

We set & = ^ i ®jtJ(2 and prove, as in Proposition 5.5 of [12], that it is
an invertible 0^-module with inverse Jί2 Q^Jt^.
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Sets of data {Jt, Jf, λ) defining elementary algebras over X, are the
objects in a category in which the morphisms (μ, v): (^2,.yΓ2, λ 2) ->
(Jtλ, Jix, λx) are pairs of module isomorphisms μ: Jΐ 2 -> Jtx, v: Jί2 ->
JVV with λ 2 = λ1<>(i'®μ). Since invertible (^modules are locally trivial
in the Zarisky topology ([8], II. ex 5.7), the above lemma says that sets of
data which define isomorphic elementary algebras are locally isomoφhic.

If (μ, v) is an automoφhism of a given set of data (Jί, Jf, λ) for an
elementary Θ^-algebra, then μ ® v determines an automoφhism of the
resulting algebra Jt Θ λ JΓ. Thus, there is a moφhism Aut(^, Jί, λ) ->
KvX(Jt'®λ JΓ). As in Proposition 5.6 of [12] one shows easily that its
kernel consists of the automoφhisms (μ, v) of the form (h,h~ι) for
Λ€ΞΓ(X,GJ.Thus,

LEMMA 2.4. There is an exact sequence

0 -* Γ(X,GJ^ Aut(^,^T,λ) -> A\xt{Jί®λjr)

for each set (Ji, JV\ λ) of data for an elementary Θx-algebra.

Now let si be a central separable fi^-algebra for a scheme X. For
each etale map f:U^>X set ̂  = f*sf and let F^(U) be the category
of all tuples (~#, .yΓ, λ: α), where ( ^ , ̂ Γ, λ) is data for an elementary
0^-algebra and a: Jί <S>̂  JΓ-* s/v is an isomoφhism of C^-algebras. A
moφhism between elements of F^(U) will be an isomoφhism

JΓ^ X±) -> (Jt Ί, cyΓ2, λ 2) for which the diagram

\

commutes. Then Lemmas 2.3 and 2.4 imply that U -> F^(U) is a Gerbe
bounded by Gm in the sense of Giraud [7] (also see [10], IV. 2.5). It is the
trivial Gerbe exactly when F^( X) is non-empty, i.e., exactly when [s/] = 0
in B(X). It follows that we have an injection B(X) -> Hg(X, Gm), where
Hl(X,Gm) in the group defined in IV. 3.1.1 of [7]. However, H*(X,GJ
= H2(Xet, Gm) by IV.3.4 of [7]. Thus, we have

PROPOSITION 2.5. If X is a scheme, there is an injection 8: B(X) ->

The proof given for this proposition is rather unsatisfying for the
following reason: in the next section, in addressing surjectivity for δ, we
will need to use Cech cohomology and rather explicit constructions
involving Cech cocycles. For this reason, we present an alternative proof
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of Proposition 2.5 in the case where derived functor and Cech cohomology
agree for the etale site.

Let X be a Noetherian scheme in which each finite set is contained in
an affine open set. Then Artin's theorem [1] says that Cech and derived
functor etale cohomology agree (cf. [10], III.2.17).

Now let si be a central separable 0^-algebra. Since X is quasi-com-
pact, we can cover X with finitely many etale maps as in Lemma 2.1. By
taking disjoint union, we come up with a single etale morphism of finite
tyPe f:U-*X such that / is a cover and / * J ^ is isomorphic to an
elementary 0^-algebra J( ® λ Jί. Let U X U -> X be the fiber product
over X of / with itself and let /?,: U X U -» U be given by pέ( uvu2) = ut.
Then, s/x = p*f*sf and s/2

 = P*f*^ are naturally isomorphic ΘuxU

algebras and if Jt\ = pfJt, JΓi = pf^V, λ, = pfλ then stx - Jtγ ® λ l Λ î
and j * 2 ~c^r2 ®

λ 2^T 2.
Now the sets of data ( ^ , , ^ J , λ,.) may not be isomorphic over

1/ X £/; however, they are locally isomorphic by the remark following
Lemma 2.3 and, hence, lift to isomorphic sets of data on W for some etale
cover W -> U X U. By Artin's Lemma ([1] or [10], IΠ.2.18), there is an
etale morphism of finite type Uλ -> U so that UλX Ux-* U X U factors
through W -> U X U. Thus, we may as well assume that the sets of data

Jf^Xi) are isomorphic on U X U. Let (μ, v): (Jί1,jV
t

1,\1) -^

Xτ Jfx, λx) be such an isomorphism.
Let pu\ Ux Ux U-* UX U be the projection (ul9u29u3)-+

(ui9uj) and for any sheaf of 0υx^modules Se let r{j\ Γ(F,Jέ?)-^
T{pjf(V),pfj£?) be the corresponding map on sections. Consider the
morphism φ = (^πM)1 °(ri2w)o(r23i11) = dμ obtained by composing

and the analogous morphism φ" = {ΪΊIVY1 O(rnp)°(r23v) == ̂ ^ f°Γ 3ί;

Then the pair (φ,φ') is an automoφhism of the data {p*3>P*^>
PizPiJf) P&P*^) preserving the isomoφhism of the resulting elementary
algebra with p£3p*jf. Hence, by Lemma 2.4, φ e Γ(UX Ux UyGm)
and φ7 = φ"1. Clearly,

rfφ = (r123φ)"1(r124φ)(r134φ)~1(r234φ) = 1

and so φ is a 2-cocycle for etale Cech cohomology (cf. [10], §111.2). If
φ = dy for some γ e T(U X U, Gm), then y~ιμ and γ^ satisfy the cocycle
condition and by descent theory ([10], 1.2.22) we conclude that {Jt, Jf, λ)
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has the form (f*Jί0, /*^o» /*^ 0 ) for data (Jί0, ^o* λ 0) o n ^ f°Γ which
j ^ = ^ 0 (g)λ° Λς. Thus, δ[j^] = [φ] defines an injection δ from B(X) to

The map δ constructed in this way is compatible with the one
constructed using Giraud's machinery of gerbes. This follows from the
results of §IV, 3.5 of [7].

3. Surjectivity of δ. Our proof that (under reasonable hypotheses)
the map δ is surjective amounts to working backwards in the construction
following Proposition 2.5. That is, given a Cech cocycle φ for an etale
cover U -> X, we will (after possibly replacing U -> X with a refinement)
construct (^modules Jt, Jί and a surjective λ: Jί% Jί -> Θυ. We do
this in such a way that if Jί. = p*Ji, Jίt = p*Jί, λ, = p*\ then there is
an isomoφhism (μ,v): {Jί\,Jί1,\7) -> ( ^ x , ^ , λx) such that μ <8> v:
Jί2 ®X*JV*2-^> Jίx <8>λl Jίγ satisfies d(μ Θ v) = 1 so that Λf Θ λ ^Γ de-
scends to a central separable &x algebra A, but J(μ, v) = (φ, φ"1) so that
φ represents the obstruction to the descent of the data {Jί, Jί, λ). By the
construction following Proposition 2.5, we will then have δ[s/] = [φ].

Our construction of Jί, Jί, and λ depends on certain properties of
the trace. We begin this section with a discussion of these properties.

Let R be a ring and S a commutative i?-algebra (possibly without
identity). The left action of S on itself determines an algebra morphism
S -> EndΛ(»S). If S is free and finite as an i?-module, then End^S) =*
S <8>R 5* and, hence, the trace tr: EndΛ(5) -> R is defined. On compos-
ing this with S -> Endfl(S') we get an i?-morphism r: S -» R. This
behaves well under base change. That is, if R -» R' is a ring homomor-
phism, then the trace τ r defined as above for S ΘΛ R' as an i?'-algebra is
just T <8> 1, where r is the trace for S.

Now if S is an i?-algebra but is not free and finite, then there may
not be a natural trace S -» R. In the case where S is quasi-finite over i? it
is, however, easy to decide what we should mean by a trace when such a
thing exists. For S to be quasi-finite over R means that for each prime
ideal p e Spec(i?), S ®Rkp is a finite kp algebra, where kp is the
residual field at p for R. We shall say that an i?-morphism r: S -> R is a
trace for 5 if T Θ 1: 5 ®Λ fc^ -> A:̂  is the standard trace on S ®Rkp for
each p e Spec(i?). Note that any two trace morphisms will differ by a
map into the nilradical of R and so, if a trace exists for S and R is
reduced, the trace is unique.

Note that if T is a subalgebra of an Λ-algebra S then a trace for S
does not necessarily restrict to a trace for T due to multiplicities that may
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occur in the action of T on S that don't occur in the action of T on itself.
However, if T is an ideal of S this does not happen.

LEMMA 3.1. Let S be a quasi-finite R-algebra with a trace τ: S -> R.
Then τ\T is a trace for T whenever T is an ideal of S.

Proof. Let p be a prime ideal of Ry i: T -> S the inclusion, and K
and L the kernel and cokernel, respectively, of the induced map i Θ id:
T ®R kp -> S ®R kp. If we can show that each t e T acts trivially on
both K and L then we are done, since this implies t has the same trace
acting on the vector space T <8>R kp as it does acting on S ®R kp.

That t acts trivially on L is obvious since tS c T. The action of t on
i t

T factors as T -» S1 -> Γ, and since # is ker(/ 0 id) it is clear that t acts

as zero on K also.
Now let /: Y -» ^ be a quasi-finite morphism of schemes. \i Jc, θγ

is a coherent sheaf of ideals, then an (Pymodule homomorphism r:
f *J -* 0x will be called a trace if for each x e JSΓ, T :̂ (f^Jr)x -> ^ x is a
trace in the above sense. Again, if X is reduced then a trace is unique
when one exists. Also, by Lemma 3.1, the restriction of a trace to a smaller
ideal sheaf is still a trace.

DEFINITION 3.2. Let /: U -> Jf be a morphism of Noetherian schemes.

We shall say / is of trace type if there is a factorization U -> Y -> X of f,

with i an open immersion and g finite and a coherent ideal sheaf J c ΘΎ

such that V(J) = Y\U and J^ has a trace r: g* J-> Θx.
Here F(*/) is the support of ®Ύ\J! or, in other words, the set of

y e Y such that Jy is a proper ideal of ^ (see [9], II.5.9).

LEMMA 3.3. (a) If f: U -> X is of trace type then so is its composition
with an open immersion V -» U;

k

(b) Iff: U -> F15 of trace type and V -* X is an open immersion, then

k o fis also of trace type.

Proof, (a) Let U -> 7 -* X be the factorization and Jc 0γ the ideal
of Definition 3.2. If </ y χ κ is the ideal sheaf of Y\V, then JC\ JΎXy is
an ideal sheaf with variety Y\V and is an ideal in J. Thus, it has a trace
by Lemma 3.3 and V -» X is of trace type.

(b) Let £/̂ > W-5> V be the factorization and Jc Θw the ideal of
Definition 3.2. The composition k ° g: W -* Z is separated and quasi-
finite and so, by Zariski's main theorem ([10], I.I.8.), it factors as
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W -> Y -> X with j an open immersion and h finite. Thus, we have the

following commutative diagram:

Now */c JW\V c (^y^ί/)!^ and so */ extends to a coherent sub-
sheaf # of /̂ŷ ί/ ([9], II ex. 5.15(d)). Necessarily, # is an ideal sheaf in
Θγ with variety Y\U.

We have the map / - ^ Λ ; * ^ ; * / , given by restriiction of sections
from Y to W9 and, hence, a map

Also, the trace r: g**/^ 0 K induces a map

£ * g * - ^ fc*<

and on composing we obtain a map

Since A is finite, Λ*,/ is coherent ([9], II. ex 5.5) and, hence, so is its
image under τλ in the quasi-coherent module h*Θv.

Let Jf be the kernel of the natural map Θx -> k*K*Θx= k*Θv.
Then JΓ is a coherent ideal sheaf in 0 X supported on Jf\ V. Thus, it is
killed by some power of JX\V (this is true locally by II. 5.3 of [9] and the
global result follows from quasicompactness of X). The Artin-Rees Lemma
([3], Cor. 10.10) then implies that (JX\V)

n Π Jf = 0 for some «, and we
may regard (*/AΛί/)

w as an ©y-submodule of k*Θv. We may then consider
the quotient sheaf T^h^Jf/r^h^^Cλ (<?χ\v)n- This is coherent and sup-
ported in X\V and, hence, is killed by some power of Sχ\V In other
words, for some m

On replacing # with its product with (Λ*JΓ

A^χκ)
m, we obtain an ideal

sheaf ^ c Θγ such that τJi + Vc: (Sχ\V)
n c 0x. Note that V{9) = Y\U

and that τλ is, in fact, a trace. This is obvious over points of V (since T
was a trace). Over a point x €: X\V,(h*@) ® kxis an ideal contained in
every prime ideal of the finite &x-algebra (h*Θγ) <8> kx and is, hence,
nilpotent. This implies that the standard trace on (h*@) Θ kx is zero, as is
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LEMMA 3.4. let f: U -» X be an etale cover of finite type of a Noetherian

scheme X. Then there is an etale cover g: U -» X of trace type which factors

through f.

Proof. It follows from [10], 1.3.14, that there is a finite cover {ί^ } of

U by open affine neighborhoods such that each f\v factors as Ut ->
ht

W^V^X with Ui -> Wt and Vt-> X open immersions and hi finite

and surjective with {h^)*®w ^ r e e o v e r ®v Clearly, Λ is of trace type
id Λ,

(with W^W^-* Vi as factorization and Θw the coherent ideal sheaf)

and so, by Lemma 3.3, the composition Uι-> X is trace type as well. If we

let U be the disjoint union of the Ui and g: U -> X the moφhism such

that g\v = f\U9 then g is clearly an etale cover of trace type which factors

through /.

LEMMA 3.5. Let f: U ~* X be an etale cover of trace type with
ί g

factorization U-* Y-> X, ideal sheaf JcΘγ, and trace τ. Then T:

(g**/) -» Ox is surjective.

Proof. Given x e X, τ: (g*J)x -> Θx fails to be surjective if and

only if its image lies in the maximal ideal of Θx. This happens if and only

if r 0 id: (g*^) ® kx -* kx is zero. However, since g is finite,

(g*@γ) ® kx i s ^ e direct sum of the finite local algebras Θy <8>0χ kx for

y ^ g~ι(x). Since U -> X is an etale cover, g~ι(x) Π U Φ 0 and for y in

this set, ^ r ®φχ kx is a finite separable field extension of kx ([10], I.§3).

The standard trace is therefore non-degenerate on 0 Θ^ kx by Proposi-

tion 1.3.1 of [10]. Since r <S> id: (g*^y) ® Λ:x -> ̂ Λ agrees with the stan-

dard trace, it cannot be zero.

THEOREM 3.6. Let X be a Noetherian scheme in which every finite set is

contained in an affine set. Then 8: B(X) —» H2(XeVGm) is an isomor-

phism.

Proof. We must prove that 8 is surjective. The hypotheses are

sufficient for us to identify H2(XeV Gm) with the corresponding

Cech cohomology group ([10], III. 2.17.) Also, it follows from Lemma

3.4 that every class in H2(XQVGm) arises from a Cech cocycle φ e

T(U X U X U9Gm) for an etale cover f:U-*X which is of trace type.

Thus, we have a coherent ideal sheaf Jc Θγ and a trace T: g* J-* Θx
i g

associated with a factorization U -> Y -» X as in Definition 3.2.



458 IAIN RAEBURN AND JOSEPH L. TAYLOR

We would like, via restriction to U (J'-> 1*1*^= i*@υ) to regard J
as a subsheaf of i*Θυ. However, J-* i*&u may have non-zero kernel.
This would be a coherent sheaf supported on Y\ U and, hence, would be
killed by a power of JY\V. If we replace J by this power of Jγ\υ times
J we will have a coherent ideal sheaf which does inject into i*Qυ. Thus,
we may as well assume that J has this property and regard it as a
subsheaf of i*Gw

Let Uk = U X U X X U denote the fc-fold fiber product of U
over X and Y X Uk the fiber product of Y with Uk over X. We set

and then extend the coherent sheaves J c X on Y to be sheaves on the
etale site over Y. That is, for any etale map h: V -> y we set Xv = h*Jf
and Jv = h*J. In particular, Jfγxuk has this form where h is the etale
map Y X C/* -> 7 obtained from base extension of t/Λ -> X by 7 ([10],
1.3.3(c)). However, we also have

for the inclusion i: Uk+1 ^ Y X Uk. This follows from IΠ.9.3 of [9]
applied to the square

Uk+1 -» U

i I, 4 i

YX Uk -> Y.

As a result, we may regard the cocycle φ e Γ(ί/3, G m ) to be an invertible
section of the sheaf of rings J Γ y x υx v.

We define sheaves S and J^ on Y X U as follows: Let pOi: Y X U X U
-> Y X U be defined by pOi(y, uv u2) — (y9 u^. Then we set

(1) * = .

rlere, φ

and so the intersection in the definition make sense. Note that S and 3?
are coherent sheaves of ideals on Y X U9 are contained in </yx ŷ, and
satisfy V{S) = F(J^) =YXU\UXU.

Now to say that an element of (/yxt/)(>,ίM) belongs to the stalk of
1^YXUXU

 a t (^'w) is the same as saying its lift to a section of
o v e r Poi(y>u) belongs to the sections of Φ~ιSγxUχu Thus, we
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have

(2)

We also need to know how $ and J^ lift if we take fiber product with

another copy of U. For this, we consider the commutative diagrams

Y

Y

X

4

X

U3

Pon

u2

Pθ23

Poi

Y

4

Y

X

Pθ2

X

U2

U

Y

Y

X

4

X

U3 Ό?

Pθl3

u2 -

Y

4

Y

X

Pθ2

X

U2

U

where poιj\ Y X U3 -+ Y X U2 is given by poiJ(y, uly u2, u3) = (j;, wf, wy).

If we put Φ~ιSYxuxu on the upper right hand corner of each diagram and

apply III.9.3. of [10], we conclude that

[ό) poιό = .

The condition that φ be a cocycle is

( 4 ) (/>!*23<

where Pι23{y, wl5 u2, u3) = (uv u2, u3). Since Pχ23Φ does not involve the Y

variable, it maps Jγx υ3 into itself and so (3) and (4) yield

( 5 ) Φ/7O2^>C Φ(Pθ23)*\Pθ23Φ)^YxU3 = (PO23)*\PO23Φ)\PO13Φ)

= (PO23)*{P*12Φ) Λxt/ 3

Thus, (2), (3), and (5) imply that

and, by symmetry, that Φ'H.Poi)*^0 1 (Λn)*^- Thus, φ defines an isomor-

phism p*2<2-^ Pol**- The same argument, applied to J^, shows that φ'1

defines an isomoφhism Po2^~^ Poi-^-

With pλ: Y X U -* U the projection, we now set

and note that since p{. Y X U -> U is finite ([10], 1.1.3). Jt and Jf are

coherent sheaves on U ([9], II.ex.5.5). From the above, we have isomor-

phisms

μ: p^Ji -> p*Jί, v\
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determined by φ and φ"1, where pt: U X U -> U is given by pt{ul9 u2)

Since S^ is an ideal sheaf in JΎXU it has a trace T: £&-> Θu. This
is obtained from the trace for Jγ by the base extension U ^> X and then
restriction to S&'. Clearly, a base extension of a trace is a trace. Since
V(g&) = Yx U\UX ί/andί/X U -* ί7isan etale cover, Lemma 3.5
implies that T is surjective. We use T to define a morphism λ: JΓ® Jί ->
β^by * 0 m -> T(ΛW) (using ( Λ ) Λ ^ = ((/O*^)(/>i)*^~)

At this point, we have data {Jί, Jί, λ) defining an elementary 0^
algebra Jί <S>̂  ^Γ over ί/. We also have an isomorphism of data (μ, J>):
(p%Jί, p%Jί, p%K) -> (p*Jf, pfΛ*, p*λ) over U X U and a short calcu-
lation using (4) pushed forward to U X U X U shows that d(μ,v) =
(φ, φ"1) (cf. the end of §2) on U X U X U. This implies that d(μ Θ v) = 1
so that ^# <8>λ ̂ Γ descends to be a central separable algebra s? on X ([10],
1.2.22) with f*sΐ=Jί®λJr. The obstruction to the descent of the data
{Jί, Jί, λ) is φ as in the second proof of Proposition 2.5. Therefore

= [φ].

4. Conclusions. The Noetherian hypothesis in Theorem 3.6 may be
removed in a lot of important cases by using continuity results for
H2(Xet, G). While we have not proved that B is a continuous functor, we
did prove, for rings, the continuity of a closely related functor B in [12]. If
R is a ring then B(R) is the subgroup of B(R) consisting of classes which
contain a central separable algebra which is a finitely presented i?-module
(cf. [12], Proposition 6.5).

COROLLARY 4.1. If R is any ring, then B(R) = B(R) and δ: B(R) ->
H 2 (Spec( R) e t, Gm) w α/? isomorphism.

Prw/. We have injections B(R) -> j?(l?) -> # 2 (Spec(Λ) e t ,GJ for
general i?, both of which are isomorphisms for Noetherian rings (The-
orem 3.6, and [12], Proposition 6.4). The continuity of B and H2 implies
these maps are isomorphisms for any ring R ([12], Proposition 6.5, and
[2], expose VII.5.7).

For any ring R, B(R) is a torsion group ([10], IV.2.7) and, in fact, a
recent result of Gabber shows that it is always exactly the torsion
subgroup of H2(XcVGm) (cf. [6]). However, B(R) need not be a torsion
group. In fact, we proved in [12] that 5(C(Δ)) =* i/3(Δ,Z) if Δ is a
compact Hausdorff space and C(Δ) is the algebra of continuous functions
on Δ. Since C(Δ) is a limit of quotients of polynomial algebras over C (as
is any algebra over C), we must have B(R) non-torsion for some
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quotients of polynomial algebras. The same conclusion can be drawn from

Grothendieck's example ([8], 11.16). Similarly, B(R) will be non-torsion

for some examples of algebras of holomoφhic functions on Stein compact

sets (cf. [12], §6) since every Banach algebra is a limit of such algebras.

On the other hand, under mild regularity conditions, we have B(R) =

B(R) as we shall see below. In fact, this happens for some Banach

algebras and algebras of holomoφhic functions where the underlying

Hausdorff Gelfand spectrum has non-torsion H3( , Z).

We first prove the following proposition:

PROPOSITION 4.2. IfR is a Henselian local ring then B(R) = B(R).

Proof. That H2(XeVGm) = B(R) for AT = Spec(Λ), in this case, is

well known and so we could just appeal to Proposition 2.5 (cf. [10], IV.

Cor. 2.12). However, a direct proof is so simple, we include it as evidence

of the utility of B(R).

By Proposition 4.3 of [12] a central separable i?-algebra A which

contains a non-degenerate idempotent p is equivalent to pAp which is an

Azumaya algebra. If M is the maximal ideal of i?, then A/MA is a

central separable i?/M-algebra by Proposition 2.7 of [12]. If we can show

that this implies that A/Ma contains a nondegenerate idempotent, it will

follow from the Henselian hypothesis (as in Proposition 4.9 of [12]) that

the idempotent lifts to one in A and, hence, that A is equivalent to an

Azumaya algebra.

To finish the proof, it suffices to prove that if A is a central separable

algebra over a field R then A contains a non-zero idempotent. We may

assume A is finite dimensional by Corollary 4.2 of [12]. Since A2 = A, A

is not nilpotent and, hence, contains a non-nilpotent element b. The

sequence^ a bAb <z b2Ab2 c: ••• c bnAbn c ••• necessarily terminates

by finite dimensionality. Thus, if c = bk for a sufficiently large /c, then

c3Ac3 = cAc, so that c3ac3 = c3 for some a ^ A. This yields an idempo-

tent c3a which is non-zero because c3 is non-zero, and the proposition is

proved.

If R is a regular integral domain then the inclusion R -> K of R in

its field of fractions induces an injection i/2(Spec(i?) e t, Gm) -»

H2(Spec(K)eVGm) ([10], IV. Corollary 2.6). In view of Proposition 2.5,

we have the same result for l?(Spec(i?)) and, hence, by Proposition 4.2 we

have

PROPOSITION 4.3. IfR is a regular integral domain, then B(Spcc(R))

is a torsion group.
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This can be used to settle one issue raised in [12]. Let Δ be a Stein
compact subset of a Stein manifold and let 0(Δ) denote the algebra of
functions holomorphic in a neighborhood of Δ. In [12] a homomorphism
δ: B(Θ(Δ)) -> i/3(Δ,Z) was constructed. It was shown to be injective
when Θ(Δ) is Noetherian and the question was raised as to its surjectivity
(cf. [12], Propositions 6.4 and 6.6). It is now easy to see that it need not be
surjective. In fact, under reasonably mild restrictions on Δ, Θ(Δ) is
Noetherian and regular. It is Noetherian if Δ is analytic, i.e. defined by
finitely many inequalities of the form |/(z) | < k for / holomorphic in a
neighborhood of Δ. It is regular if Δ is a Stein compact subset of C" with
the property that no open set ί/ in C" intersects Δ in a set which is
contained in a lower dimensional subvariety of U. This ensures that
Mx/Mx has dimension n, where Mx is the maximal ideal at x in Θ(Δ). It
also ensures that

(0) c (Zl - Xl)Φ(Δ) c c (Zχ - Xl) • • • (zr - χr)0{A)

c c Mx

is a filtration of Mx by distinct prime ideals and, hence, that Mx has
height n as well. It follows that Θ(Δ) is regular in this case (cf. [9], 1.5.) It
will be an integral domain if Δ is connected and then, by Proposition 4.3,
B(Θ{Δ)) will be torsion. Of course, it is easy to arrange for all these
hypotheses to be satisfied and still have # 3 (Δ,Z) be non-torsion. For
example, let Δ be A3 c C3 where A c C is a compact annulus.

The analogous question for Banach algebras was also raised in [12].
That is, let R be a commutative Banach algebra over C and let Δ be its
maximal ideal space with the Gelfand topology. Then we still have the
homomorphism δ: B(R) -> # 3 (Δ,Z) (see [12], §7). It was proved in [4]
that δ maps the usual Brauer group B(R) onto the torsion subgroup of
i/3(Δ, Z). We observed earlier that when R = C(Δ) the homomorphism δ
maps B(R) onto /f3(Δ,Z), and it is natural to ask whether δ is always
surjective on B(R). It is not, of course, as the following example shows.
Let A c Aλ c C be two compact annuli with A contained in the interior
of Av Let R be the algebra of functions A\ -» C which are continuous on
A\ = Δ2 and analytic on its interior (which is a neighborhood of Δ = A3).
Then restriction defines a ring homomorphism R -» Θ(Δ). We have a
commutative diagram.

B(R) ->

4 I
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Here i* is an isomorphism and, in fact, H3(Δl9Z) =* i/3(Δ,Z) » Z. Since
the image of B(Θ(Δ)) in i/3(Δ, Z) must be torsion by the above, we have
B(R) = B(Θ(Δ)) = (0) but # 3 (Δ,Z) * (0).
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