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DEFORMATION OF SUBMANIFOLDS OF REAL
PROJECTIVE SPACE

KICHOON YANG

We prove that two surfaces in RP3 are projective deformations of
each other (in the sense of E. Cartan) if and only if their induced
projective structures are equivalent with respect to the Frenet framing.
This result gives a projective generalization of molding surfaces.

0. Introduction. Equivalence problems of induced structures on sub-
manifolds of homogeneous spaces are closely related to so called (j-defor-
mation problems. In the case of surfaces in RP3 s PGL(4; R)/Go the
projective deformation (PGL(4; R)-deformation) problem has been in-
vestigated by E. Cartan (cf. [2]). In this paper we establish a relationship
between the notion of projective deformation of surfaces and the notion
of equivalence of induced projective structures on surfaces. Our main
result is that two surfaces in RP3 are projective deformations of each
other (in the sense of E. Cartan) if and only if their induced projective
structures are equivalent with respect to the Frenet framing. (Theorem
5.3)

To better understand the geometric content of our result consider the
analogous situation from classical surface theory. Take two surfaces in
R3 s E(3)/(9(3). Then the E(3)-deformation problem is just the equiva-
lence problem of induced Riemannian structures (i.e., the problem of local
isometry). However, E(3)-deformations in general do not preserve the
Frenet frames (of Euclidean geometry) whereas, as we shall show,
PGL(4; R)~deformations do preserve the Frenet frames (of projective
geometry). Requiring that an E(3)-deformation should preserve the Frenet
frames is equivalent to requiring that the corresponding local isometry
preserves the lines of curvature, and the solutions to this latter problem
are given by molding surfaces. (See [1], §5.) Our result may be thought of
as a projective analog of molding surfaces.

Several features distinguish the projective differential geometry from
the Euclidean differential geometry:

(i) A projective structure is a G-structure of degree two, i.e., it is a
subbundle of the bundle of quadratic frames, and
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(ii) an induced projective structure on a submanifold is not uniquely
determined. In fact, it depends upon a choice of normal frame field.

The first order deformation problem becomes trivial (Theorem 4.4)
reflecting the fact that a projective structure is a G-structure of degree
two.

We now explain the organization of our paper.
The principal tools to be used are the notions of Pfaffian systems and

their prolongations. In §1 the notion of prolongation is defined and
applying the technique inductively an upper bound for the number of
successive prolongations required to obtain singular integrals of the sys-
tem is computed. This section constitutes a general method for attacking
over-determined Pfaffian systems in two independent variables.

In §2 we discuss moving frames on submanifolds of RP". In particu-
lar, the construction of Frenet frames on surfaces in RP3 are given.

In §3 we give a brief exposition on the general theory of induced
projective structures and their equivalences.

In §4 we derive exterior systems describing projective deformations of
submanifolds in RP". The system describing first order deformations is
seen to be involutive and the system describing second order deformations
is seen to be over-determined in general.

In §5 we consider surfaces in RP3. We show that for generic surfaces
the exterior system describing second order deformations is over-de-
termined. Applying the technique of prolongation it is shown that second
order deformations take the Frenet frames to the Frenet frames: This
gives the theorem that the second order deformation implies the equiva-
lence of induced projective structures with respect to the Frenet frames.
The converse implication is also proven. We complete the process of
successive prolongations arriving at the integrability condition of E.
Cartan (see [2], p. 288). This solves the problem of determining when
non-trivial second order deformations exist: It also gives an upper bound
on the dimension of the parameter space of the surface that are second
order deformations of a given surface.

We shall work within the category of smooth maps and objects,
except where we apply the Cartan-Kahler theorem and draw positive
conclusions in which case we must assume real analyticity. Such assump-
tions will be explicitly made.

Finally, we acknowledge a great debt to E. Cartan's work. In particu-
lar, this paper grew out of an attempt to understand his paper [2]. The
author is also grateful to Gary Jensen for several helpful discussions on E.
Cartan's work and (/-deformation problems in general.
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1. Prolongations of Pfaffian systems. A Pfaffian system on a manifold

M of dimension m can be thought of as a subbundle of the linear frame

bundle L(M) defined by the equations

(1.1) Σ: [θa = 0: θa e T*M,i = 1,2,...,*},

where we assume that 1-forms (θa) are linearly independent.
'o

Fix a /7-dimensional submanifold So -> M. We introduce the following

index convention which will be used in this section:

1 < ij,k, - < p,

1 < α,β,γ, < s ,

1 < a,b, c, < m — (p + s).

Let (ω', ωtf, ωα) be a coframe field on M so that / * ( ω l A ω2 Λ Λ ω77)

Φ 0. We will be interested in finding jp-dimensional integral submanif olds

S -> M so that /̂ 7ΛS projects onto io*TSo. That being so, we may as well

assume that ω 1 Λ ω 2 Λ •••Λco/7Λ01Λ • Λ θs Φ 0, since otherwise

such integral submanifolds clearly do not exist. Possibly rechoosing

(ωa, ωa) we assume that (ω\ ωa, θa) form a coframe field on M.

We differentiate (θa) and, suppressing the terms containing (0 α ),

obtain the following.

(1.2) dθa Ξ Aa

aιω
a A ωι + \B^ωι A ωj 4- K e V Λ <*b (modulo Σ ) ,

where Aa

an B« = - 5 ^ , Q A = - C ^ are functions on M.

DEFINITION 1.1. We say that the system is in normal form if (C£b) = 0.

The significance of the system in normal form is that in such a case

Cartan's involutivity criterion reduces the existence question of generic

integral submanifolds to linear algebra.

Let (ei9 ea, ea) be the frame field on M dual to (ω\ ωa, θa). We will

choose a local coordinate system on the Grassman bundle of j^-planes

Gp(M) ~» M, about the /^-dimensional plane field defined by ex Λ e 2 Λ

• Λ ep9 arising from the choice (ω\ ωa, θa). A /?-plane E G Gp(M) in

the neighborhood defined by ω1 Λ ω2 Λ Λ ωp Φ 0 is represented by

an n X p matrix,

That is to say, E is given by a decomposable /^-vector vx A v2 A Λ vp9

where υj = eJ -\- la

Jea + l*ea. We take (/ ,̂ l«) as the standard fibre coordi-

nates on Gp{M).
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We now express the condition that (θθ) and (dθa) vanish on E e

GJM) in terms of the standard coordinates on Gp(M). (Such elements

E e GAM) are called integral elements; observe that they are possible

tangent spaces of /?-dimensional integral submanifolds.) On such an

E e Gp(M\ we have θa = l«ωJ = 0, ωa = l°ω\ dθθ = 0. Using (1.2) and

substituting, we obtain,

(1.3) i^i/f = 0,

(1.4) /£.: Λ«y/? - A«aiη + 2?« + Qψ?/j> - /?/?) = 0.
Observe that the variety in Gp(M) defined by (F?) = (F/3-) = 0 may

be empty. We then say that the system Σ is incompatible. We also note

that if Σ is in normal form then equations (1.3) and (1.4) define a system

of inhomogeneous linear equations, and hence the variety in question is

irreducible.

We now define the prolongation of Σ.

DEFINITION 1.2. The prolongation of Σ, denoted by Σ' is the exterior

differential system on Gp(M) given by

Σ' = Σ ' ( 0 ) u Σ ' ( 1 ) u Σ / ( 2 ) , where

Σ/(0). (/r« = o, ^ = 0},

Σ / ( 1 ) : { df)α = 0, dF% = 0, θa = 0, ωa - l]ωJ = OJ,

Σ'i2):dΣ'(l\
Here, and elsewhere, we write θa in place of π*θa, where π: Gp(M)

-> Λf, etc.

Restricting to the variety V a Gp(M) defined by Σ / ( 0 ) we obtain a

Pfaffian system on V9 which we denote by Σ'. Observe that Σ r is always in

normal form.

We now consider the case of s equations in (s — l)-unknowns

("slightly over-determined system") with two independent variables.

Let M be a {2s + l)-dimensional manifold. On M we are given the

Pfaffian system

(1.5) Σ: (0" = O,α = l,2,...,*}.

Choose 1-forms (coz, ωa) on M so that (ω1', ωa, θa) form a coframe field.

We will be interested in integral surfaces on which ω1 Λ ω2 Φ 0. Note that

our index convention becomes 1 < /, j < 2, 1 < α, b < s — 1, 1 < α,

β <s.

Assuming that Σ is in normal form we write down dΣ, modulo Σ as

usual,

(1.6) dΣ: {dθa = Aa

aiω
a A ω' + Baωι Λ ω2 = θ } .
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We now think of (Aa

ai) as an s by 2(s — 1) matrix (A%) by setting

A = (ι — 1)(5 — 1) + a. We assume that the rank of (A%) is maximal, i.e.,

equal to s. (If not, then further assuming that the system does not possess

any "characteristic" (i.e., trivial) solutions, it can be shown that the system

becomes involutive possibly with compatibility conditions.) Suffice it to

say that then the system is not involutive.

We prolong the system. Keeping earlier notations we obtain:

Σ/(0). { ^ = 0 , ^ = 0}, where

(1.7) /r« = /« = (),

(1.8) Frj = A*aJIf-A*JJ + B" = 0.

Letting B = (2 - i)(s - 1) + α, we think of (If) as a vector (lB) e
R 2 ( 5 - 1 } . Also letting (υB) = \l\/2,...,/J-\ -l\.. . ,-/ 2 ( 5 ~ 1 ) ) equations

(1.8) become

(1.9) Aa

Bv
B = Ba.

The solutions of (1.9) form an (s -~ 2)-dimensional affine space. It

follows that V a G2(M) defined by Σ / ( 0 ) is an irreducible variety over M

of fibre dimension (s — 2). Let / = (ί1, Z 2,. . . ,/s~"2) be a fibre coordinate

system in V. Then Σ' on Fis given by

where (lj(t)) denote the solutions of (1.9).

Observing that dθa s 0 (mod Σ r) we compute that

d±': {θa = dωa ~ l*(t) dωJ - dlj(t)ωJ = 0, a = 1 , 2 , . . . , ^ - l ) .

Rewriting the equations in dΣ", we obtain

(1.10) d±': {θa s α ε y ; ε Λ ω^ + * V Λ ω2 = θ ) ,

where (α^7) and (6Λ) are functions on F and 1 < ε < s - 2. We see that

dΣ' contains (s - 1) equations (θa) = 0 and (s - 2) unknowns (dtε).

Now applying the technique of prolongation successively we obtain the

THEOREM 1.3. Over-determined normal Pfaffian system with two inde-

pendent variables in s equations and (s - 1) unknowns require at the most

(s — 1) successive prolongations in order for the system to be either incom-

patible or involutive.

2. Higher order moving frames. We construct higher order moving

frames on submanifolds of RPW. For a description of the general theory

dealing with the problems of higher order contacts and frames of sub-

manifolds of homogeneous spaces we refer to [5].
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For the rest of the paper we adhere to the following index convention:

1 < α,j8,γ, < n,

1 < i,j9k, - <P,

p + 1 < a, b, c, < n.

RP" is the real projective space of dimension n which we think of as
lines in RΛ+1. PGL(« + l R), the group of projective transformations of
RP", is GL(« -f l R) modulo its center. Letting the x-axis to be the
origin of RP", RP" is realized as a homogeneous space PGL(w + 1; R)/Go,
where Go is the isotropy subgroup at the origin.

If (*a W a s * G GL(n + 1; R) with Xo° Φ 0, then set a" = X«/X»9
aβ = xβ/xo> aβ = xβ/xo- W e t a k e (a<*> a% aβ) a s a l o c a l coordinate
system in the neighborhood of the identity of PGL(« + 1; R) defined by
Xo° φ 0. Then (aa) = 0 defines Go.

The Lie algebra ^^^(n + l R) is the vector space direct sum
^^J5?O + 1; R) = Jt^ Θ ^oSf(π; R) Θ Jί$ with the obvious bracket op-
erations, where Jίr

0 = R". Let Ω = (Ωα, ί2|, Ω )̂ be the Maurer-Cartan
form of PGLO + l R). It is Jt'0 Θ ^Jδf( w; R) Θ ̂ #^-valued and its com-
ponents are the left-invariant 1-forms on PGL(n + 1; R) which coincide
with daa, dciβ, daβ at the identity. We record the structure equations:

a = -Ω£ Λ Ω γ ,

% = -Ω£ Λ Ω^ - Ω α Λ Ω^ 4- δ^αΩγ Λ Ω γ ,

[dΩβ = - Ω γ Λ to*.

Let /: Sp *-» RP" be a /^-dimensional submanifold given locally as a
graph (JCO -> (xz, fa(x)\ where x = (JCZ) Let L(RP") denote the bundle
of linear frames over RP". We choose the coordinates on L(RP") so
that the natural projection PGL(« + 1; R) -> L(RPn) is given by
(aa, a$9 aβ) •-* (aa, aβ) = (aa, eβ). Let Lo denote the pull-back bundle

^ n + l R).

-> PGL(/i + l;R)

I 1 ^ L(RP")

>̂ RP"

We call a section w: 5 -> Lo a zeroth order moving frame field along/. We
see that a zeroth order moving frame field gives a local representation of
the derivative map,

df=φa ® ea = w * Ω α ® ea<
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Consider u0: S -> Lo given by

(2.1) (*')

0

0

fp+1(χ)

/"(*)

dx*

Then

<Ω« = {u-o

ιduoYo = ~kdxk + df = 0.

Hence u0 normalizes df in the sense that

(2.2) df = φ1 Θ eλ Θ θ φ^7 <S> e p ,

where (φ' = w*Ω') form a coframe field on S.

Suppose we have another zeroth order moving frame field u: S -> L o .

Then u = w0 g, where g: S -* Go is some smooth map. Consider the

group action of Go on JίQ = R" defined by the equation w*(Ωα!) =

(u0 g)*(Ωα). Using the fact that (w0 g)*(Ωα) = theΛf0-component of

Ad(g~ι)uξΩ9 we compute that: if g(a^ aβ) = (A, aβ) G G O and ί; e Rw

5

then the action is given by υ >-» Av. The obvious isotropy subgroup for

this action is Gλ < G09 where

(aj) (vh)

(23)G1= (aft
0 RP«»-P\

DEFINITION 2.1. The bundle of first order moving frames of / is

Lλ = { u0 Gλ}, where w0 is given by (2.1).

Lλ is a G^principal bundle over S and any section u: S -> Lτ is called

a first order moving frame field along/. We emphasize that any first order

moving frame field along /normalizes ^ i n the sense of (2.2).

On Ll9 Ωα = 0 for p 4- 1 < a < n. Differentiating both sides of the

equation and using the structure equations we obtain Ωf Λ Ω' = 0. By

Cartan's lemma, it follows that

(2.4) Ω; = A%ak,

where Aa

jk = Aa

kj are functions on Lv
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Though the methods in what follows are quite general, for the

remainder of this section we restrict ourselves to the case of surfaces in

R P 3 to ease computational difficulties and to simplify exposition. Note

that our index convention becomes 1 < /', /, /:,••• < 2, 1 < α, β, γ,

< 3, and a, b,c, = 3 .

(2.4) becomes

(2.5)
Ω3 =

Ω3 =

1 + bΏ2,

,1 + cΩ2,

where a, b, c, are functions on Lλ.

Let

EΛ =

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

and 2L =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

Then we have a vector space direct sum decomposition % = <&1 © Jix,

where % and ^ are Lie algebras for Go and Gλ respectively, and

Jίx = span{£ 4 , E5}. We write (Ω,3) = Ω;

3 ® E4 Θ Ω^ ® E5 = the Jίx-

component of Ω. Fix a first order moving frame field u: S -* Lv Write

M*Ω 3 = xikύ*Ώk for some functions xik on S. Suppose u: S -> Lx is given

by u = u g, for a smooth map g: S -» G^ Let x ; A be functions on 5 so

that M*Ω 3 = xjku*Ωk. We will compute the action of Gλ on {xik). Observe

that w*((Ωα) Φ (Ω3)) = (M g)*((Ωa) Φ (Ω3)) = the^# 0 Φ ^ - c o m p o n e n t

of Ad(g~1)w*Ω. Some matrix multiplications show that

(2.6)

where

X = g{X) = f

X=(xik),

0 0b

There are four orbits of the above action represented by

(2.7) 0 0
0 0

1 0
0 0

1 0
0 1

0 1
1 0

Assuming that / is of constant orbit type, we call the first orbit type

degenerate type, and the rest are called parabolic type, elliptic type, and

hyperbolic type, respectively.
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We give a description of the bundle of second order moving frames,

denoted by L 2 , as follows.

Given a first order moving frame field u: S ~> Lγ we write w*Ω3 =

xiku*Qk (xik = xki functions on S) as before. Let 6^2 denote the vector

space of all real 2 x 2 symmetric matrices. We define Φ: Lx -> 5f2 by the

following commutative diagram.

Φ

L2 is then defined to be

Φ- 1 0 0
0 0

Φ- 1 1 0
0 0

φ - 1 1 0
0 1 - i? I

depending upon the orbit type. L2 is a G2-principle bundle over S, where

G2 is the isotropy subgroup of the action (2.6).

Suppose / is of degenerate type. Then the isotropy subgroup G2 of the

action (2.6) is Gλ itself, and Lλ is the bundle of Frenet frames. On

Lv Ω3 = Ω3 = Ω2 = 0. Consider the involutive left-invariant distribution

on PGL(4;R) defined by the exterior differential system (Ω 3 = Ω3 = Ω2

= 0}. The analytic subgroup of PGL(4; R) corresponding to this distribu-

tion is

(«') (*'j) (V)
. 0 0 0 b .

Hence/(S) c H/H Π GQ = R P 2 .

We characterize the remaining (constant) type surfaces by the follow-

ing theorem.

THEOREM 2.2. Let (xι, x2, f(x)) be a surface in RP 3 , and let

f'M)'St,M-
Then

(i) if is of parabolic type if and only //rank(/ ) s 1?

(ii) / w o/ elliptic type if and only if rank(//y) = 2 β«ί/ determinant

(iii) // is of hyperbolic type if and only if rank(//7) ΞΞ 2 α«J determinant

U,j) < o.

The proof is computational. (See Theorem (2.11) of [8].)
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We now restrict our attention to the hyperbolic type surfaces. The

analyses of other types are completely similar using the theory of moving

frames. However the hyperbolic type surfaces admit perhaps simpler

geometric inteφretations due to the existence of asymptotic coordinates.

Note that the hyperbolic type surfaces are "negatively curved".

From (2.6) the identity component of the isotropy group G2 is

computed

Let

0
0
0
0

0
0
1
0

0
0
0
0

1

0

0

.0

0
0
0
0

a

0

0

, Ei

)

0
b

a
0

=

0
0
0
0

ψ

(V)
b

-

0
0
0
0

0
1
0
0

G

0
0
0
0

1:α,fceR+ »

and Es =

0
0
0
0

0
0
0
0

0
0
1
0

0
0
0
0

We also let Jt' 2 = span{£6, EΊ, £ 8 } . Then we have a vector space direct

sum decomposition ^ x = ^ 2 Θ Ji 2, where ^ 2 is the Lie algebra of G2. The

^#2-component of Ω is given by

(2.8) Ωi2 ® E6 Θ Ω\ ® EΊ θ (Ώ\ + Ω | - Ω^) ® E%.

Computing the action of G2 on Jί 2 we discover that there are four

orbit types at the next stage. We list them below.

(2.9) Type Ilia (degenerate type): Ω? - Ω^ = Ω{ + Q\ - Ω̂  = 0 on L3.

Type IΠb: Ω} + Ω2 - Ω3

3 = 0, Ω2 = 0, Ω2 = Ω1 on L3.

Type IΠc: Q\ + Ω2 - Ω̂  = 0, Ω2 = 0, Ώ,\ = Ω2 on L3.

Type Hid (generic type): Ω} + Ω2 - Ω̂  = 0, Ω2 = Ω2, Ωx

2 = Ω1 on

L3.

The first three orbit types represent ruled surfaces. We restrict our-

selves to the generic type Hid. L3 is then an integral submanifold of the

exterior differential system {Ωj + Ωf - Ωf = 0, Ώ\ = Ω2, ίlf = Ω1} on

L2, and it is G3-principal bundle over S. Computations reveal that the

identity component of the isotropy group G3 is

1 a1 a2

0 1 0

0 0 1

0 0 0

R
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Letting

•*-^Q

we obtain the vector space direct sum decomposition

0
0
0
0

0
0
0
0

1
0
0
0

0
1
0
0

0
0
0
0

0
0

-1
0

13
0

-1
0

0
0
0
0

' 1

and

0
0
0
0

E12 =

0
0
0
0

0
0
0
0

1
0
0
0

0
0
0
0

0
0
1
0

0
1
0
0

0
0
0
1

where ^ 3 is the Lie algebra of G3 a n d ^ 3 = span{ E9, El09 Eu, El2).
The^#3-component of Ω is given by

(2.10) (Ωx - Ω3

2) ® E9 θ(Ω 2 - Ω\) <8> El0 θ Ω}
n 12.

Computations show that there is a single orbit type at the next stage
and that the action of G3 o n ^ 3 allows us to make Ωx — Ω2 = Ω2 — Ω3 = 0.
The isotropy group G4 is the identity.

L4 is the bundle of Frenet frames. Computations show that: On L4 we
have

(2.11)

Ω3 = Ω2, Ω3 = Ω\

Ω} + Ω2 - Of = 0, Ω2 = Ω2, Ω2 = Ω\

Ω i - ί ί H O , Ω 2 -Ω 1

3 = 0,

Ωj = 2aΏι + έΩ2, Ω2 = aΏι + 2iΩ2,

Ω3 =

Ω2 = , Ω2

where a, b, p, q, r, s are functions on L4.
The functions α, b, p, q, r, s are called (non-trivial) contact in-

variants.
At this juncture, a slightly different perspective may be helpful: Let Σ

denote the exterior system on PGL(4; R) (with the independence condi-
tion that Ω1 Λ Ω2 Φ 0) represented by the equations in (2.11). Also
suppose that the functions a, b, p, q, r, s are so chosen that Σ is closed.
That is, the functions a, b, p, q, r, s are compatible (but otherwise arbi-
trarily chosen). Counting the number of equations in Σ we see that there
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exists a unique solution of the form u: S -> PGL(4; R). Define/: S -> RP3

by / = 7τ°w, where TΓ: PGL(4; R) -> RP3 is the projection. Then u is the
Frenet frame along/and all negatively curved non-ruled surfaces in RP 3

arise in this way.

3. Induced projective structures. In this section we give a brief descrip-
tion of induced projective structures on submanifolds of RP". For details
and proofs pertaining to this section readers should consult sections three
and four of [8].

In contrast to the case of Riemannian geometry, given a submanifold
in RP" there are in general not one but many distinct induced projective
structures on it. Roughly speaking, a choice of normal framing dtermines
an induced structure.

Let /: Sp -> RP" be a ^-dimensional submanifold given locally as a
graph (x*) -> {x\ fa{x)) as in §2. Recall that the bundle of first order
moving frames of /is Lλ = {u0 G1}. (See 2.1.)

Let H be the subgroup of Gλ given by

(3.1) (a'j)

o

0

0

/„_,

(aj)eGL(p R)

' '(«,) e R'

Also, let N be the normal subgroup of Gx given by

(Uft)

(3.2) N =

0
U)

n-p R)

Then Gλ = H N, a semi-direct product. And we identify Gλ/N with //.
Observe that i/ is isomoφhic to the projective isotropy group.

Consider the quotient space Lλ/N. Because N is a normal subgroup
of Gv it follows from the general theory of principal bundles that
Lλ/N -> S is a principal G /̂iV = // bundle. Furthermore, since H is
isomorphic to the projective isotropy group of RP77, this bundle Lx/N -» 5
is a candidate for defining a projective structure on 5, provided that there
is some natural way to imbed the bundle Lλ/N -> S into Q(S) -> 5,
where 2(5) is the principal bundle of quadratic frames over RP". (I.e.,
the bundle of two-jets of local diffeomorphisms (R^, 0) -> S.)

We have the following proposition from [8].
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PROPOSITION 3.1. Any map η: S -* N determines a natural bundle map

section iη: Lx/N -> Lv

Roughly speaking, a map η: S -> N corresponds to a normal frame

field along S.

The following commutative diagram defines Iη: Lλ/N -> / "

f-ιQ(RPn) -> β(RP")

/, / T T

-^ Lx c Lo -> PGL( /i 4- 1 R)

The Maurer-Cartan form plays a crucial role.

PROPOSITION 3.2.

(i) / ΘΊ r i β ( R p-) = /*(Ω', Oj)l v ^ m > θ ' = (β', 0/) = /Λe R̂ 7 Φ

g&ip; R)-component of the canonical form Θ ofQ(RPn), and

(ii) /•ββ|/-i<2(RP. ) = 0,/or/? + 1 < α < n.

For details of the properties of Q{M) and Θ, we refer to [7, Chapter

VI, §5].

DEFINITION 3.3. An induced projective structure on / is a pair

(3.3) Strictly speaking, the induced projective structures do not de-

pend on the (?76)-part of the map η: S -> N (using the notation in (3.2)).

Let 7r: Lλ -> L(RP") be the projection consistent with the forgetful

functor β(RP") -> L(RP"). (Note that Lλ c Έ>GL(n + 1; R) c β(RPΛ).)

Also let 7r/#. Gx -> GL(«: R) denote the group map of π. Then the totality

of induced projective structures on / is parametrized by the maps S ->

π'(N), i.e., by sections of the bundle π(L1) -> ττ{Lι)/ττ\N).

The next proposition states that an induced projective structure is

indeed a projective structure. See [8] for a proof, and for the definition of

projective structure.

PROPOSITION 3.4. There is a naturally defined bundle imbedding Φη:

+ Q(S)sothat

1 U

where ®Q(S) / 5 ^ e canonical form of Q(S).
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The following lemma is technically important, (and is proved in [8]).

LEMMA 3.5. Any first order moving frame field u: S —> Lx can be written

as u = / ° qfor some η: S -> N and a section q: S —> Lλ/N.

Let/, / : Sp -> RP" be two submanifolds and η, η: S -> TV be maps as

before.

DEFINITION 3.6. We say that / and / are (projectively) equivalent to

each other with respect to the pair (η, η) if the projective structures

(Lx/N9 Iη) and (Lx/N, 1^) are equivalent (as abstract projective struc-

tures, again see [8] for more details on equivalence).

(3.4) Suppose that / and / are equivalent with respect to the pair

(η, TJ). Then given any section q: S -> Lλ/N9 there exists a corresponding

section q: S -> Lλ/N defined by q = j o q, where / : Lλ/N -> Lx/N is the

bundle isomorphism giving the equivalence. And by the definition of the

equivalence of abstract projective structures we have

(3.5) Conversely, suppose that we are given u = iη° q: S -> Lλ and

u = /η o q: S -> Z x such that w*(Ω/, Ω})|Li = w*(Ωί, Ωj)!^- Then it is not

hard to see that there is a bundle isomorphism / : Lx/N -> Lλ/N with

q = J° q giving the equivalence between (Lλ/N9 Iη) and (Lλ/N, /-). (See

[8], Lemma (4.3).)

In view of the discussion in this section we can ask several different

questions regarding the equivalence of induced projective structures de-

pending on the amount of restrictions placed upon projective frames. One

of these questions, where there are no restrictions on projective frames, is

dealt with in [8]. However, as we shall see, the notion of projective

deformations considered by E. Cartan places a severe limitation upon the

choice of projective frames.

4. Projective deformations of submanifolds of RP". In this section we

derive exterior differential systems describing projective deformations and

draw some general conclusions.

Let/, / : 5, S -> RP" be two/^-dimensional submanifolds of RP".
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DEFINITION 4.1./and/are rth order projective deformations of each
other if there exists a smooth map v: S -» PGL(« 4- 1; R) and a diffeo-
morphism F: S -^ S such that, for each point s e S9 f and v(s)° f° F
define the same r-jet at s.

Since rth order deformation implies rth order contact, for sufficiently
large r, rth order deformation problems admit only congruent solutions.
In fact, if induced structures under consideration are (/-structures of
degree one then non-trivial first order deformations are already rare. (A
somewhat incidental remark is that the notion of first order deformation
is in general more "rigid" than the notion of equivalence of induced
G-structres of degree one.)

However, in our case we have G-structures of degree two. That is to
say, projective structures are naturally subbundles of the quadratic bun-
dle. This will be reflected in Theorem 4.4.

Let /, /: S, S -> RP" be /?-dimensional submanifolds of RP" and let
Lo and Lx (respectively Lo and Lλ) denote the bundles of zeroth and first
order moving frames on/(respectively on/).

Some computations, using Proposition 2 of §4 in [6], give the follow-
ing theorems.

THEOREM 4.2. Suppose f and f are first order projective deformations of

each other. Then there exist u: S —> Lv w: S —» Lo and F: S —> S a

diffeomorphism such that w*(Ω')|L i = (w° i 7 )*(Ω / ) |^ . Conversely, suppose

we have (u, w): S, S —> PGL(« + 1; R) and F: S -» S a diffeomorphism so

that w*(Ω/) = (w ° i ?)*(Ω /). Then f' = IT ° u and f= π ° u are first order

deformations of each other, where π: PGL(« -f 1; R) -» RP" is the natural

projection given by π(u) = u(0).

THEOREM 4.3. Suppose f and f are second order projective deformations

of each other. Then for any first order frame field u: S -> L, along f there

exists a first order frame field u\ S -> Lλ and f, and a diffeomorphism F:

S -> S such that

(4.1) ω'' = ω', ω) = ω;, ω« = ωj

where ωj = w*Ω7, etc. Conversely, if u: S -* PGL(n + 1; R) and u: S -*

PGL(« -f 1; R), and F: S -> S is a diffeomorphism, such that u and u° F

satisfy (4.1) as well as

u*Ωa = 0 = (ϋo Jp)*Ωc,

then f = π ° u and f = π °ΪL are second order deformations of each other.
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REMARK. In the above, one can replace ΰ by ΰ ° F9 and thus dispense

with F and S.

COROLLARY. If first order frames u and ΰ along f and /, respectively,

satisfy (4.1), then they also satisfy

(4.2) ω» = < .

Proof. This will follow from the calculations leading up to (4.8). D

We now prove:

THEOREM 4.4. Any two real-analytic p-dimensional submanifolds in R P "

are first order deformations of each other.

Proof. Let/, f:S,S-> RP" be the given submanifolds and let Lx and

Lλ denote the bundles of first order moving frames on/and/respectively.

We consider the exterior differential system on Lx X Lx given by

Σ : {Ώi\L1 = W\τ1,i = l,2,...,p}

with specified independent variables Ω x |L i, Ω 2 | L i , . . . , Ω p | L i . Writing the

quadratic equations of Σ, modulo Σ, we obtain

dΣ: { ( Ω ' | L i - Ω l | Z i ) Λ Ω ^ s 0 , ί = 1 , 2 , . . . , / * } .

The system is in normal form and applying Cartan's involutivity

criterion the system is seen to be involutive.

The rest of the proof follows easily using Theorem 4.2. D

We now ask the question: Given/: S -> RP" do there exist non-triv-

ial second order deformations of it?

We consider the exterior differential system on Lλ X PGL(π + 1; R)

with specified independent variables ω1

9ω
2

9...,ω
p given by

(4.3) Σ: {ω< = Ω', ωj = Ωj, ωj = ΩJ, 1 < ij < p,p + 1 < a < n},

where ωι = Ωr , co = Ω'lr and ωf = Ω.L .

Note that here, and elsewhere, we write ωι in place of ττ*co', where π:

Lλ X PGL(« + 1; R) -> L1 ? etc. Hopefully this abuse of notation will not

cause any confusion.

Suppose we have a/?-dimensional solution

(u,ΰ):S -» Lλ X ?GL(n + l R)
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of the system Σ in (4.1). Then / defined by / = π <> ΰ is a second order
deformation of/by Theorem 4.3.

PGL(rc + l R)

5 —> RP"
/

Moreover, it is easy to see that if F: S -» S is a diffeomorphism then
/ o F " 1 : 5 -* RPΛ is also a second order deformation of/.

We close the system Σ and write the quadratic equations modulo the
system.

Ωj, Λ Ώa = 0,

-(<4 - Ωj,) Λ ωj - ωι Λ(ωj ~ Ωy ) + δj(ωk - Ω j Λ ωk

-δjΏaA Ωa = 0,

(ωa

h- Ώa

h) Λ ω } - ΩαΛ Ωy = 0.

The above system is not in normal form and the general analysis is
complicated. Suffice it to say that the system is over-determined and the
prolongation of the system is difficult. Instead of the system (4.3) we
consider a new system by imposing a genericity condition on solutions
and by abusing the notation we call it Σ once again.

(4.4) Σ: {ωi = Ω1", ωj = Ωj, ωj = Ω;, Ω" = 0,

1 < ij <p,p + 1 < a < n).

The system is on Lλ X PGL(« + l R) and has designated independent
variables ω\ ω 2,... 9ω

p.
We compute the quadratic equations of the system, modulo the

system as usual, and obtain

i~{< ' K) A ω; - ω' Λ(ωy - Ω ) + δj(ωk - Qk) A ωk = 0,

The above system is in homogeneous normal form with unknowns

(ωί-Ωί), (ω,-Ω,) and (ω« - β«).

Write

Π^ = ω;-Ωi, Πy = ω,.-Ωy, Π« = «« - Ω£.
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Then (4.5) becomes

Recall that uή = Λ;AωA on Lx. (See (2.4).)

We now restrict ourselves to hypersurfaces in RP", (4.6) becomes

We assume that rank Λ, Λ > 2. Note that this corresponds to either

elliptic or hyperbolic type surfaces in RP 3 . By Cartan's lemma it follows

that Π " = 0. We now have a partially prolonged system given by

(4.8) {ω' = Ω\ ωj = Ωj, «; = Ω;, Ω» = 0, ω"n = Ωn",

1 < i,j <p = #ι - l ) .

Exterior differentiations give

) ^ = o,
(4.9)

The system is once again over-determined.

5. Surfaces in RP 3 . Having the remark at the end of §3 in mind we

make the following definition.

DEFINITION 5.1. Let /, /: Sp -> RP" be two submanifolds. Also let

u = iη° q: S -» Lx and ΰ = /̂  ° q: S -> Lx be projective frames along /

and / respectively. Then we say t h a t / a n d / a r e projectively equivalent to

each other with respect to the pair (w, u) if the induced projective

structures (Lx/N, Iη) and (Lx/N, ϊ^) are equivalent and the resulting

equivalence carries q to q.

The following lemma is merely a reformulation of the above defini-

tion.

LEMMA 5.2. Keeping the same notation as in the above definition, f and f

are projectively equivalent with respect to the pair (u, u) if and only if

We now make a detailed study of second order deformations of

surfaces in RP 3 . To do so, we recall earlier notations from §4 and restrict

ourselves to hyperbolic type surfaces in RP 3 . (Sop = 2 and n = 3.)
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The system (4.8) becomes

(5.1) Σ: {ω< = Ω<, Ω3 = 0, ωj = Ω<, Ω3 = Ωj, ω3 = Ω3, ij = 1,2}.

The system is on Lx X PGL(4; R) with specified independent variables ω1

and ω2.
Observe that from the computations we made in §2 (see (2.9)) it

follows that the solutions / = π ° ΰ of the above system have the same
third order type as /. In other words, if we assume that / has constant
third order type Hid (the generic type), then any second order projective
deformation of / is also of generic type. Thus assuming / to be of generic
type, without loss of generality we restrict our system to L3 X PGL(4; R).
We take the generic type Hid.

We write down the quadratic equations of Σ.

[(ω\ - ω2) -(Ω3 - Ω2)] Λ ω2 + 2ωι Λ(ωx - Ωx) = 0,

[ ( ω 1

3 - ω 2 ) - ( Ω 1 3 - Ω 2 ) ] Λ ωι = 0,

, [ ( ω 2 - c o 1 ) " ( Ω 2 - Ω 1 ) ] Λ ω 2 - 0 ,
2 — ωj) — (Ω2 — ΩijJ Λ ω1 + 2ω2 Λ(ω2 — Ω2) = 0,

Π3

+ θ2 Λ[(ω\ + ω2) -(Q\ + Ω2)] = 0.

Letting Π 1 = (ω\ - ω2) - (Ωx

3 - Ω2), Π 2 = (ωf - « x) - ( Ω | -

= 2(ωι- Ωx) and Π 4 = 2(ω2 - Ω2), we rewrite (5.2).

Π 1 Λ ω2 - Π 3 Λ ω1 = 0
Π 1 Λ ω1 s 0

(5.3) Π 2 Λ
Π 2 Λ

= 0
- Π 4 Λ ω2 s 0

Π 1 Λ ω2 + Π 2 Λ ω1 + Π 3 Λ ω1 + Π 4 Λ ω
2 —= 0.

We have five equations and four unknowns and the system is overde-
termined. According to the general theory the system requires at the most
four successive prolongations.

We prolong the system by setting I F = ljωj\ where 1 < a < 4. Sub-
stituting into (5.3) we obtain

(5.4)

l\ + l\ = 0,

l\ = 0,

ιl = o,
ι\ + it = o,
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We obtain three dimensional solutions given by l\ = If = 0, and

l\ = l\ = -l\ = -It, ll l\ arbitrary.

The prolonged system is on L3 X PGL(4; R) X R3.

(5.5) Σ' = Σ U {Π1 = iy, Π2 = i y , Π3 = Pxω
ι - l\ω\

We now have four equations and three unknowns.

Suppose (u, ΰ): S -> L3 X PGL(4; R) solves the above system. Then

in particular we must have

- co2) - w*(Ω31 - Ω2) = tu*ω\

\ (u, i/)*Π2 = w*(

for some function / on S. Let

1

0TS*

0
1
0
0

0
0
1
0

t/2
0
0
1

:S

(recall from (2.9) that G3 is the isotropy group for L3). Also let ύ = uK.

Observe that (ft, u) also solves the system with t = 0. Hence, without

losing generality, we replace (5.5) by

(5.6) Σ u { n x = 0, Π 2 = 0, Π 3 = / 1 V,Π 4 = /^ω2}.

Differentiate both sides of the equations Π 1 = 0 and Π 2 = 0 and

obtain

ω Λ(ω3 - Ω3 - / V ) Ξ 0,

[ω1 Λ(ω 3 - Ω3 - l*ω2) = 0.

It follows that ω3 - Ω3 = /̂ co1 + l*ω2.

The system is now on L3 X PGL(4; R) X R2.

(5.7) Σ U{Π X = 0, Π 2 = 0}

U { ω3 - Ω3 = / y + /3ω2, Π 3 = lfa\ Π 4 = /4ω2}.

Recalling the computations we made in §2 (see (2.11)) we see that the

solutions / = π ° ΰ of the above system are of the same fourth order type

as /. We restrict the system to L4 X PGL(4; R) X R2. The isotropy sub-

group G4 is trivial and the Frenet frame field u: S -» L4 defines a unique

map 77: S -> N < Gv Similarly if ΰ: S -> PGL(4; R) gives rise to a

solution / then ΰ actually is the Frenet frame field along / and it defines a

unique map ϊ): S -* N < Gv Let u = iη° q and ΰ = i^ ° q be the decom-

positions given by Lemma 3.5.
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We then have the following commutative diagram.

LΛ Z I,

489

Lτ/N Lλ/N

The top horizontal arrow is given by u •-> v - u where v: S -> PGL(4; R)

achieves the deformations as in Definition 4.1. The middle horizontal

arrow gives the projective equivalence with q = J ° q as in (3.5).

THEOREM 5.3. Let f9f: S -> R P 3 be two non-ruled negatively curved

surfaces in RP 3 . Then f and f are second order deformations of each other if

and only if f and f are projectively equivalent with respect to the Frenet

frames.

Proof. Suppose / and / are second order deformations of each other.

Let u be the Frenet frame field along/. Then (w, u) satisfy (4.1) and (4.2),

(for n = 3), for some first order frame field u along/, by Theorem 4.3 and

its Corollary. Recall that a Frenet frame is a fourth order frame, which is

characterized by the table,

First order

Second order

Third order

Fourth order

= 0
= ω 2 , = ω1

— , , 3
ω' 3 > ( = ω 2 . ω\ = ω1ω) + ω2

ωx = co3, ω2 = ω3

where each order includes all the characterizations of the preceding orders

as well. It follows then from (4.1) and (4.2), and as u is the Frenet frame,

that ΰ is a third order frame field along/.

By the calculations leading up to (5.6) we have

I CO3 — ω2 — (ω\ — ω 2 ) = tωι

W 3 ~~ ω i ~\ΰ>l — ωγ) = tω

for some function t on S. Let

1 0 0 t/2

0 1 0 0
0 0 1 0
0 0 0 1

:S
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Then ύ: ΰK is also a third order frame field along/. A direct calculation
shows that (w, u) satisfy (4.1), (4.2) and (*) with t = 0. Of course, in our
case ω\ = ω2 and ω2 = ωλ as u is the Frenet frame. Consequently ύ is the
Frenet frame along /. Then by Lemma 5.2, / and / are projectively
equivalent with respect to the pair of Frenet frames (w, u). To prove the
converse, we assume that/and/are projectively equivalent with respect to
the pair (w, ΰ) where once again u, ΰ denote the Frenet frames along/and
/respectively. Then we have

Now u, u are the Frenet frames. Thus

u ύύγ — u αώ — u ύu — u ύ&i a n o u c^2 — u *L — u &u — u ^ 2 *

That is, (w, u) solves the system

Σ : { Ω'|L i = Ω'|Σ i, Ω ; | L I = Ω ; . | V Ωj | L ] = Ω 3 | Z i ,«, y = 1,2}

onL x X Lλ. D

Here, the author is thankful to the referee for suggesting a revision of
the proof of Theorem 5.3 which made the proof more readable.

We continue our analysis of the system (5.7). We compute the
quadratic equations, modulo the system as usual, and obtain

[ω1
 Λ ( J / 1

3 - 2llQ\) = 0,

(5.8) lω2 Λ(dl4

2- 2liQl) = 0,

(ω2
 Λ(J/ 1

3 - 2/x

3Qi) + ω Λ(dlt - 2φ2) = 0.

We have three equations and two unknowns dll a n ^ dl\. The system
is over-determined. We prolong the system by adding equations

\dl\ - 2/?Qi = /ω\(5 9) L* 2/V2-/.2

^ «/2 "~ Z / 2 ^ 2 — /CO .

Exterior differentiations of equations in (5.9) give

[dl Λ ω1 = -/ω1 Λ 3W1, 4- tiω1 Λ (4ωΊ - 2ω2),
(5 10)
V " 7 \ <// Λ co2 = -/co2 Λ 3ω2 + 2 / 2 V Λ ( ( O 2

2 - ω1).

We have two equations and 1 unknown dl. We prolong the system by
throwing in the equation

(5.11) dl = 2l*Aωλ + 2/^co2 - /ω3

3,
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where

A = ω2 A (2ω2 - ωι)(el9 e2), B - ωι A (ω2 - 2ω1)(<?1, e2),

and ev e2 are the frame field dual to ω\ ω2. Observe that A and B are
known functions on S.

Differentiating both sides of the equation (5.11) we finally obtain the
compatibility condition of E. Cartan

(5.12) 2ll(dr A ω2) + 2l\{ds A ω1) + 3/(r - s)ωι A ω2 = 0,

where r and s are contact invariants computed in (2.11).
If r ΞΞ s ΞΞ constant then the equation (5.12) is identically satisfied. In

this case a three parameter family of solutions is possible. Otherwise, we
let dr = rλω

ι 4- r2ω
2 and ds = ^ω 1 -I- s2ω

2. Then (5.12) becomes

(5.13) 2/ft - 2 φ 2 + 3/(r - j) = 0.

Solving for l\, l\ and / we obtain at the most a two parameter family of
solutions. This gives the

THEOREM 5.4. For a generic non-ruled negatively curved surface in R P 3

there exists at the most a two parameter family of non-trivial second order
deformations of it.

Settling the actual existence question of the above two parameter
family of solutions would require a considerable amount of computations
yet. A possible line of attack would be to set up an exterior system anew
describing the system of differential equations coming from the compati-
bility condition.
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