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EXTENSION PROPERTIES INDUCED
BY COMPLETE QUASI-UNIFORMITIES

HANS-PETER KUNZI AND PETER FLETCHER

We consider the completeness of the following members of the
Pervin quasi-proximity class of a completely regular Hausdorff space:
^ S &&, &<$, -^"and ^JJfg. We show that these completeness
properties are extension properties, as defined hy R. G. Woods, which
for ^J^, o £ ^ and ^ ^ are closely related to almost realcompactness.
Indeed, in a countably paracompact space of non-measurable cardinality,
PF-completeness, LF-completeness, SC-completeness and almost real-
compactness coincide. We show that the fine quasi-uniformity of any
Σ-product with compact factors is almost precompact, and it follows that
no Σ-product is FINE-eomplete. If a Σ-product is C* -embedded in its
Tychonoff product π, and if TΓ is P-complete for any of the completeness
properties under consideration, then π is the maximal P-extension of Σ.

l Introduction. Although every topological space admits a quasi-
uniformity, in this paper all spaces are presumed to be completely regular
Hausdorff spaces. A major portion of Chapter 3 of [13] is devoted to the
study of the point-finite, locally finite, semi-continuous, fine-transitive
and fine quasi-uniformities, which we denote, as in [13], by ^J^, S£&",
ίfΉ, J ^ a n d ίFJJfg. Necessary and sufficient conditions for these
quasi-uniformities to be precompact are given in [13, page 58]. The
companion problem of determining necessary and sufficient conditions
for these quasi-uniformities to be complete is indicated in [13, page 59]
but left unresolved; and it is clear that topological characterizations of the
completeness of these quasi-uniformities are in general hard to formulate.
Indeed, although the authors have recently shown that a separable locally
compact normal space due to S. P. Franklin and M. Rajagopalan admits
no complete quasi-uniformity, it is still unanswered whether J^^is com-
plete whenever JFJJfS is complete.

Our first proposition establishes that each of the completeness proper-
ties discussed above is an extension property as defined by R. G. Woods
[53]. Accordingly, by results of H. Herrlich and J. van der Slot [24], if 3P is
any of the completeness properties under consideration, each space X has
a unique maximal P-extension &{ X) with the following properties:

Q)&{X) has property^.
(2) X is a dense subspace of 0>( X).

357



358 HANS-PETER KUNZI AND PETER FLETCHER

(3) If/: X -» 7 is a continuous map from Xinto a space Y satisfying
property^*, then /admits a continuous extension g: &(X) -> 7.

The space ^ ( X) is characterized as the intersection of all subspaces
of β X that have property 9 and contain X.

In a countably paracompact space of non-measurable cardinality,
PF-completeness, LF-completeness, SC-completeness, and almost real-
compactness coincide. On the other hand, any weakly orthocompact space
(e.g. ωλ) is FT-complete. We show that no Σ-product is FINE-complete.
Moreover, for any completeness property & under consideration, if a
Σ-product Xis C*-embedded in the Tychonoff product and the Tychonoff
product is P-complete, then the ordinary product is 1P(X). For example,
by H. Corson's well-known result [5, Theorem 2], if Σ is a Σ-product of
separable metrizable spaces and π is the corresponding product of these
spaces, then TΓ is the maximal FINE-extension of Σ.

A space X is said to be P-pseudocompact provided that &>(X) = βX
[53]. The problem of characterizing P-pseudocompactness, which is re-
lated to the problem of characterizing the extension property ^ , usually
proves to be a somewhat more tractable problem. We show that if & is
PF-completeness, LF-completeness, or SC-completeness, then P-pseudo-
compactness is the property that the corresponding quasi-uniformity is
almost precompact. (A quasi-uniformity f o n a topological space X is
almost precompact provided that for each U e °U there is a finite set F so
that U(F) = X.) Although we have no counterexample, it seems unlikely
that the fine quasi-uniformity is almost precompact for every space that is
P-pseudocompact for & = FINE-completeness. We show that for & =
FINE-completeness (or FT-completeness), FINE (FT)-almost precom-
pactness implies P-pseudocompactness and satisfies the requirements indi-
cated by Woods in [53, Proposition 2.2] and by S. Broverman in [3,
Theorem 2.3], which are necessary in order that almost precompactness be
P-pseudocompactness. Finally, we show that if p is a point in the
remainder of βω, then βω — {p} is almost precompact with respect to
the fine quasi-uniformity.

Throughout, we adopt the notation of [53] to describe extension
properties and of [13] to describe quasi-uniform space properties.
Whenever possible we cite from these sources, rather than from the
original source; the reader may consult these sources in order to determine
the origin of a result. Moreover, the reader will find that familiarity with
those two sources is essential to his full understanding of the present
paper. In particular, we have need for the following basic concepts, which
are discussed in more detail in [13]. A relation Fon a space Xis an (open)
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neighbornet provided that, for each x e X, V(x) is an (open) neighbor-
hood of x. A neighbornet V is normal provided that there is a sequence
(Vn) of neighbornets so that, for each n e N, Vn

2

+ιa Vn and Vx c V.
Note that every transitive neighbornet is an open normal neighbornet and
that a neighbornet belongs to ϊFJ'JfS if and only if it is a normal
neighbornet. A space Xis orthocompact (quasi-normal) provided that for
each open cover #of X there is a transitive (normal) neighbornet V so that
{V(x): x ^ X) refines ^. A space X is weakly orthocompact (weakly
quasi-normal) provided that neighbornets, as above, exist for each directed
open cover of X.

2. Completeness. In this section we show that the completeness
properties discussed in this paper are extension properties, and we relate
these properties to the well-known extension properties, (almost) real-
compactness and Dieudonne completeness. We show that FINE-com-
pleteness and FT-completeness are preserved by continuous perfect maps;
the corresponding result for PF-completeness is an open question.

A filter J*" on a quasi-uniform space (X, <%) is a °l/-Cαuchy filter
provided that for each U e °Hthere exists a/? e X so that U(p) G.F, and
(X, <%) (or °U) is said to be complete provided that every ^-Cauchy filter
has a cluster point. Since all the quasi-uniformities discussed herein
belong to the Pervin quasi-proximity class, which is locally symmetric,
every Cauchy filter under consideration that has a cluster point has a
unique cluster point, to which it converges [13, Proposition 3.9]. We do
not consider the Pervin quasi-uniformity, itself, since the Pervin quasi-uni-
formity of a space X is complete if and only if X is compact.

PROPOSITION 2.1. Let & be the property that a topological space X
satisfies provided that X is complete with respect to the point-finite, locally
finite, semi-continuous, FINE-transitive, or fine quasi-uniformity. Then 3P is
an extension property.

Proof. By a result of Herrlich and van der Slot, it suffices to show that
9P is a closed-hereditary productive property that is satisfied by all
compact spaces [24, Theorem 1]. Since every quasi-uniformity of a com-
pact space is complete, $P is satisfied by all compact spaces. Moreover, by
[13, Proposition 3.10 and remarks in §2.18], 0* is closed hereditary. To
show that £P is productive we consider as typical the case that & is
PF-completeness. Let X = Π{ Xa: a e A} be a product of PF-complete
spaces, for each a e A let °lίa be the point-finite covering quasi-uniformity
of Xa9 and let ^ b e the point-finite covering quasi-uniformity of X. Then
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Π{^ α : a ^ A} is a complete quasi-uniformity; and, since °ll contains
Π{ ^ α : a e A}, <%is complete as well. D

Let us recall that a topological space X is almost realcompact [17],
(closed complete [9]) provided that if JΠs an open (closed) ultrafilter that
has no cluster point, there is a countable subcollection ϊF' of J^so that
Π{F: f E F } = 0.

PROPOSITION 2.2. [8, Theorem 1.7] α«d [14, Corollary to Theorem 5.1].
X be a topological space. Then the following statements are equivalent.
(a) X is almost realcompact.
(b) X is the perfect image of a realcompact space.
(c) (X, SfΉ) is a complete quasi-uniform space.

We say that a space X is Dieudonne complete provided that the fine
uniformity of X is complete. The terms PF-complete, LF-complete, SC-
complete, and so on are similar abbreviations; e.g., a space X is PF-com-
plete provided that SPϊF is a complete quasi-uniformity for X. In the
diagrams to follow, which indicate the relationships that hold among the
completeness properties we are to study, the symbol -> indicates an
implication that holds for spaces that have no closed discrete subspaces of
measurable cardinality. The non-trivial implications given in the first
diagram are either well known or are consequences of Propositions
2.2-2.4.

Fully normal <-» paracompact —> metacompact

i i i
Dieudonne complete -> LF-complete -» PF-complete

T 4 * 4 * I*
realcompact -> SC-complete -» closed complete.

DIAGRAM 1

PROPOSITION 2.3. Let X be a topological space.
(a) If X is Dieudonne complete, X is LF-complete.
(b) If X is metacompact or LF-complete, X is PF-complete.
(c) If X is SC-complete, X is closed complete.

Proof, (a) Assume that Xis Dieudonne complete and let ^denote the
fine uniformity of X. Then # c .£^[13, Proposition 5.3] and so if X is
Dieudonne complete, X is obviously LF-complete. (b) Since a &J^Cauchy
filter meets every point-finite open cover, it is obvious that every meta-
compact space is PF-complete. The proof that every LF-complete space is
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PF-complete follows as in the proof of statement (a), (c) This implication

is the well-known result [9, Theorem 1.6]. D

The proof of the following proposition uses ideas of P. Zenor [56].

PROPOSITION 2.4. Let X be a topological space that has no closed

discrete subspace of measurable cardinality.

(a) If X is Ut-complete, X is SC-complete.

(b) If X is PF-complete, X is closed complete.

(c) // X is normal and W-complete, X is realcompact.

Proof, (a) Assume that Xis LF-complete and let ^ b e an ultrafilter on

X that has no cluster point. We show that ^ i s not an 5^-Cauchy filter.

Since ^ i s not a n i ^ C a u c h y filter, there is a locally finite open cover ^of

X so that & C\ % = 0. There is a set D, necessarily infinite, so that

{st(x, ^ ) : x G D) covers X and no member of ^contains two points of

D, [37, Theorem 18]. Set Y = {G e 9: G Π D Φ 0 } . For each U e Φ,

set M(U) = { G E 7 : UΠ G Φ 0 } . Then Jί = {M(U): U G Φ} is a

filter base on Y and there is an ultrafilter f on 7 containing Jί. Since

card(Y) = card(D), which is a non-measurable cardinal, Y with the

discrete topology is realcompact. Since <3 Π ^ = 0 , Π ^ = 0 and so there

is a countable subcollection {Kn: n e ω} of ^ s o that Π{ i^n: « e ω} = 0 .

We assume, without loss of generality, that Kn + ι c Kn for each n e ω.

For each w e ω, set i^ = X - U Kn. Let « G ω and suppose that Fn e ^ .

Then 0 = M(Fn) Π AΓn G ^^—a contradiction. Therefore, for each n ^ ω,

X - UKn £ <V. Suppose that <g= {X-\JKn\ n e ω} covers X For

each positive integer π set Gw = X - U ΛΓΛ and for each non-positive

integer n set Gn = 0 . Then {(?„: « is an integer} is an open spectrum and

so if ^ i s an ^^-Cauchy filter there is a positive integer n so that Gn^ °U

[13, Theorem 2.12]. Thus, in order to show that ^ i s not an

filter, it suffices to show that {X -U Kn: n ^ ω] covers X. Suppose that

y <£ U{X — U Kn: n ^ ω}. For each n e ω, Kn is locally finite and hence

closure preserving, and so there is a Vn e ^ so that j G Vn. But as ^ is

locally finite, y belongs to the closures of only finitely many members of

<g. Thus, there exists m G ω so that Vn = P^ for infinitely many /?. It

follows that Km G Π{iΓΛ: n G ω}—a contradiction.

(b) The proof of this assertion requires only minor modifications of

the proof above. Assume that X is PF-complete and let 3? be a free closed

ultrafilter on X. Then JMs contained in an ultrafilter °U and J ^ = {[/:

ί/ G ^ } . As above, there are subcollections {Kn\ n G ω} of a point-finite

open cover ^ s o that Π{ Kn\ n G ω} = 0 and A'n + 1 c AΓw for each n G ω.
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For each n G ω, X -\J Kn£^ and so there exists An G #" so that
^* c U ^ . T h u s , we have that Γ\{An: n G ω) c Π{U^W: /2 G ω} = 0 .

(c) The proof of this assertion requires only minor modifications of
the proof of assertion (b). Assume that X is normal and PF-complete and
let <2"be a free ^ultrafilter. Then «2"is contained in a closed ultrafilter J*",
which in turn is contained in an ultrafilter Φ. We note that J^= {U:
U G <%}. Since # is not a ^J^Cauchy filter, {X - F: F e ^ } has a
point-finite open refinement S?. As above, there exist open sets Gn so that
Π{ Gn: n G ω} = 0 and, for each n ^ ω, X — Gn <£ ^. Thus, there exists
{y4w: « e ω } c 5 s o that An c Grt for each n G ω. Since X is normal,
there are zero-sets Zrt so that >4Λ c Zn c GΛ for each n G ω. Then {Zw:
« G ω) is a countable free subcollection of Z. U

It is evident that a discrete space of measurable cardinality satisfies all
the conditions of the top line of Diagram 1 and none of the conditions of
the bottom line. Thus the hypothesis of Proposition 2.4 that no closed
discrete subspace of X be of measurable cardinality cannot be omitted. In
the presence of further restrictions upon the space X, several other implica-
tions among the completeness properties of Diagram 1 may be obtained.
We begin by considering properties related to normality. A space X is
almost 2-fully normal provided that the collection of all neighborhoods of
the diagonal of X is the fine uniformity of X, and X is somewhat normal
provided that, for each open cover ^of X, (st(jc, # ) : x G X) is a normal
cover of X. It is known that an almost 2-fully normal space is both
collectionwise normal and somewhat normal [36, Theorem 2.9] and [11,
Page 4]. A somewhat normal space need not be normal [31, Example 2.6].

PROPOSITION 2.5. Every VΈ-complete space that is somewhat normal or
collectionwise normal is Dieudonne complete.

Proof. Let X be a PF-complete somewhat normal space, let J^"be an
ultrafilter that is Cauchy with respect to the fine uniformity, and let ^be a
point-finite open cover of X. Since ^ * = {st(jc, &)\ x G X) is a normal
cover, ^ * and ^meet J*\ Hence J^is a ^J^Cauchy filter and converges.
The remaining implication of the proposition is an immediate conse-
quence of the well-known result of E. Michael that every point-finite open
cover of a collectionwise normal space is normal. D

PROPOSITION 2.6. Every normal LF-complete space is Dieudonne com-
plete.

Proof. In a normal space, every locally finite open cover is normal. D
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Let X denote Mary Ellen Rudin's Dowker space. By results of K. P.
Hart [21] and P. Simon [44], X is an almost 2-fully normal closed-com-
plete space that is not SC-complete. Consequently, X is not PF-complete.
In [17, Theorem 11], Z. Frolik asserts that every almost realcompact
normal space is realcompact, but, as P. Kenderov points out [29], Frolik's
proof has a gap. Frolik proves only that every countably paracompact
almost realcompact normal space is realcompact. The truth of Frolik's
original assertion remains an open question, to which the following
questions are closely related.

Question 2.7. Is every SC-complete space PF-complete?

Question 2.8. Is every PF-complete space of non-measurable cardinal-
ity SC-complete?

PROPOSITION 2.9. A countably orthocompact separable space is W-com-
plete if and only if it is SC-complete.

Proof. Let X be a countably orthocompact separable SC-complete
space and let J^be a ^J^Cauchy ultrafilter over X. By [13, Proposition
5.13], X is countably metacompact. An argument similar to that given in
the proof of Proposition 2.4 (a) establishes that an ultrafilter J^is an
5^^-Cauchy filter if and only if it meets each countable open cover. Since
every countable open cover of X has a point-finite open refinement, JΠs
an 5^^-Cauchy filter and so converges. The other direction is immediate,
since in a separable space every point-finite open cover is countable. D

The method of proof of Proposition 2.9 yields the following corollary.

COROLLARY. Every countably paracompact SC-complete space is LF-
complete.

EXAMPLE 2.10. The Dieudonne Plank is an almost realcompact space
that is not LF-complete. Let X = (ωx 4- 1) X (ω 4- 1) — {(ω1? ω)}. For
each (/?, q) e ωι X ω define H(p, q) = {(JC, q): p < x < ωx} and define
V(p, q) = {(/?, y): q < y < ω}. The topology under consideration is the
one for which {H(p, q), V(p, q): (/?, q) e ωx X ω} is a subbase. It is
well known that X is almost realcompact [27]. To see that X is not
LF-complete, let Φ be an ultrafilter on X containing {(α, ωλ) X [n, ω):
α € ω l 9 f t € ω } . Let ^ b e a locally finite open cover of X and for each
n e ω let βn e ω, so that H(βn9 n) is a subset of some member of #. Let
β = sup{^n: n ^ ω}. Suppose that there is no finite subcollection of #
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covering (/?, ωx) X [0, ω). Then # is not locally finite at (β + 1, ωλ).
Therefore <% CΛ °l/Φ 0 and so °ll is an ̂ J^Cauchy filter without a cluster
point.

In the preceding corollary, countable paracompactness cannot be
replaced by countable metacompactness, because the Dieudonne Plank is
a metacompact (and hence PF-complete) SC-complete space that we have
just seen is not LF-complete. In light of K. Hardy's result that a countably
paracompact closed-complete space is almost realcompact [20], the fol-
lowing diagram indicates the relationships among the completeness prop-
erties under consideration that obtain in countably paracompact spaces.

LF-complete -> PF-complete

U TI*
SC-complete <-> closed complete

DIAGRAM 2

Diagram 2 suggests the conjecture that every countably paracompact
PF-complete space is LF-complete. Somewhat surprizingly, this conjecture
is known to be false, for R. Haydon has given an example of a normal
metacompact space (of measurable cardinality) that is not Dieudonne
complete [22, Remark following Example 3.1]. It follows from Proposition
2.6 that Haydon's space is not LF-complete, and since the space is normal
and metacompact it is obviously both countably paracompact and PF-
complete. It is also noteworthy that the only property of Diagram 2
satisfied by Mary Ellen Rudin's Dowker space is closed completeness.

We consider briefly the behavior of our completeness properties in the
class of (weak) cb-spaces. (Weak) cb-spaces were first defined and studied
by J. G. Home [25], J. Mack [33] and J. Mack and D. Johnson [34], but we
refer the reader to [49] for definitions and results. For our purposes it is
enough to note that an extremally disconnected space is a weak cb-space,
that a normal or weak cb-space is a cb-space if it is countably paracom-
pact, and that a space is realcompact if it is an almost realcompact weak
cb-space or a closed complete cb-space [9, Corollary 1.10]. By virtue of
our previous propositions, these results justify the following diagram.

Dieudonne
complete

U
real-

compact

weak cb-space

-> L F

complete

U
«* sc

complete

Dieudonne
complete

TI*
real-

compact

DIAGRAM 3

cb-space

-> L F

complete

TI*

<•* s c
complete

PF
complete

TI*
closed

complete
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Evidently both parts of Diagram 3 collapse when we restrict our attention
to spaces in which each closed discrete subspace is of non-measurable
cardinality. Haydon's example, which is normal and countably paracom-
pact, is a cb-space. Hence, there is a measurable cardinal if and only if
there is a PF-complete cb-space that is not LF-complete. As the follow-
ing question indicates, the relationship between LF-completeness and
Dieudonne completeness has not yet been determined.

Question 2.11. Is every LF-complete (cb-) space Dieudonne complete?

It follows from Corollary 2.9 that Question 2.11 would be answered
negatively if there exists a countably paracompact almost realcompact
space of non-measurable cardinality that is not realcompact. Unfor-
tunately, the existence of such a space is itself an unsolved problem. The
next proposition provides a class of weak cb-spaces in which LF-com-
pleteness and Dieudonne completeness coincide. The proof of this pro-
position, and of several propositions to follow, is facilitated by the simple
observation that a regular quasi-uniform space is complete provided that
every open ultrafilter that is a Cauchy filter has a cluster point [15,
Theorem 3.6].

PROPOSITION 2.12. Every extremally disconnected LF-complete space is
Dieudonne complete.

Proof. Let X be an extremally disconnected LF-complete space and
let W be an open ultrafilter over X that has no cluster point. There is a
locally finite open cover »S?so that ££C\ fy= 0. For each L e J?, there is
U(L) e <% so that L Π U(L) = 0 . Since 0 = ( I : L e JS?} is a locally
finite cover of X by open-and-closed sets, ^ is a normal cover of X that
misses ΰίί. Thus ^ is not a Cauchy filter with respect to the fine uniform-
ity. D

We now consider the behavior of FT-completeness and FINE-com-
pleteness. Since y ^ c f j , it follows from Proposition 2.2 that every
almost realcompact space is FT-complete and hence FINE-complete. The
implications of Diagram 4, which are evident, indicate, however, that
FT-completeness and FINE-completeness are far weaker properties than
almost realcompactness.

orthocompact -» weakly orthocompact -» FT-complete

i i i
quasi-normal ~> weakly quasi-normal -> FINE-complete

DIAGRAM 4
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It is unknown whether every FINE-complete space is FT-complete.
Indeed, if X is an indiscrete space or an orthocompact semi-stratifiable
space, then&&*(X) = &frfδ{X)\ in general it appears difficult to find
spaces in which J ^ a n d ^JJVS differ (see [13, Chapter 6]). As noted in
[30], Example 7.25 of [13] provides a space that is quasi-normal but not
weakly orthocompact. Example 5.34 of [13] is FT-complete but not
weakly quasi-normal and ωλ X βωλ is a weakly orthocompact space that is
not quasi-normal [13, Corollary 5.40]. Thus none of the remaining impli-
cations of Diagram 4 is reversible, (and it seems unlikely that the
implication FT-complete —> FINE-complete will turn out to be reversible
either.)

We end this section by considering the behavior with respect to
perfect continuous maps of the completeness properties we have been
considering. It is shown in [13] that weak orthocompactness and weak
quasi-normality are inverse invariant under perfect continuous maps (as
are the extension properties FT-completeness and FINE-completeness).
The proof given below that FINE-completeness is preserved by perfect
continuous maps can be modified to show that FT-completeness, weak
quasi-normality and weak orthocompactness [42, Lemma 2.4] are also
preserved by such maps. Thus, although neither orthocompactness nor
quasi-normality is preserved by perfect continuous maps [13, Example
5.24], the remaining properties of Diagram 4 are invariant under perfect
continuous maps in both directions.

PROPOSITION 2.13. FINE-completeness is preserved by perfect continu-

ous maps.

Proof. Let f: X -* Y be a perfect continuous map from a FINE-com-
plete space X onto a space Y and let J^be a J^ΛΛf(7)-Cauchy filter.
Then {f~\F): F G &} is contained in an ultrafilter ^ o n X. Let Fbe a
normal neighbornet of X and let W be a normal neighbornet of X so that
W2 c V. Set W* = {(a, b) G Y X Y: f~\b) c W{f-\a))}. Since / is
closed, IF* is a normal neighbornet of Y and there exists y e Y so that
W*(y) G &. There is a finite subset ,4 of X so that/ - 1 (y) c W{A). Since
Γ\W*(y)) c W{f~\y)) c W\A) c V(A) andΓ\W*(y)) e Φ, there
exists a*Ξ A such that V(a) G ̂ . Thus < îs a &JJΓg(X)-Cauchy filter
and converges, say to x. It is easily seen that/(x) is a cluster point of IF. D

It is interesting to note that the absolute of the Dieudonne Plank is
realcompact (and hence LF-complete) [50, Example 1], for it follows that
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LF-completeness is not preserved by perfect continuous maps. Because
almost realcompactness is preserved by perfect continuous maps, the
following question is obviously related to Questions 2.7 and 2.8.

Question 2.14. Is PF-completeness preserved by perfect continuous
maps?

The results given above show that FT-completeness and FINE-com-
pleteness are extremely general extension properties. Nonetheless, in the
next sections we determine some interesting topological spaces that are
not FINE-complete.

3. Almost precompactness and P-pseudocompactness. In 1971, the

second author and S. A. Naimpally introduced almost precompactness
and proved for an arbitrary Hausdorff space X that (X, Sfφ) is almost
precompact if and only if X is countably almost compact [15, Theorem
4.1]. J. R. Porter and R. G. Woods have pointed out that if & is the
property, almost realcompactness, then countable almost compactness is
the natural analogue in the class of Hausdorff spaces of P-pseudo-
compactness [40, Theorem 3.19]. Furthermore, a space X is compact if
either of the following obtains: There is an extension property 0 so that X
satisfies SP and is P-pseudocompact, or there is a compatible complete
quasi-uniformity that is almost precompact. Thus it is reasonable to
suppose that for some completeness properties & a space is P-pseudocom-
pact only if the corresponding quasi-uniformity is almost precompact. In
this section, we pursue the connection between P-pseudocompactness and
almost precompactness that Porter and Woods's theorem suggests. We
adopt the self-explanatory terminology PF-pseudocompactness, LF-pseu-
docompactness and so forth, and we recall the easy but useful observation
that a quasi-uniform space (X, °U) is almost precompact if and only if
every open ultrafilter over X is a Cauchy filter [15].

LEMMA 3.1. Let X be a space and let & = &&, &&\ &><£, &9~, or
. If(X,&) is almost precompact, X is P-pseudocompact.

Proof. By definition, I c # ( I ) c βX. Let ^ be an open ultrafilter
over X. Since (X, ίP) is almost precompact, ^is a ^-Cauchy filter and the
extension of ^ to &>(X) is an open ^-Cauchy filter on &>(X). It follows
that every open filter on X has a cluster point in &(X), and so (P(X) is
compact [15, Theorem 3.5]. D
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PROPOSITION 3.2. Let Xbea space and let <% =

Then the following statements are equivalent.

(a) X is U-pseudocompact.

(b) (X, <%) is almost precompact.

(c) X is pseudocompact.

Proof. By [15, Theorem 4.1], (X, SfΉ) is almost precompact if and

only if X is pseudocompact. Moreover, as the maximal SC-extension of X

is the almost realcompactification aX of X [55], if X is SC-pseudocompact,

then aX = βX and so X is pseudocompact. In light of the previous lemma,

it suffices to establish the following implications: (i) if X is PF-pseudo-

compact, or LF-pseudocompact, X is pseudocompact, (ii) if X is pseudo-

compact, (X, JSPĴ ) is almost precompact, and (iii) if (X, J?*^") is almost

precompact, (X, 0>&r) is almost precompact. Since SPϊF contains JSfJ ,̂

which contains the fine uniformity, condition (i) obtains. Implication (ii)

follows from [13, Proposition 3.19].

The proof of the remaining implication is based upon an argument of

B. M. Scott [43, Theorem 1]. Let V <Ξ @&. Without loss of generality we

assume that there is a point-finite open cover ^ of X so that, for each

J C E I , V(x) = Π{C £Ξ V: x <E C). LetτT = {V(x): x e X}. Let Jί* be a

family of nonempty open sets maximal with respect to the following

property: Each member of ^ meets only finitely many members of Ϋ~ and

no member of ^meets two members of Jίf. By (i), X is pseudocompact

and so the point-finite open cover i^is locally finite on a dense set. It

follows that Jfis a nonempty disjoint finite family of open sets. Let

Γ = { F G Ϋ~: for some H e 3P, V Π H Φ 0 } . For each K G r \ choose

one x e l s o that V(x) = V and let A denote the finite set of points so

chosen. Since U */*' is dense, X = V(A). D

COROLLARY. A space X is compact if and only if it is pseudocompact

and PF-complete.

We note that the previous corollary includes both the result of Scott

that every pseudocompact metacompact space is compact and the classical

result that every pseudocompact Dieudonne complete space is compact.

We now consider P-pseudocompactness and almost precompactness

for IFJJiΓS and &2Γ. As in [32], we say that a topological space X is

almost precompact (FT-almost precompact) provided that J ^ Λ / Γ ^ ^SΓ) is

an almost precompact quasi-uniformity. Although the concept of almost

precompactness predates the fundamental paper of S. H. Hechler [23], it is

clearly kin to the following result of Hechler, which is generalized by J. E.
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Vaughan [47, Lemma 6.4]: If ^is an open cover of a countably compact
separable space X and card (^) is smaller than the smallest cardinal,
usually denoted^, of a maximal family of subsets of ω with the strong
finite intersection property, then there is a finite subfamily &' of ^so that
X=U{G: G G ST}.

It turns out that the extension property ω-boundedness, considered by
Woods in [51], is useful in determining spaces that are almost precompact.
A space X is ω-bounded provided that the closure of each countable
subspace is compact [19] and [28]. Following the Russian literature, we
avoid the inappropriate terminology "countable chain condition" by
saying a space X has the Souslin property if every collection of pairwise
disjoint open subsets of Xh countable.

PROPOSITION 3.3. In a FYNE-complete space X with the Souslin prop-
erty, the closure of an ω-bounded subspace is compact.

Proof. The proof is by contradiction. Let B be an ω-bounded sub-
space of X such that B is not compact and let *$ be an open cover of B
that has no finite subfamily covering B. Let !F be the open filter generated
by {G: G is an open set and there exists C e ^so that B - C a G} and
let ^ b e an open ultrafilter over X containing J*\ Since Xis regular,
no cluster point.

The contradiction is established by showing that ^is
filter. Let U e &JJf£ and let V be an open neighbornet such that
V2 c U. Since V(B) is an open subspace of a space with the Souslin
property, there is a countable subset D of B so that V(B) c V(D). Since
D is compact, there is a finite subset E of X so that D c V(E). Thus
V(B) c V(D) c V2(E) c U(E) and U(E) e ^ . Since E is finite, it
follows that ^ is a JDC^-Cauchy filter. D

The method of proof of Proposition 3.3 establishes the following
corollary.

COROLLARY. Let B be an ω-bounded subspace of a space X with the
Souslin property and let V be an open neighbornet of X. Then there is a finite
subset E of Xso that V(B) c V2(E).

A space X is a weakly LindeΓόf space provided that every open cover
of X has a countable subcollection whose union is dense. A point p of X
has countable tightness provided that if C c X and p e C then p belongs
to the closure of some countable subset of C. A space in which each point
has countable tightness is said to be of countable tightness.



370 HANS-PETER KUNZI AND PETER FLETCHER

Although the following variant of Proposition 3.3 is not used in the
present paper, we believe that it may prove useful in another setting.

PROPOSITION 3.4. Every closed ω-bounded subspace of a normal weakly
Lindeΐόf FINE-complete space is compact.

Proof. (Sketch) As in the proof of Proposition 3.3, let B be a closed
ω-bounded subspace of a normal weakly Lindelόf FINE-complete space
X, and define #, ^\ ^, [/and Fas above. To see that ^is a J^A/K^-Cauchy
filter, note that since V(B) is an open set containing J5, there is an open
set G so that ficGcGc V(B). Since {X - G} U {V(b): b e B)
covers X, there is a countable subset D of B so that G c V(D). As in the
previous proof, there is a finite set E so that U(E) ^ &. D

COROLLARY. Every ω-bounded subspace of a normal weakly Lindelόf
FINE-complete space of countable tightness is compact.

Following P. Nyikos and J. Vaughan [39] and [47], we say that a
locally compact space X is a Franklin-Rajagopalan space [16] provided (a)
X has a countable dense set of isolated points (which we identify with ω)
and (b) the remainder X — ω is homeomorphic to an ordinal with the
order topology. Theorem 1.3 and Lemma 3.1 of [39] characterize a
countably compact non-compact Franklin-Rajagopalan space as a space
of the form ω U μ, where μ is an ordinal of uncountable cofinality
considered to be disjoint from ω, for which the topology on ω U μ is
defined in terms of a maximal increasing tower on ω. This characteriza-
tion enabled the authors to prove that every countably compact Franklin-
Rajagopalan space of regular uncountable cardinality is almost precom-
pact [32, Proposition 3.4]. Our corollary to Proposition 3.3 provides an
alternate proof of this result, which shows that it is unnecessary to require
that the Franklin-Rajagopalan space be of regular cardinality.

PROPOSITION 3.5. Every countably compact Franklin-Rajagopalan space
is almost precompact.

Proof. Let Γbe a countably compact Franklin-Rajagopalan space. We
may assume that T is not compact. Thus, by the results of [39], we assume
that there is an ordinal μ of uncountable cofinality so that T = ω U μ
(where ω and μ are considered disjoint) and an increasing maximal tower
( ^ α ) f t € / i o n ω s o that the basic open neighborhoods of T may be defined
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as follows. Points of ω are isolated; for 0 < β < a < μ and F a finite
subset of ω any set of the form U(a, β, F) = (β, a] U [Aa — Aβ] — F is a
basic open set, and any set of the form £/(0, β, F) = {0} U (Ao — F) is a
basic open set. Let U be an open normal neighbornet and let V be an
open neighbornet so that V2 c U. By the corollary to Proposition 3.3,
there is a finite set E so that V(μ) c K2(2s). Since the open cover
{V(μ)} U {t/(w): n e ω} has a finite subcover, there is a finite subset F
of ω so that T = (F(/x) U U(F)) c ί/(£) U U(F) c U(E U F). Π

The proof of the following proposition makes use of the result of [7,
Example 7.1] that the one-point compactification and the Stone-Cech
compactification of a countably compact Franklin-Rajagopalan space
coincide. In proving this proposition we also make use of a key lemma,
which we will use repeatedly.

LEMMA 3.6. Let X be a space with the Souslin property, let Q be a
FϊNΈ-complete space, and let f: X -> Q be a continuous function. If B is an
ω-bounded subset of X and x e clβx(B), then f admits a continuous exten-
sion /: XU {x} -> Q.

Proof. Because FINE-completeness is a closed-hereditary property,
we assume without loss of generality that/( X) = Q. Let/^: βX -» βQ be
the continuous extension of / to βX, let B be an ω-bounded subset of X
and let x e c\βx(B). Then/^x) e clβQfβ(B) = clβQf(B). Note that Q
has the Souslin property and that/(2?) is an ω-bounded subset of Q. By
Proposition 3.3, cl^(/(,B)) is a compact subset of Q and so this set is
closed in βQ. That is, fβ(x) €= clβQ(f(B)) c c\Q(f(B)) c Q. Hence fβ\
X U {x} is the required extension of/. D

PROPOSITION 3.7. The arbitrary product of countably compact
Franklin-Rajagopalan spaces is FΪNE-pseudocompact.

Proof. Let X = ΐl{Ta: a e A) be a product of countably compact
Franklin-Rajagopalan spaces and let Ybe the product Π{Γα

+: a e A} of
the corresponding one-point compactifications of Ta. Since each Ta is
locally compact and pseudocompact, X is pseudocompact and βX =
βU{Ta: a(ΞA} = U{βTa: a ^ A} = Y [18, Theorems 4 and 1]. It re-
mains to show that Y is the FINE-extension of X. Let Q be a FINE-com-
plete space and let /: X -> 2 be a continuous map. Let J G 7 - I B y
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[10, Problem 3.2A(b), p. 193], it suffices to show that/admits a continu-
ous extension/: X u {y) -» Q. Set B = {/ e 7: / ( α ) = j (α) iΐy(a) Φ
ooα and 0 < y\ά) < μa if y(a) = ooα, where μα is the ordinal so that
Ta = ω U μa}. Then B is ω-bounded and y <Ξ clγ(B) so that by the
previous lemma the required extension /of / exists. •

Since every almost precompact space is pseudocompact, it is natural
to ask if every almost precompact space must be countably compact. It is
possible to give an easy counterexample to this conjecture, using a
countably compact Franklin-Raj agopalan space of regular cardinality in
place of ωx in the construction of the Tychonoff Plank. The example we
give here is somewhat more involved, since it makes use of remote points,
but it is more interesting.

Let X be a space and let p e βX. As in [6], we say that p is a remote
point of X and write p e p( X) if p e β(X) — X, but for each nowhere
dense set A of X, p ί c\βx(A). We have need of the result of Woods [51,
Theorem 3.5], whose proof is emended in [6, Theorem ll.l(a)], that if X is
a σ-compact locally compact space of countable π-weight and X has no
isolated points, then pX and its complement in βX — X are dense
ω-bounded subsets of βX — X.

EXAMPLE 3.8. An almost precompact space that is not countably
compact. Let X be the real line, or any other locally compact σ-compact
non-compact space with countable ττ-weight and no isolated points. Let
Y = X U p(X). There exists an increasing sequence (Gn) of subsets of X,
open in X, and hence in Y, such that each c\x(Gn) is compact and such
that X = U^°=1 Gn. To show that Yis almost precompact, let U be an open
normal neighbornet of Y and let V be an open neighbornet so that
V2 c U. Because X is separable, Y has the Souslin property and so by
Corollary 3.3 there is a finite set E so that V[ρ(X)] c V2(E) c U(E).
Set G = Y - U(E). Suppose that for each n G ω, G - GnΦ 0 . Then
(G — Gn) is a decreasing sequence of open sets and by [6, 17.1(d)] Yis

pseudocompact. Thus there is a point p belonging to the closure of each
G - Gn. Since X = Ό™=1Gn, p e p(X); but then V(ρ(X)) is an open set
about p missing G—a contradiction. Therefore, there exists n e ω such
that G c G .̂ There is a finite set F so that G c f/(F); whence Y

c U(E U F).
Because X is realcompact, but not compact, there is a countably

infinite closed subset A of X that has no cluster point in X, and since A is
nowhere dense c l ^ ^ ) Π ρ(X) = 0 . Thus Y has a countably infinite
closed set without a cluster point.
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Since ωx with the order topology is orthocompact [12], this space
provides a simple example of a pseudocompact space that is not FT-al-
most precompact. Nonetheless, the following two propositions indicate
that (FT-) almost precompactness mimics the behavior of pseudocompact-
ness. In the first of these propositions conditions (a), (b), and (c) are
included only for the sake of completeness. Condition (a) has been proved
for the fine quasi-uniformity in [32, Proposition 2.3] (the proof given there
also holds for 3FίΓ\ and we omit the proofs of (b) and (c), which are
routine.

PROPOSITION 3.9. A space S is (FT-) almost precompact provided that
any of the following conditions holds:

(a) S is a regular-closed subspace of an (FT-) almost precompact space.
(b) S is the union of finitely many (FT-) almost precompact subspaces.
(c) S has an (FT-) almost precompact dense subspace.
(d) S is the product of a compact space and an (FT-) almost precompact

space.

Proof. Let K be a compact space and let Y be an (FT-) almost
precompact space and suppose that S = K X Y. We show that every open
ultrafilter over 5 is a Cauchy filter with respect to &3Γ {^JJfS). Let °U
be an open ultrafilter over S, let ̂ = J ^ {&JJΓS\ and let F E f .
Let W be an open neighbornet so that W1 c V. For each y e 7, there
is a finite subset F(y) of K so that the compact space KX {y} c
Ό{W(x, y): x e F(y)}. Thus

W(Kx{y})c\J{V(x9y):xeF(y)}.

Set

W=, {(a9b) e FX Y:Kx{b} c W(Kx{a})}.

Since mΎ is closed, W belongs to the fine (transitive) quasi-uniformity of
F, and since Y is almost precompact, there exists a p e Y so that

). Thus τry\W(p)) <E

It follows that some member of the finite collection {V(x, p): x G. F(p)}
belongs to ̂ , and so ̂  is a Cauchy filter. D

In considering the next proposition, it is interesting to note that since
(FT-) almost precompactness is a regular-closed hereditary property that
is not closed hereditary, the condition of Proposition 3.10(b) that / be
open or irreducible cannot be omitted [10, Theorem 3.7.29].
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PROPOSITION 3.10. Let X and Y be spaces and let f be a continuous map
from X onto Y.

(a) If X is (FT-) almost precompact, so is Y.
(b) /// is a perfect map that is open or irreducible and Y is (FT-) almost

precompact, X is (FT-) almost precompact.

Proof, (a) Suppose that X is (FT-) almost precompact and let W be a
member of the fine (transitive) quasi-uniformity of Y. Since / is continu-
ous, /: (X, &&) -> (Y, FF) and /: (X, ^JJΓg) -> (Y, PJJΓβ} are
quasi-uniformly continuous [13, Proposition 2.17]. Thus there exists a Fin
&3Γ (&JJΓS) so that if (a9b) € K, then (f(a), f(b)) e W. There is a
finite subset i7 of X so that V(F) = X. It is easily verified that W(f(F))
= Y.

(b) We first suppose that / is an irreducible map and that Y is (FT-)
almost precompact. Let J^ be an open ultrafilter over X. Since/is a closed
irreducible map ,^= (int f(G): G e #"} is an open ultrafilter over Y. Let
W and V be open neighbornets belonging to the fine (transitive) quasi-
uniformity of X so that V2 c W. Set

F= {(a,b)^ YX Y:f-\b)^V{Γ\a))}.

Since / is a closed map, V belongs to the fine (transitive) quasi-uniformity
of Y, and there exists p e Y so that F( /?) e J?7. There is a finite subset 4̂
of X so that/-^/?) c K(Λ). Thus f-\V(p)) c V(f~\p)) c JF(Λ). Be-
cause F(/?) is an open set belonging to Jίf, f~1(V(p)) ^J^and so, for
some a ^ A, W{a) e ^".

We now suppose that / is an open map and that Y is (FT-) almost
precompact. Let J^be an open ultrafilter over X. Then/(J^) is an open
ultrafilter ^over Y. The remainder of the proof follows word-for-word
from above. D

According to Woods [54], a property 0* is a co-absolute invariant
property provided that a space X has property & if and only if the absolute
of X has property 3P.

COROLLARY (FT-) almost precompactness is a co-absolute invariant
property.

The result for pseudocompact spaces corresponding to the previous
corollary is proved by Woods [52, Proposition 2.5]. The analogues for
pseudocompactness of Propositions 3.9 and 3.10 also obtain. Moreover,
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according to results of Woods [53, Proposition 2.2] and Broverman [3,
Theorem 2.3], in order that FINE-pseudocompactness and almost pre-
compactness coincide it is necessary that conditions (b), (c) and (d) of
Proposition 3.9 obtain.

Since Γ is a primary example of an almost precompact space that is
not compact, in light of Corollary 3.10, we consider the absolute of this
space.

PROPOSITION 3.11. Let Γ+ = (μ + 1) u ω be the one-point compactifi-
cation of Γ, where μ is taken to be the point-at-infinity and {Aa: a G μ) is
taken to be the required maximal increasing tower on ω. Define f: βω -» T+

by f(n) = n for each n G ω, and if tfί G βω — ω define f(W) = inf{ a G μ:
Aa^

ύU] if some Aa G Φ, andf(<%) = μ if for each a G μ, Aa £ <&. Then
βω -f-\{μ}) is the absolute of T.

Proof. As in 3.12.17 of [10], we see that/is a continuous, and hence
perfect, mapping. Moreover, it is easily verified that / is irreducible. It
follows that/|/?ω - f~1({μ}) is a perfect irreducible continuous map of
βω - f~\{μ}) onto T. Thus βω - f~\{μ}) is the absolute of T. (See [54,
Page 327].) D

A free ultrafilter °ll over ω is called a T-point provided that °lί contains
the complement of every member of some maximal increasing tower [39].

COROLLARY. If ^ is a T-point, βω - {<%} is almost precompact.

Proof. Let % be a Γ-point, and let {Aa: a e μ} be a maximal
increasing tower disjoint from °lί. We assume that T and / are defined as
in the previous proposition. By Corollary 3.10, βω — f~1({μ}) is almost
precompact so that by Proposition 3.9(c) it suffices to note that βω —
/~1({ju,}) is a dense subspace of βω - {°U}. D

Recall that if X is a topological space X* denotes βX — X. It is
known to be consistent that every point of ω* is a Γ-point (see [2]). K.
Kunen has shown that under the continuum hypothesis there exists
p G ω* such that p is not a Γ-point (and by [39, Corollary 2.8] there are
then 2C such points.) It follows from our next proposition that even if p is
not a Γ-point, βω — {p} is almost precompact, (see remarks following
Proposition 3.12). The proposition is suggested by results of V. I. Malyhin
[35].
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PROPOSITION 3.12. Let X be a locally compact realcompact space with
the Souslin property and let x e X*. Then βX — {x} is FΪNΈ-pseudocom-
pact.

Proof. By Lemma 3.6, it suffices to find an ω-bounded subset B of X*
such that x e (clx*B) — B. Since X is realcompact, no point of X* is
isolated. Therefore, if x is a P-point of X*, so that the intersection of any
countable family of neighborhoods of x is a neighborhood of x9 then
X* — {x} is the required ω-bounded subset. Suppose that x is not a
P-point of X* and let H be a Gδ-set of X* such that x G i/ - intx*/f.
There is a countable collection of zero-sets of X*, {Zw: « e ω), and a
countable collection of open sets of X*, [Gn: n G ω}, so that 7/ =
Π{GM: H G ω) and for each n G ω, x G intx*Zn c ZM c (?„. Set Z =
Π{Zn: n G ω} and note that x £ int ̂  Z. Since xGintx*Zl9 x ί
int z Z. Define Δ = { C c Z : C is a nonempty cozero-set of X* and
C c intZ i Z} and for each C G A choose x c G C. Set // = {xc: C G Δ}.
We show that the required ω-bounded set is H(ω) = U{clx*C: C is a
countable subset of /f }. Evidently H(ω) is ω-bounded.

To see that x G clx*/f(co), let G be an Jf*-open set about x. Recall
that Z is a zero-set in the remainder of a locally compact realcompact
space, so that by [48, Proposition 4.21], x G Z = cλx*{jntx*Z). Let
y e G Π i n t j * Z. There is a cozero-set R so that j G R C G Π int x* Z.
Since i?<ΞΔ,i?Π//# 0 and so G Π i/(ω) Φ 0 .

To see that x & H(ω), let {x c : « G CO) be a countable subset of H,
where Cn c intZ χZ c Zx and JCQ G CΛ. Then c\x*({xCn\ n G ω}) c

π: « G ω}) and since clx*(U{Cn: Λ G ω}) c Z l 9

: n e

Since Zx is a zero-set in X*9 by [48, Corollary 1.63], the disjoint cozero-sets
U{C n :«Gω} and Zx — Zhave disjoint closures in Zv Thus

dZι{Ό{Cn.
 n G «}) c z i " clZ l(Zi - Z) = int Z i Z

and sox ί c l ^ ^ c^: w G ω}) c clZi(U{Cn: n G ω}). D

We conclude this section with a few observations concerning βω.
First, we note that the space βX of the previous proposition is not of
countable tightness at x. We have just seen that Y = βX — {x} is
FINE-pseudocompact and if βX is extremally disconnected at x (see [6,
Definition 1.7]), for instance if x is a remote point of X, then Y is almost
precompact as well. For Y cannot be FINE-complete and so by [13,
Corollary 5.32 and Theorem 5.33], for each normal neighbornet V of Y
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there existsp e Yso that cl y V(p) is not compact. Thus c\γV(p) U {x}
= c l ^ F( /?), which is a neighborhood of x. It follows that there is a finite
set F so that Y - i n t ^ c l ^ V{p) c F(F) and hence

Let/? e ω*. There is a marked difference in the behavior of βω — {p}
and ω* — {/?}. Because βω — {/?} is separable, it follows from the
remarks above that βω — {p} is almost precompact. But if p is a simple
P-point [38] of the non-separable space ω*, then/? has an open-and-closed
neighborhood base 9 in ω* that is well ordered by reverse inclusion.
Consequently, # = {ω* — G: G e ^}isan interior-preserving open cover
of ω* — {/>}. Hence each J^y(ω* — {/>})-Cauchy ultrafilter meets #
and so converges. Notice, however, that if p is a point of ω* and / is an
embedding of βω into ω*, then it follows from Proposition 3.10 and the
preceding remarks that/(βco) — {/(/>)} is a closed almost precompact
subspace of ω* - {/(/>)}. Thus, to* - {/(/?)} is not FINE-complete.

4. Σ-products and explicit constructions of extensions. The primary
purpose of this section is to show that for 3P = FINE-completeness, the
maximal P-extension of certain Σ-products is their corresponding
Tychonoff product. In pursuing this purpose, we shall also show that any
Σ-product with compact factors is almost precompact.

PROPOSITION 4.1. Let A be a dense weakly Lindel'όf subspace of a space

X. If A is contained in an ω-bounded subspace of X, then X is almost

precompact.

Proof. Let <9 be an open ultrafilter over X, let V be an open normal
neighbornet and let Wbe an open neighbornet so that W2 c V. There is a
countable subset D of A so that A c W(D). Since W(D) is an open
dense set, W(D) e S?. There is a finite set E so that ΰ c ΰ c W(E).
Thus V(E) e ^and there is an x e E so that V(x) e 9. D

COROLLARY. Le/ 5 be an ω-bounded weakly Lindelbf subspace of a

FΪNΈ-complete space. Then B is compact.

Following A. V. ArhangeΓskii and D. V. Ranchin [1], we adopt the
following notation. If Y = Tl{Xa: a G. A} is the uncountable Cartesian
product of nondegenerate topological spaces, the σ-product of the spaces
Xa with base point/? e F, which is denoted by σ(Y, /?), is the subspace of
the Σ-product of the spaces Xa with base point /?, which is defined as
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follows:

σ( Y, p) = {x G Y: x(a) Φ p{a) for only finitely many a e A).

It is noted in [1, Remark 2] that if Y is the product of compact spaces
then σ( Y, p) is a dense σ-compact subspace of Σ( Y, p).

PROPOSITION 4.2. Let Σ( Y, /?) be a Σ-product of compact spaces. Then
Σ(Y, p) is almost precompact. In fact, any Tychonoff product of such spaces
is almost precompact.

Proof. It is well known that Σ(Y, p) is ω-bounded and since σ( Y, p)
is a dense Lindelόf subspace, by Proposition 4.1, Σ(Y, p) is almost
precompact. Now let X = Π{Σα: a ^ A) be a Tychonoff product, where
for each a e 4̂, ΣΛ is a Σ-product with compact factors. If ^4' is a finite
subset of A then Π{Σα: α e A'} contains a dense σ-compact subspace
and so is weakly Lindelof. It follows that X is a weakly Lindelδf
ω-bounded space [45, Theorem 1.3]. Once again, Proposition 4.1 obtains. D

COROLLARY. Let a be an uncountable cardinal and let 0: a —> 2 be the
constant function 0(β) = 0 and let 1: a —> 2 be the constant function
ϊ(β) = 1, β < a. Then 2a - {0} is almost precompact.

Proof. By Proposition 4.2, Σ(2α,ΐ) is a dense almost precompact
subspace of 2a — {6} and so Proposition 3.9(c) obtains. D

In [42], Scott proved that no Σ-product is orthocompact and in [26],
G. I. Kac proved that if Y is an uncountable product of spaces with at
least two points and p e Y, then Y — {p} is not Dieudonne complete.
Our next proposition generalizes these results.

PROPOSITION 4.3. Let X = Π{ Xa: a ^ A) be an uncountable product
of spaces with at least two points and let p e X. If Z = Σ(X, p) or
Z = X - {p}, then Z is not FΪNE-complete.

Proof. Let Σ(2) = Σ(2/ί,0). Then Z contains a closed homeomorphic
copy of the almost precompact non-compact space Σ(2), or Z contains a
closed homeomorphic copy of the almost precompact non-compact space
2Λ - {5}. •

We have seen that no Σ-product is FINE-complete and yet it is often
the case that the corresponding Tychonoff product enjoys one or more of
the completeness properties we have been investigating. For example, the
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product of weakly orthocompact spaces is FT-complete, the product of
metacompact spaces is PF-complete, and, of course, all extension proper-
ties (in particular all our completeness properties) are productive. We
exploit the difference in the behavior of Σ-properties and Tychonoff
products to show that the Tychonoff product often provides the maximal
extension of a corresponding Σ-product.

PROPOSITION 4.4. Let Π = Π{ Xa: a ^ A) be an uncountable product

of spaces with at least two points and letΣ = Σ( Π, p) for some p e Π. Then

Σ is C*-embedded in Π if and only if, whenever Y is a FΐNΈ-complete space

and f: Σ —» Y is a continuous function, f admits a continuous extension

/: Π -> Y.

Proof. Suppose that Σ is C*-embedded in Π, let Y be a FINE-com-
plete space and let /: Σ -> Y be a continuous map. Since Σ is C*-em-
bedded in Π,/admits a continuous extension/: Π -» βY. We show that,
in fact, that/(Π) c Y. For each a e A let qa e Xa so that qa Φ p(ά). Let
x e Π and define x' e Π as follows: x'(a) = x(a) if x(a) Φ p(a) and
x'(a) = tfα if x(a)=p(a). Let 2(2) = Σ(Π({*'(α), p(α)}), /^), and let/
denote/|Σ(2). Note that 2(2) has the Souslin property, that/(2(2)) =
/(Σ(2)) c /(Σ) c Y and that x e n{x r(a), /?(«)} = jβΣ(2) [18, Theorem
2]. By Lemma 3.6,/admits a continuous extension h mapping 2(2) U { JC}
-> Y. As h agrees with/on 2(2),/(JC) = A(JC) e 7. D

Proposition 4.4 generalizes a well-known result of M. Ulmer, namely
that a Σ-product is C*-embedded in its corresponding Tychonoff product
if and only if it is C-embedded in this product [46, Corollary 2.10]. In light
of Proposition 4.4, we wish to know under what conditions a Σ-product is
C-embedded in its corresponding Tychonoff product. In §3 of [46], it is
shown that a Σ-product is not always so embedded even when all the
factor spaces are realcompact. Recall that a space X is pseudo-tt ̂ compact
provided that each locally finite open collection of X is countable.
Evidently, a space that is either pseudocompact or weakly Lindelδf is
pseudo-N^compact. Some interesting cases in which a Σ-product is C-em-
bedded in its corresponding Tychonoff product are instanced by the
following result of M. Ulmer [46, Theorem 2.2]: If a Σ-product is
pseudo-S1-compact, or if each factor space of the corresponding Tychonoff
product is first countable, or if each factor space of the corresponding
Tychonoff product is a P-space, then the Σ-product is C-embedded in the
corresponding Tychonoff product.
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For notational convenience, if & = PF-completeness, LF-complete-

ness, SC-completeness, FT-completeness or FINE-completeness, we de-

note the maximal P-extension &(X) of a space X by /?P F(X), βLF(X),

and so forth. Recall that, since SC-completeness is almost realcompact-

ness, βscX is the almost realcompact extension aX introduced by Woods

in [55]. In light of results from §2, the referee suggests that it would be

interesting to determine conditions under which either βLF(X) or βFF(X)

coincide with aX.

PROPOSITION 4.5. Let Π be a product of VF-complete, (LF-complete,

SC-complete, FΎ-complete or FΪNΈ-complete) spaces and let X be a corre-

sponding Σ-product that is C*-embedded in Π. Then Π = β P F (X) , βLF(X),

COROLLARY ([18]). Let Σ be a Σ-product with compact factors and let Π

be the corresponding Tychonoff product. Then Π = β F i N E ( Σ ) = β(Σ).

COROLLARY ([5]). Let Σ be a Σ-product whose factors are separable

metrizable spaces and let Π be the corresponding Tychonoff product. Then

Π = β F I N E ( Σ ) = υ(Σ).

We now turn to problems concerning products of FINE-pseudocom-

pact spaces, in which our results concerning Σ-products play a role.

PROPOSITION 4.6. Let X and Y be FΪNE-pseudocompact spaces and

suppose that X X Y is pseudocompact. Then X X Y is FΪNΈ-pseudocom-

pact.

Proof. Since X X Y is pseudocompact, β(X X Y) = βX X βY and

so, by a result of W. W. Comfort and H. Herrlich [4, Theorem 2.2],

* X Y) = £FINE(*) X /W(r) = β(X)Xβ(Y) = β(XX Y). •

The following example shows that we cannot omit the hypothesis of

the preceding proposition that X X Y is pseudocompact.

EXAMPLE 4.7. There are two almost precompact spaces Xx and X2 so

that Xλ X X2 is not pseudocompact. Let Xx and X2 be the spaces of [41,

Example 5.2]. These spaces, which are constructed from two types of weak

P-points, are separable subspaces of βω with the property that for

i = 1,2, each X. Π ω* is an ω-bounded subset of ω*. As shown in [41], Xλ

and X2 are countably compact and Xλ X X2 contains an open-and-closed
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infinite discrete subspace. To see that Xλ and X2 are almost precompact,
let V( be an open neighbornet in Xt and let Wt be an open neighbornet in
X. so that Wj2 c Vr By Corollary 3.3, there is a finite subset Et of Xi so
that Wt(ω* Π Xt) c cl^F^i?,)). Since each Xt is countably compact it
follows that each Xt is almost precompact.

Our last proposition is related to the following theorem of I. Glicks-
berg [18, page 370]: If every countable subproduct of a product space is
pseudocompact, then the product space is pseudocompact. Using Glicks-
berg's theorem we establish an analogous result for FINE-pseudocom-
pactness.

PROPOSITION 4.8. Let X = Π{ XJα G A) be a product space, where
each Xa has at least two points, and suppose that for each countable subset I
of A, Π{ Xa: a G /} is FINΈ-pseudocompact. Then X is FΐNE-pseudocorn-
pact.

Proof. Since

i t s u f f i c e s t o s h o w t h a t β F m E ( X ) = U{βFlNE(Xa): a^A}. L e t Q

be a FINE-complete space and let /: Π{AΓα: a ^ A) -> Q. Evi-
dently Π{ Xa: a G A) is a dense subspace of the FINE-complete space
Π{ /?FINE(^CX): OL ^ A) and so we need only show that/admits a continu-
ous extension /: Π{βFmE(Xa): a e A] -> Q. Set D = {x G
Π{i8FINE(Xα): α G ̂ 4}: x(α) G Xα for all but countably many a G ̂ 4}.
Let /^: βX -> )8β be the continuous extension of / to βX. Then D c
Π{iS F I N E(^) : ot(ΞA}= βX. We first show that fβ(D) c ζλ Let ί ε l ) ,
There is a countable subset I of A so that if α G ̂ 4 — / then J(α) G A .̂
Let X' = Π{ X'a\ a^A) where Z^ = Xa if α G / and X'a = {d(a)} if
a G ̂ 4 — /. By definition, /|X' has a continuous extension g:
β, and since X' is FINE-pseudocompact

Since g and fβ agree on the dense subspace X' of

g(rf) e β.
Now let x G Π{iSFINE(Zα): α G ̂ 4} - D. Let y G Π { X Λ : α G i j s o

that for each α G ̂ 4, y(a) Φ x{a). Let P = Π{{x(α), j(α)}: α G ̂ } and
let S = Σ(P, 7). Note that £ is an ω-bounded subspace of D and that
βS = P. Since x G P and 5 has the Souslin property, /^jS admits a
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continuous extension h: S U {x} -> g. Since h agrees with fβ on S,
fβ{x) = h(x) e Q. Thus the range of fβ is a subset of Q, as required. D

Question 4.9. Let [Xf. i e ω} be a countable collection of FINE-
pseudocompact spaces such that X = Π{ Xf. / e ω} is pseudocompact. Is
Jf necessarily FINE-pseudocompact?
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