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EXISTENCE OF STRONG SOLUTIONS
TO SINGULAR NONLINEAR EVOLUTION

EQUATIONS

M. A. FREEDMAN

The nonlinear evolution equation u'{t) + A(t)u{t) ^ 0 is studied
under conditions which permit A (t) to be singular at t = 0. Application is
then made to examples of partial differential equations having time
dependent coefficients which blow up at the origin.

1. Introduction. We are concerned with gaining basic insights into

existence of strong solution to the abstract Cauchy problem

(ACP), γ t + A(t)u(t) B 0, 0 < s < t < Γ,

u(s) = x,

when hypotheses are imposed on A(t) which are weak enough to allow for

singularity at t = 0. Here u: [s, T] -> X, where X is an arbitrary Banach

space. The operators {A(t)}s^t^τaic assumed to satisfy

(A.0) For a.e. / in [0, Γ], A(t) is a nonlinear, possibly multivalued

operator on X,

(A.I) There exists Ί> <z X such that Dom A(t) = Ί> for a.e. t,

and in addition, the m-accretive type conditions: for some real number ω

and for λ 0 satisfying ωλ0 < 1,

(A.2) Ran(/ 4- λA(t)) 2 Ί> for a.e. t and 0 < λ < λ0,

(A.3) For a.e. t, the resolvent operator/λ(/) = [I + λA(t)]~ι exists as a

Lipschitz mapping on D with (Jχ(t))Up ^ (1 ~~ ωλ)"1.

Now u(t) shall be referred to as a strong solution to (ACP)s if either

(i) u(t) is continuous on [s, T\ and u{s) = JC,

(ii) u(t) is differentiable almost everywhere and satisfies

the differential equation of (ACP) s a.e.,

(iii) u(t) is absolutely continuous on [s, T]

or

(i) and (ii) as above and
(S 2)

' (iii)' u{t) is absolutely continuous on compact subsets of (s9 T).
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The difference between (S.I) and (S.2) may be viewed as follows.

Under (S.I), u{t) satisfies

u{t) = x+ f u'(ξ)di for all * e [s,T],

while under (S.2), u(t) satisfies the weaker property

u(t) - u(p) = f u'(ξ) dξ for all/7, * e (s, T).

Both of these notions of strong solution appear in the literature; e.g. (S.I)

is used in [7] and (S.2) appears in [2].

Suppose that (ACP)5 has a strong solution (S.I) for every 0 < s < T

and every x e D. We ask, will (ACP)0 have strong solution (S.I) or (S.2)

for all x e Z>? In [4], it is shown that A(t) can be so singular at / = 0 that

the answer is in general no even when

(B.I) Each A(t) is a bounded linear (single-valued) operator defined on

all of X,

(B.2) (A.2) and (A.3) are satisfied with ω = 0 and Ί> = X,

(B.3) The resolvent operator Jλ(t)x is a jointly continuous function of

( λ , / , j c ) e [ 0 , o o ) x [ 0 , Γ ] X X

Existence of generalized solution to (ACP)5 as a product integral of

resolvents

ξ(ξ)χ> o < s < t < τ ,
s

is also studied in [4]. Here, Π^ Jdξ(ζ)x denotes the limit
q(t,n)

(i i) Km Π Jτr-rrtf?)χ

where:

(i) for each n9 P
n = { T " } ^ is some partition of [0, T]; i.e. 0 = τo

w <

τ" < < r ^ = Γ, and each ξj1 is some point in ( T ^ ^ T/1],

(ii) for each n and any σ G (0, Γ), q(σ, n) is that index for which

Vτ<y(σ, n ) - l 5 τ<7(σ, w)J?

(iii) ||/>"|| = m a x ^ ^ ^ T " - τ»_λ) -* 0 as n ^ oo.

It was found, under (B.1)-(B.3) and existence of strong solution (S.I)

or (S.2) to (ACP)5 for all 0 < s < T and all J C G I , that in general there is

no sequence of partitions Pn with | | P W | | -> 0 for which (ACP)0 has a

generalized (i.e. product integral) solution for all X E I

We are thus led to ask what minimum hypotheses beyond (A.0)-(A.3)

would allow us to identify those x e X for which (ACP)5 has

solution—either strong or generalized—for all s e [0, T). In §2 we pre-

sent such hypotheses which are mild enough to allow for A(t) to be
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singular at t = 0 and §3 gives examples of partial differential equations
which serve to illustrate these hypotheses. In §4 we argue that under
hypotheses (B.1)-(B.3) alone, set even in a separable Hubert space, A{t)
can be so badly behaved as to discourage hope for proving existence of
solution to (ACP)0.

2. Existence for s = 0. Assuming (A.0)-(A.3), for a.e. t, let Aλ(t)
denote the single-valued Yosida approximations to A(t) given by, for each
λ e (0, λ 0),

Aλ(t) = * ~ J

χ

λ(t\ Όσm(Aλ(t))-D.

Now define for a.e. t e [0, T] and each x e D,

\A{t)x\= sup |K(0*l

The notation |^4(/)x| is in accordance with [2, p. 61]. There it is shown
that for fixed x and t, \\Aλ(t)x\\ is a nonincreasing function of λ > 0.
Hence, for every x e 2), \A(t)x\ exists in [0, oo] as the monotone increas-
ing limit of ||Λλ(0*ll as λ ^ 0+. The set

S ( / ) = ( J C G 5 : \A{t)x\< oo}

is called the generalized domain of A(t), for, if x is in the domain of A(t),
one may show that \A(t)x\ < oo. Thus Όom(A(t)) c Q)(t)\ in general the
inclusion is proper, though when Xis reflexive, Dom(^4(/)) = &(t).

Next, we introduce the conditions
(P.I) ώ(t) s Sis independent of t for a.e. / e [0, Γ],
(P.2) For at least one x e Θ there exists ε > 0 such that the functions

{||Λλ(£)jc||} λ belong to Lx(0, ε) and satisfy

(2.1) sup

(P.I) and (P.2) were motivated by the Crandall-Pazy-Evans conditions
[2], [3]:

(C.I) There exists a Bochner integrable function h: [0, T]-> X and a
nondecreasing continuous function L such that

\\Aλ(t)x - Aλ(p)x\\< \\h(t) - h(p)\\L( \\x\\)

for 0 < λ < λ0, a.e./7, r e [0, T] and x e D.
(C.2) There exists a measurable function h: [0, Γ] -> X of bounded

variation and L as above such that

\\Aλ(t)x - Aλ(p)x\\ < \\h(t) - h(p)\\L(Jx\\){l + \\Aλ(p)x\\)

for 0 < λ < λ0, Ά.e.p, t e [0, Γ] and x <=~D.
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Note that (P.I) and (P.2) are implied by either (C.I) or (C.2). Indeed,

they may be viewed as "point-wise" generalizations to the uniform time

dependence expressed in (C.I) and (C.2). In [3] it is proved that (A.0)-(A.3)

and either (C.I) or (C.2) imply existence of the product integral ΠJ Jdξ(ξ)x

for some sequence of partitions {Pn} of [s, T] having | |P Π | | -> 0 as

n -> oo. Futhermore, when (ACP)S has a strong solution (S.2) for some

x e D, then this solution agrees with Π^ Jd^(ξ)x for all t e [s9 T].

In the counterexample of [4], besides (B.1)-(B.3), conditions (C.I)

and (C.2) are both satisfied for a.e. p and t in any compact subinterval of

(0, T]. Yet, for some x0 e X, the product integral Π Q / ^ ( | ) X 0 was shown

not to converge along any sequence of partitions {P n ) of [0, T] for which

lim π _ 0 0 | | / > Λ | | = 0, nor did (ACP)0 with x = x0 have strong solution (S.I)

or (S.2). Nonetheless, in this paper we have

THEOREM 2.1. Assume that A(t) satisfies (A.0)-(A.3) and (P.1)-(P.2).

Let ^ be the set of all elements of 2) which satisfy the condition (P.2).

Suppose for all 0 < s < Γ, (ACP)S has an (S.I) strong solution u(t)for

(1) each j G ΰ

or

(2) each x e 2\ and u(t) e Q)for each t.

Then (ACP) 0 has a strong solution (S.2) for each x e f .

THEOREM 2.2. In addition to (A.0)-(A.3) and (P.I), (P.2), assume that

for each 0 < a < T there exist functions h = ha and L = La for which

A satisfies either (C.I) or (C.2) for 0 < λ < λ 0, a.e. p, t e [a, T] and

x e D. Then, for all x G i ^ , the improper product integral W(t,0) =

lim^^o^ W(t, p)x exists on (0, T].

Furthermore, W(t,0)x is a generalized solution in the sense that if u(t)

is a strong solution (S.I) to (ACP)0, then u(t) = W(t, 0)x.

Theorem 2.1 depends on the following proposition, the proof of

which closely follows the proofs of Theorems 1.1 and 2.3 of [5].

PROPOSITION 2.1. Let A(t) be such that (A.0)-(A.3) hold and a strong

solution (S.I) to (ACP)5 exists for all 0 < s < T and x e Ί> and let F be

Bochner integrable on [0, T], Given any sequence of partitions Pn = { T,-} j ^ 0

o/[0, T] satisfying

(M.I) There is a constant B such that \\Pn\\ < 5{min1^ |.^Λr |(τ |.
n - T ^ ) } ,

for all n,

(M.2)||PΠ | | -*0asn -* oo,
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then there exist points ζn

k e (τ£_l9 τ£] such that the limit (1.1) converges

uniformly for s < t < T. Now define

W(t,s)x Ξ limit of (1.1), c E ΰ ,

Then for all 0 < r < s < t < T and x ^ D we have W{s, r)x ^ D and

W(t,s)W(s,r)x = W(t,r)x.

As well, ifu(t) is an (S.I) solution to (ACP)5 with u(s) = x e D and v(t) is

an (S.I) solution with v{s) = y e D then for alls <t <T

(2.2) W(t,s)x = u(t)

and

(2.3) Mt) ~ u(t)U e«'-»ix - y\.
Finally, we have

/ FU) dξ = lim Σ F{ϊϊ){τ»k - τn

k_x) forallO<s<t< T.

From (2.3) we see that (S.I) strong solutions to (ACP)5 are unique.

We introduce the notation V(t, s)x to denote such a solution. Thus (2.2)

becomes

(2.4) W(t,s)x= V(t,s)x.

LEMMA 2.1. Under the hypotheses of Theorem 1.1, if x e ϊFthen there is

C > 0 and ε > 0 such that

\\V(t, s)x - V(t, r)x\\ < Ce«^ f \A(ξ)x\di

forallO<r<s<ε,t<T

Proof. Given x e J^let ε be as in condition (P.2), where we observe

that (2.1) is equivalent (via the Monotone Convergence theorem) to

integrability of |^4(£)x| on [0, ε]. Now, by (2.4), it will suffice to prove that

\\W{t,s)x- W(t,r)x\\

< Ceω(t~s) f \A{ζ)x\dξ, 0 <r<s <ε,t < T.

By Proposition 2.1 we have

\\W(t, s)x - W{ty r)x\\ = \\W(t, s)x - W(t9 s)W(s, r)x\\

<eω(t~s)f\W(s, r)x - x\\.

Hence it will suffice to prove that

\\W(s,r)x-x\\<cf\A{ξ)x\dξ.
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Let Pn = { T / 1 } ^ be a sequence of partitions of [0, T] satisfying (M.I)
and (M.2) and let ££ e (τ£_l9 τ£] be as in Proposition 2.1. Then

q(s, n)

Π
q(s,n) tq(s,n)

Π
q(s,n)

- Π

where we have used the bound: (1 - θ)'1 < e'θ9 0 < θ < 1/2. By (M.I),
(q(s, n) - q(r, n))\\Pn\\ < B. The lemma now follows with C = e2BH

upon letting n -> oo.

Proof of Theorem 2.1. Assume case (1) holds, i.e. (ACP)S has strong
(S.I) solution V(t, s)x for all x e ~D and 0 < s < T. By Lemma 2.1 we
may conclude that given X E J ^ , for each 0 < t < T,

w(t) = lim F(/, S)X exists.
0

It follows that w ( / ) e ΰ for each ty for by (A.I) and (A.2), the finite
product approximates to W(t, s)x all lie in D. Thus W(t9 s)x e Z), which
by (2.4) gives that each V(t, s)x, hence, w(t) lies in D.

Next we argue that w(t) is a strong solution (S.2) to (ACP)0.
(i) For t0 > 0, choose c e (0, ί0). Then

lim \\w(t) - w(to)\\ = lim lim \\V(t, s)x - V(t0, s)x\\

= Urn \\V(t,c)w(c) - V(to,c)w(c)\\= 0,
t-*tQ

since w(c) G D, SO that V(t, c)w(c) is a strong solution to (ACP)C with
initial value x = w(c).

At t = 0, we have continuity since by Lemma 2.1,

lim \\w(t) - JC|| = lim lim \\V(t9 s)x - x\\

lim lim C [' \A{ζ)x\dξ = 0.
r->0+ ί - 0 + Λ

(ii) In order to show that w(t) satisfies the differential equation of
(ACP)0 almost everywhere, it will suffice to show that for each c > 0,

w\t) +A(t)w(t) ^ 0 fora.e. t e(c, f\.
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As argued in (i), w(t) = V(t9 c)w(c) is a strong solution to (ACP)C with
x = w(c). Hence for a.e. / e (c, T]:

w\t) = γ\t, c)w(c) 3 -A(t)V(t, c)w(c) = -A(t)w(t).

(iii)' To show that w(t) is absolutely continuous on compact subsets
of (0, Γ), let [a, b] c (0, T) and choose c e (0, a). Since V(t, c)w(c) is an
(S.I) strong solution to (ACP)C, the absolute continuity of w on [a, b]
follows.

Finally, using the Lipschitz property (2.3), we are able to define
w(t) = lims_^0+ V(t, s)x for each J C E # " , and w(t), as the reader may
check, will be a strong solution (S.2) to (ACP)0. As for case (2), it is
handled similarly.

Proof of Theorem 2.2. By Theorems 1 and 2 of [3], we may conclude
that for every s > 0, the product integral W( , s)x exists on [s, T] for all
XGfl.

Now given the relations

(2.5) \\W(t, s)x - W(t, s)y\\ < e^'^x - y\\9 x, y e D.

(2.6) W(t9 r)x = W(t9 s)W{s, r)x9 r <s <t, x9 y ε f l ,

the proof of Lemma 2.1 may be used to show

(2.7) \\W(t9s)x- W(t,r)x\\< Ceω(t~s) f \A(ξ)x\dξ, x^&.

The proofs of (2.5), (2.6) within the context of [5] are straightforward
except for one slight difficulty. The product integral W(t, s)x as defined
in (1.1) converges in general only along a particular sequence of partitions
corresponding to the particular function h = ha used in (C.I) or (C.2).
However, as seen by Lemma 4.2 of [3], for purposes of working with a
finite collection of functions h = ha, we may assume that all product
integrals converge along a single sequence of partitions.

The existence of W(t,0)x = lim J_ 0 + W(t, s)x for all JC G # thus
follows from (2.5) and (2.7). Finally let u(t) be a strong solution (S.I) to
(ACP)0 with M(0) e J*\ Then, by Proposition 2.1, u(t) = W(t, c)u(c) for
all 0 < c < t < T. Hence, using (2.5) we obtain

\\u(t) - W(t9O)x\\

<\\W(t,c)u(c) - W(t9c)x\\ + \\W(t9c)x - ^(/,O)JC| |

< Ceω^'s)\\u(c) - X | | + | |JF(/,C)JC - W(t9Q)x\\9

which approaches zero as c -* 0+. D
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3. Examples. We shall have need for Theorem 3.1 below, which can

be easily verified by adapting the methods of [2], [3].

THEOREM 3.1. ([2], [3]). Let X be a reflexive Banach space and A(t) be

single-valued m-accretive operators with Dom(^4(ί)) = «® For each 0 < a

< T suppose there exist functions tia, i = 1,... ,m, such that

(i) each hι

a: [a, T] —> Rw of bounded variation, and

(ii) for a.e.p, t e [a, T], 0 < λ <λoandx e 3),

m

\\A(t)x-A(p)x\\< Σ \tia{t)-K{p)\\\A{p)x\\.
i = l

Then (ACP)5 has a Lipschitz continuous strong solution (S.I) for each

0 < s < T and x e Q), and this solution lies in 2.

Our first example is akin to the example presented in [2].

I. Given a bounded region Ω in R^ having smooth boundary 9Ω, let

H2(Ώ) and HQ(Ω) be the usual Sobolev spaces. Let μ, v\ R -> R be

nondecreasing functions having range all of R and such that μ(0) = v(0)

= 0, and let γ, φ, ψ: [0, T] -> R satisfy

(i) γ, φ, ψ > 0,

(ii) for each ε > 0 there exists δ > 0 such that γ, φ, ψ > δ on [ε, Γ],

(iii) for each ε > 0 the functions γ, φ, and ψ are of bounded variation

on [ε, Γ],

(iv) γ, φ, ψ are Lebesgue integrable on (0, Γ).

Define the operator β(t, u) on L2(Ω) by

x))> ifu(x)>0,

= [u e L 2 ( Ω ) : μ( i/) , if(i/) e

LEMMA 3.1. ΓΛe operator β(t, u) above is m-accretive on L2(Ω). That

is, (A.2) and (A.3) are satisfied with ω = 0 απrf 5 = X = L2(Ω).

Proof. The proof is elementary. We show below that β is accretive and

leave the remainder of the proof to the reader. Given u, v e Dom(/?)? let

Ωx = {x e Ω: W(JC) > 0, ϋ(x) > 0},

Ω2 = {x e Ω: w(x) > 0, y(x) < 0},

Ω 3 = { I E Ω: K(JC) < 0, Ό(X) > 0},

Ω4 = {x e Ω: w(x) < 0, I (JC) < 0}.
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Then, for fixed t, and all u, v e Dom(/?),

(β(ί,u)-β(t,v),u-v)

= Σ / [β(t,u(x))-β(t,o(x))][u(x)-υ(x)]dx

(x)) - μ(υ(x))][u(x) - υ(x)] dx
Ω,

+ ψ(/)/ [v(u(x)) - v(v(x))} [u(x) - v(x)] dx

+ [ [φ(t)μ(u(x)) - t(tMo(x))][u(x) - v(x)] dx
Ω

u(x)) - Φ(t)μ(υ(x))][u(x) - υ(x)] dx.

As each of the above integrals in nonnegative, we have (β(t,u) —

β(t, v), u — υ) > 0, proving accretiveness.

LEMMA 3.2. For each t e [0, T]9 the operator A{t)u = -γ(/)Δw +

β(t, u), with u G i/ 2(Ω) Π #o(Ω) Π Dom(jβ) w m-accretiυe on L2(Ω).

Proof. We refer the reader to [1, pp. 80-89], and in particular, to

Theorem II.3.6 of this same reference.

THEOREM 3.2. Let uo(x) e H2(Ω) n #o(Ω) n Dom(y8). ΓΛe« ίΛe J'/H-

ί ϊίi/ value problem

^γ - γ(t)Δu + β(t, u) = 0 mΩx[0,Γ]

«(*,*) = 0, x e ΘΩ,0 < / < Γ

M(0, X) = M O (X) /n Ω

Λα̂  α unique Lipschitz continuous solution u(t) which lies in H2(Ώ) n
Hl(Ω) Π Όom(β) for 0 < t < T.

Proof. Given 0 < a < T, let 8 > 0 be such that γ, φ, ψ > δ on [α, T),
and for each M e i/2(Ω) n ^ ( Q ) n Dom(^), let Ω + = ( x e S l : M(X) >
0}, Ω_= {x e Ω: M(Λ ) < 0). Then, for all t e [α, Γ],

(3.1) | | ( ) | | / ( ( ( ) ) /

v2{u{x))dx\.

I
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Also, upon applying Green's Theorem (see e.g. [6, p. 93]) we obtain

(3.2) (Δu,β(t,u))= ί &u(x)β(t,u(x))dx
JQ+

Au(x)β(t,u(x))dx

where du\ dxt are generalized derivatives. Therefore, by (3.1) and (3.2) we
have for t e [a, T]9

(3.3) μ ( / ) n | | 2 = γ2(/)| |ΔW | |2 + \\β(t9 u)\\2 - 2γ(/)(Δiι, β(t, «))

— ~0~

Now

β2||Δ«||2 + / μ2(u(x))dx+[ v2{u{x))dx

«|| + f/ μ2(u(x))dx + f v2(u(x))dx
ll/2\2

\\2(3.4) \\β(t,u)-β(p,u)\\2 = f (φ(t)-φ(p))2μ2(u(x))dx
JΏ+

Π μ2(u(x))dx + j v2(u(x))dx\

Thus, use of (3.3) and (3.4) yields for all/?, ί e [α, Γ]
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The proof now follows upon applying Theorems 2.1 and 3.1.

Consider the special case where φ = ψ and μ(u) = v(u) = uq, q an
odd integer. Then Theorem 3.2 applies to the differential equation

(3.5) ^-γ(t)Au + φ(t)u« = 0.

In certain instances (3.5) can alternatively be solved using the method of

time scaling. For example, when γ(/) = φ(t) = 1/ i/ί", then the change of

variable r = lyft yields solution u(t, x) = v(2jt, x) to (3.5) where *;(/% x)

satisfies

See [8] for details and further references. However, when γ, φ, ψ, μ and J>

are all distinct, then no such scaling techniques would seem to suffice in

general.

II. PROPOSITION 3.1. Given an open and bounded region Ω c R^, let

X = C(Ω) and A be a single-valued m-accretive operator on X. Suppose φ:
[0, T] X Ω -* R satisfies:

(i) x —> φ(/, x) ώ continuous for fixed t,

(iϊ) for each ε > 0 ί/*ere ex/5/.y δ > 0 ŵcΛ that 8 < φ(t, x) for all

( / , * ) € Ξ [ ε , Γ ] x Ω ,

(iii)/or α// x e Ω α/irf α.β. ;?, ί G [0, Γ]: |φ(ί, x) - φ(/7, JC)| < \h(t) -

h(p)\ where h is a real valued function which is of bounded variation

on [ε, T] for each ε > 0, and is Lebesgue integrable on (0, 7").
Let A(t) ΞΞ φ(t, x)A with Dom(,4(0) Ξ Dom(Λ). Then, for each u0 G
Dom(τ4), /Λe improper product integral W(t, 0)u0 of Theorem 2.2 exists.

Proof, The proposition closely follows Proposition 11.1 of [3] where it
is seen that the above hypotheses imply that A(t) satisfies (C.2) on each
compact subinterval of (0, T]. This, along with the integrability of h over
[0, T] means that the hypotheses of Theorem 2.2 are satisfied, and the
proof follows.

Hence when the initial value problem

| ^ + Λ(/)!! = 0, 0<t<T,

u(0) = u0 e Dom(^l)

has an (S.I) strong solution u(t), then u(t) = W{t, 0)uQ.
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4. Developments in separable Hubert space.

THEOREM 4.1. Let (Jl?,( , •>) be a separable Hubert space with

orthonormal basis { e j , . There exists a family of bounded, m-accretiυe linear

operators {A(t)}0<t<ι on Jίfwith Jλ(t)x a jointly continuous function of

(λ, /, x) e [0, oo) X [0,1] X Jf7 and such that

(4.1) f1 (A(t)ei,eι)dt= oo for alii.

REMARKS. For convenience we may take Jί?= I2 and {eι}ι the stan-

dard basis (where e{9 they th component of eέ is 1 if j = / and otherwise is

0). Also, let || || denote the I2 norm.

Now viewing the operator A(t) as an infinite dimensional matrix, the

theorem asserts that none of the diagonal elements of A(t) are integrable

on [0,1]. Hence, by the Cauchy inequality,

(4.2) f1 \\A{t)e\\dt = oo for all/.
Jo

In an arbitrary Banach space when t •-> Jλ{t) is continuous in the

operator norm, it is easy to see that J{ι(t), hence A(t) itself, will be

operator norm continuous too. It had been hoped that in a separable

Hubert space with Jλ{t) only strongly continuous and assuming each A(t)

is a bounded linear operator, J{ι{t) and hence A(t) would have possessed,

if not strong continuity, at least strong or even weak integrability. But, as

seen by (4.1), (4.2), this is not the case. Thus, conditions of the sort (P.I)

and (P.2) seem to be fundamental for proving existence of solution to

(ACP)0.

LEMMA 4.1. There exists a unitary matrix U: I2 —» I2 which satisfies: for

every column index j there is a constant c- such that

(4.3) UtJ = Cj/i eventually in i.

Proof. We apply the Gram-Schmidt orthonormalization procedure to

the column vectors {υl9 e2, e39...} where vj, the transpose of υl9 is given

by

to obtain the orthonormal vectors {ul9 u2, . .}. Thus uλ = (^fβ /ττ)vι and

given ul9 w2,... 9ut_l9 we have

(4.4) u, = e, - Σ (e,, uJ)uJ L - Σ (e,, uJ)u] .
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Let U be the matrix having column vectors ul9 u29...,uι9... Then clearly

UτU = I. As well, it can be shown that UUτ = I. Hence t/ is unitary.

Obviously (4.3) holds for index 7 = 1. Suppose it holds for indices

j = 1,2,... ,k — 1. Then, by (4.4) there is a constant ck such that

Ulk=(ei9uk)=ck\eι

k- Σ {ek9Uj){ei9u)\

= \~ck Σ (ek9 Uj)Cj /i eventually in /.

Hence, by induction, the proof is complete.

Proof of Theorem 4.1. For each i let y^t) be a continuous function
which satisfies 0 < yt{t) < 1 and

11/3' /e[(5/4)/2'+1,(4/5)/2'],

Let Γ(/) be the diagonal operator having diagonal elements

Γ;,.(ί) = γ , ( 0 , i = l,2,....

Define

K{t) = UτT{ί)U

where U is the unitary operator of Lemma 4.1. Therefore, for every index j
there is a constant cy and an index I(j) such that

UtJ = Cj/i, for all/ >

NowA'- 1 (0= UΎY-\t)U which yields

/2- γ,(0

oo ^ 2 ~t

Thus, if ^4(0 = A'-^ί) - /, 0 < t < 1, then ^ ( 0 is a family of bounded,
linear operators which satisfies (4.1). Furthermore, each A{t) is m-accre-
tive since [/ + A(t)]~ι = K(t) has domain all of I2 and for every x e /2:

^ ^) = {ΐ~\t)uχ9 ux) - (x, x) = ( r - ^ O ^ ^) - (^ y)

= Σ
z = l

where j = Ux.
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Finally, we verify continuity of (λ, t, x) -> Jλ(t)x. For 0 < t < 1,
this follows readily from m-accretiveness and continuity of A{t). For
t = 0, let {tm}m be any sequence which approaches zero and such that
tm e [2" ( m + 1 ), 2"m], m = 1,2,.... Then for JC, j ; e /2 and λ, μ > 0 we
have/λ(0)x = JC and

||/λ(0)x - Jμ(tm)y\\ < \\x - y\\ + \\Jμ(tm)y - y\\

= \\x - y\\ + ||t/T{[(l " μ)/ + μT-l{tm)YlUy - Uy

μ

<\\χ-y\\+ ]l(em,z),

where z — Uy. Thus Jμ(tm)y approaches Jλ(0)x as (μ, tm, y) approaches
(λ,0, x). D

REFERENCES

[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noord-
hoff Internal. PubL, (1976).

[2] M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J.
Math., 11 (1972), 57-94.

[3] L. C. Evans, Nonlinear evolution equations in an arbitrary Banach space, Israel J.
Math., 26 (1977), 1-42.

[4] M. A. Freedman, Product integrals of continuous resolvents: existence and nonexistence,
Israel J. Math., 46 (1983), 145-160.

[5] , Riemann step function approximation of Bochner integrable functions, to
appear in Proc. Amer. Math. Soc.

[6] S. Fucik and Kufner, Nonlinear Differential Equations, Elsevier, New York (1980).
[7] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential

Equations, Springer-Verlag, New York (1983).
[8] R. E. Showalter, Singular nonlinear evolution equations, Rocky Mountain J. Math., 10

(1980), 499-507.

Received April 12, 1984.

VANDERBILT UNIVERSITY

NASHVILLE, TN 37235




