A GALOIS-CORRESPONDENCE FOR GENERAL LOCALLY COMPACT GROUPS

JOACHIM BOIDOL

We give a characterization in terms of \hat{G} of those parts in the unitary dual of a locally compact group G, which correspond to closed normal subgroups of G. These are exactly the sets $S \subset \hat{G}$, which have the property that for all $\pi, \rho \in S$ the support of $\pi \otimes \bar{\rho}$ is contained in S and which are closed in a topology on \hat{G} , which is in general weaker than the standard topology on \hat{G} , and which we call the L^1 -hull-kernel-topology. As an easy consequence we obtain that for *-regular groups G the mapping $N \to N^{\perp} = \{\pi \in \hat{G} | \pi_{|N} = 1 |_{\mathscr{H}_{\pi}}\}$ is a bijection from the set of closed normal subgroups of G onto the set of closed subsets $S \subset \hat{G}$ with the property that $\pi \otimes \bar{\rho}$ has support in S for all $\pi, \rho \in S$. This generalizes and unifies results of Pontryagin, Helgason and Hauenschild, with a considerably simplified proof. Furthermore we prove that *-regular groups have the weak Frobenius property (TP 1), i.e. 1_G is weakly contained in $\pi \otimes \bar{\pi}$ for all unitary representations π of G, generalizing a result of E. Kaniuth.

Let G be a locally compact group with unitary dual \hat{G} and let \mathcal{N}_G denote the set of closed normal subgroups of G. To every $N \in \mathcal{N}_G$ corresponds a canonical subset of \hat{G} , namely the annihilator $N^{\perp} = \{\pi \in \hat{G} | \pi_{|N} = 1 |_{\mathscr{H}_{\pi}}\}$ of N. By the Gelfand-Raikov theorem $N \to N^{\perp}$ is an injective mapping from \mathcal{N}_G into the subsets of \hat{G} and it is an important problem in harmonic analysis to describe the image of this mapping in terms of \hat{G} .

DEFINITION. A nontrivial subset S of \hat{G} is called a *subdual* of \hat{G} , if for all π , $\rho \in S$ the tensor product $\pi \otimes \bar{\rho}$ of π and the conjugate $\bar{\rho}$ of ρ has support in S. We denote by \mathscr{G}_{G} the set of closed subduals of \hat{G} .

It is clear that $N \to N^{\perp}$ is an injective mapping from \mathscr{N}_G into \mathscr{G}_G . Let [H] be the class of locally compact groups G, for which $N \to N^{\perp}$ is a surjection onto \mathscr{G}_G .

As a well known consequence of the duality theorem of Pontryagin one obtains that all *abelian locally compact groups* belong to [H] (see for example [6], Chap. II, §1.7). S. Helgason proved in [8], Theorem 1, that all *compact groups* belong to [H]. It was then W. Hauenschild, who generalized and unified these results in [7], and proved that all *Moore groups*, i.e. all locally compact groups G, which have only finite dimensional irreducible unitary representations, belong to the class [H].

On the other hand the support \hat{G}_r of the left regular representation λ_G of a locally compact group G is clearly a closed subdual of \hat{G} . If $\hat{G}_r = N^{\perp}$ for some $N \in \mathcal{N}_G$, then $N = \{e\}$ and $\hat{G}_r = \hat{G}$. Therefore every group G, which belongs to [H], has to be amenable.

We recall that the (standard) topology on \hat{G} is induced by the Jacobson topology on the primitive ideal space Prim(G) of the group C^* -algebra $C^*(G)$ of G via the mapping $\pi \to \ker_{C^*(G)} \pi$. Let $Prim_* L^1(G)$ denote the space of kernels in $L^1(G)$ of topologically irreducible *-representations of $L^1(G)$ in Hilbert spaces. $Prim_* L^1(G)$ is also a topological space with the Jacobson topology and the mapping $\pi \to \ker_{L^1(G)} \pi$ defines a second topology on \hat{G} , which we call the L^1 -hull-kernel-topology. This topology is weaker than the standard one and in general both topologies are different. Both topologies coincide if and only if the canonical continuous and surjective mapping Ψ : $Prim(G) \to Prim_* L^1(G)$, given by $\Psi(I) = I \cap L^1(G)$, is a homeomorphism, i.e. if G is *-regular.

DEFINITION. Let $\mathscr{S}_G^* \subset \mathscr{S}_G$ be the set of subduals of \hat{G} , which are closed in the L^1 -hull-kernel-topology.

The main result of our paper will be that \mathscr{G}_G^* is the exact image of the mapping $N \to N^{\perp}$ for general locally compact groups. The results of Helgason and Hauenschild will be an easy consequence. But first we need the following

PROPOSITION. For every unitary representation of G in a Hilbert space \mathscr{H}_{π} we have kern $_{L^{1}(G)}\pi \otimes \overline{\pi} \subset \ker_{L^{1}(G)} 1_{G}$.

Proof. Let $\overline{\mathscr{H}}_{\pi}$ be the adjoint space of \mathscr{H}_{π} and denote by $\overline{\eta}$ the vector $\eta \in \mathscr{H}_{\pi}$ considered as element of $\overline{\mathscr{H}}_{\pi}$. Then $\overline{\pi}$ is the representation π considered as a representation acting in $\overline{\mathscr{H}}_{\pi}$. We fix a unit vector $\xi \in \mathscr{H}_{\pi}$ and an orthonormal basis $\{\xi_i\}_{i \in I}$ of \mathscr{H}_{π} . Then for all $x \in G$ we have $\langle \overline{\pi}(x)\overline{\xi}, \overline{\xi}_i \rangle = \langle \overline{\pi}(x)\xi, \overline{\xi}_i \rangle$ and we obtain for all $x \in G$

$$1 = \langle \xi, \xi \rangle = \langle \pi(x)\xi, \pi(x)\xi \rangle = \sum_{i \in I} \langle \pi(x)\xi, \xi_i \rangle \langle \overline{\pi}(x)\overline{\xi}, \overline{\xi}_i \rangle.$$

Let F denote the family of all finite sums of the functions

$$\langle \pi(x)\xi,\xi_i\rangle\langle \overline{\pi}(x)\overline{\xi},\overline{\xi}_i\rangle,$$

which are matrix-coefficients of $\pi \otimes \overline{\pi}$. If $\varphi \in \mathscr{F}$ then φ is continuous and $0 \le \varphi \le 1$. Furthermore $1 = \sup_{\varphi \in \mathscr{F}} \varphi$.

Assume now that $f \in \ker_{L^1(G)} \pi \otimes \overline{\pi}$. Then $\int_G f(x)\varphi(x) dx = 0$ for all $\varphi \in \mathscr{F}$. Given $\varepsilon > 0$ choose a compact set $\mathscr{K} \subset G$ such that $\int_{F \setminus \mathscr{K}} |f(x)| dx \le \varepsilon/2$. By Dini there exists a sequence $\{\varphi_n\}_{n \in \mathbb{N}}$ in \mathscr{F} (depending on \mathscr{K}), such that $1 = \lim_{n \to \infty} \varphi_n$ uniformly on \mathscr{K} . Then

$$\left| \int_{G} f(x) \, dx \right| = \lim_{n \to \infty} \left| \int_{\mathscr{X}} f(x) \varphi_n(x) \, dx + \int_{G \setminus \mathscr{X}} f(x) \, dx \right|$$
$$= \lim_{n \to \infty} \left| \int_{G \setminus \mathscr{X}} f(x) \, dx - \int_{G \setminus \mathscr{X}} f(x) \varphi_n(x) \, dx \right|$$
$$\leq 2 \int_{G \setminus \mathscr{X}} |f(x)| dx \leq \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we obtain $\int_G f(x) dx = 0$.

The following corollary generalizes a result of E. Kaniuth (see [9], Lemma 1):

COROLLARY 1. Let G be a *-regular locally compact group. Then for every unitary representation π of $G \pi \otimes \overline{\pi}$ weakly contains the trivial representation, i.e. every *-regular group has the property (TP 1) of [9].

Proof. For *-regular groups kern $_{L^{1}(G)} \pi * \overline{\pi} \subset \operatorname{kern}_{L^{1}(G)} 1_{G}$ implies that 1_{G} is weakly contained in $\pi \otimes \overline{\pi}$.

REMARK. Corollary 1 shows that a quite big class of amenable groups has the weak Frobenius property (TP 1). This supports the conjecture that all amenable groups have the property (TP 1).

THEOREM. For every locally compact group G the mapping $N \to N^{\perp}$ is a bijection from \mathcal{N}_G onto \mathcal{G}_G^* .

Proof. As we remarked above, the mapping $N \to N^{\perp}$ is an injection from \mathscr{N}_G into \mathscr{S}_G . If $N \in \mathscr{N}_G$, then N^{\perp} corresponds to the set of topological irreducible *-representations of $L^1(G)$, which are trivial on the kernel of the canonical homomorphims from $L^1(G)$ onto $L^1(G/N)$. Therefore $N^{\perp} \in \mathscr{S}_G^*$, and we only have to prove that every set $\mathscr{S} \in \mathscr{S}_G^*$ is of the form N^{\perp} for some $N \in \mathscr{G}_G$.

First observe that by the proposition every $S \in \mathscr{G}_{G}^{*}$ has the following properties:

(i) S contains 1_G and $\pi \in S$ implies $\overline{\pi} \in S$.

(ii) for all π , $\rho \in S$ the support of $\pi * \rho$ is in S.

JOACHIM BOIDOL

Furthermore since $S^{\perp} = \{x \in G | \pi(x) = 1 |_{\mathscr{H}_{\pi}} \text{ for all } \pi \in S\}$ is a closed normal subgroup of G, we can consider S as a subdual of $(G/S^{\perp})^{\hat{}}$, which separates the points of G/S^{\perp} and is closed in the L^1 -hull-kernel-topology.

It is therefore sufficient to prove that a set $S \in \mathscr{S}_{G}^{*}$, which separates the points of G, is equal to \hat{G} .

Let S be such a set and let \mathscr{P} be the set of unitary representations of G, which have support in S. Since S is closed in \hat{G} , S and \mathscr{P} are weakly equivalent sets of representations of G. Since S has properties (i) and (ii) above, \mathscr{P} contains the trivial representation and is closed under the tensor product and under conjugation. It follows by a Stone-Weierstraß argument (see [1], Theorem) that \mathscr{P} is L^1 -separating, i.e. if $f \in L^1(G)$ and $\pi(f) = 0$ for all $\pi \in \mathscr{P}$, then f = 0. But then also S is L^1 -separating, i.e. its kernel in $L^1(G)$ is the trivial ideal $\{0\}$. Since S is closed in the L^1 -hull-kernel-topology, we obtain $S = \hat{G}$.

COROLLARY 2. A locally compact group belongs to the class [H] if and only if $\mathscr{S}_G = \mathscr{S}_G^*$. Especially every *-regular locally compact group belongs to [H] and every locally compact group in [H] is amenable.

REMARK. Let G be a locally compact group, such that all quotients G/N are C^* -unique, i.e. $L^1(G/N)$ has a unique C^* -norm (see [5]). The same arguments as in the proof of the theorem give that G belongs to [H]. We do not know whether this class of groups is really bigger than the class of *-regular groups.

The following is known about *-regular groups:

(A) Every *-regular group is amenable (see [2]).

(B) All groups G with polynomially growing Haar measure are *-regular (see [2]).

(C) All semidirect product $G = H \ltimes N$ with abelian H and N are *-regular (see [4]).

(D) A connected group G is *-regular if and only if all $I \in Prim(G)$ are polynomially induced (see [3]).

It follows from the classification of Moore groups given by C. C. Moore in [10], that all *Moore groups* have polynomial growth and so are *-regular by (B). Therefore the result of W. Hauenschild is an immediate consequence of the Corollary 2 and (B). It should be noted that the proofs of the results of Pontryagin, Helgason and Hauenschild depend explicitly or implicitly on the fact that the groups under consideration are *-regular. Besides this they make use of central theorems as the Pontryagin duality theorem, the Peter-Weyl theorem or structure theorems for Moore groups, which are specific for these classes of groups.

Recently E. Kaniuth proved by quite different methods that a big class of amenable groups, including the *almost connected amenable groups*, belong to [H]. (Cf. E. Kaniuth, *Weak containment and tensor products of group representations*. II, Math. Ann., **270** (1985), 1–15.) There seems to be some hope that the class [H] coincides with the class of amenable groups.

References

- B. A. Barnes, A note on separating families of representations, Proc. Amer. Math. Soc., 87 (1983), 95–98.
- [2] J. Boidol, H. Leptin, J. Schürmann and D. Vahle, *Räume primitiver Ideale von Gruppenalgebren*, Math. Ann., **236** (1978), 1–13.
- [3] J. Boidol, Connected groups with polynomially induced dual, J. reine angew. Math., 331 (1982), 32-46.
- [4] ____, *-regularity of some classes of solvable gropus, Math. Ann. 261 (1982), 477-481.
- [5] _____, Group algebras with a unique C*-norm, Functional Anal., 56 (1984), 220–232.
- [6] N. Bourbaki, Théories Spectrales, Paris: Hermann 1967.
- [7] W. Hauenschild, Subhypergroups and normal subgroups, Math. Ann., 256 (1981), 1–18.
- [8] S. Helgason, Lacunary Fourier series on noncommutative groups, Proc. Amer. Math. Soc., 9 (1958), 782-790.
- [9] E. Kaniuth, Weak containment and tensor products of group representations, Math. Z., 180 (1982), 107–117.
- [10] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc., 166 (1972), 401–410.

Received March 30, 1984 and in revised form August 28, 1984.

Universität Bielefeld Universitätsstraße 4800 Bielefeld 1 W. Germany