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SEMIPRIME N-QF 3 RINGS

GIUSEPPE BACCELLA

A ring R (associative with identity) is called right K-QF 3 if it has a
faithful right ideal which is a direct sum of a family of injective envelopes
of pairwise non-isomorphic simple right #-modules. A right QF 3 ring is
just a right K-QF 3 ring where the above family is finite. The aim of the
present work is to give a structure theorem for semiprime S-QF 3 rings.
It is proved, among others, that the following conditions are equivalent
for a given ring R: (a) R is a semiprime right N-QF3 ring, (b) there is a
ring ζ), which is a direct product of right full linear rings, such that
Soc Q c R c g, (c) R is right nonsingular and every non-singular right
jR-module is cogenerated by simple and projective modules.

A ring R is called a right QF3 ring if there is a minimal faithful
module UR, in the sense that every faithful right i?-module contains a
direct summand which is isomoφhic to U; one proves that if there exists
such a module U, then it is unique up to an isomorphism. It was proved
by Colby and Rutter [5, Theorem 1] that R is right QF 3 if and only if it
contains a faithful right ideal of the form E(SX) θ θ E(Sn), where
each E(Si) is the injective envelope of a simple module Si9 and the 5/s are
pairwise non-isomorphic. Following Kawada [10], we say that R is a right
X-QF3 ring if there is a family (eλ)λGA of pairwise orthogonal and
pairwise non isomoφhic (in the sense that eλR Φ eμR whenever λ Φ μ)
idempotents of R such that: (a) each eλR is the injective envelope of a
minimal right ideal, (b) the right ideal WR = Σλ(ΞAeλR is faithful; here S
stands for the cardinality of the set Λ. It is clear from Colby and Rutter's
result that a right QF3 ring is nothing other than a right X-QF3 ring
where X is a finite cardinal. By a S-QF 3 ring we shall mean a ring which
is both right and left X-QF 3; similarly for QF 3 rings.

In [4] we studied those right N-QF3 rings which have zero right
singular ideal. Our puφose in the present paper is to characterize the
semiprime right K-QF3 rings. Our main result is that the following
conditions are equivalent for a given ring R: (a) R is a semiprime right
K-QF3 ring, (b) R is a semiprime ring with essential socle and every
simple projective right i?-module is injective. (c) R is right nonsingular
and every nonsingular right i?-module is cogenerated by simple projective
modules, (d) R is (isomoφhic to) a subring of a direct product Π λ e Λ Qλ

of right full linear rings and Φ λ e Λ S o c β λ c R. As a consequence we
obtain that R is a semiprime N-QF 3 ring if and only if it satisfies one
(and hence all) of the following conditions: (a) R is a subring of the direct
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product of a family ( β λ ) λ e Λ °f simple artinian rings and contains the
direct sum θ λ e Λ β λ > (b) ^ *s right nonsingular and every nonsingular
injective right i?-module is a direct product of pairwise independent
semisimple and homogeneous modules (we say that two semisimple right
i?-modules L, M are independent if HomΛ(L, M) = 0, i.e. if L does not
contain a simple submodule which is isomorphic to some submodule of
M).

Throughout, all rings will be associative with identity, all modules will
be unitary and all maps between modules will be module homomor-
phisms. For a given ring /?, we shall denote with Mod-/? the category of
all right i?-modules. If M is a given right i?-module, we shall denote with
E(M), Z(M), J(M) and SocM resp. the injective envelope, the singular
submodule, the Jacobsen radical and the socle of M; if J / is a set of
pairwise non-isomorphic simple right jR-modules, then Soc^(M) will
denote the ̂ homogeneous component of Soc M (we shall write SocP( M)
in case J / = {P})\ the notation N < MR (resp. N<MR) will mean that N
is an i?-submodule (resp. an essential i?-submodule) of M. Given a subset
X c M, rR( X) will be the right annihilator of X in R; similarly, if M is a
left 7?-module, then lR(X) will be the left annihilator of X in R. We
assume the reader familiar with elementary facts about torsion theories, in
particular the Goldie torsion theory (see e.g. [6] and [12]).

We proceed to give first several preliminary results concerning the
projective components of the socle of a ring; these results are mainly
based on the following one, which was proved in [2, Proposition 1.4 and
Corollary 1.5].

PROPOSITION 1. Let R be a given ring, let & be a set of representatives
of the simple projective right R-modules and let K be a two-sided ideal
contained in Soc RR. Then the following conditions are equivalent:

(1)K2 = K.
(2)R(R/K)isflat.
(3) There is a subsets/c ^such that K = Soc^(RR).

If these conditions hold, then for each module MR we have Soc^(M) =
MK. Π

By a right full linear ring we mean a ring which is isomorphic to the
endomorphism ring of a right vector space over some division ring. It is
well known that R is a right full linear ring if and only if R is a prime von
Neumann regular right self-injective ring with essential socle (see [12, Ch.
XII, Corollary 1.5, page 246]); if it is the case, then R is a right QF 3 ring
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(see Tachikawa [13, page 43, 44]). The following proposition tells us that

prime right Q F 3 rings can be characterized as special subrings of right

full linear rings (see however [13, Proposition 4.3]). We need a lemma.

LEMMA 2. Let P be a minimal right ideal of the ring R and let e be an

idempotent such that P<eRR. Then either eR = P or P2 = 0.

Proof. If P2 Φ 0, then, by the modular law, P is a direct summand of

eR and hence equals eR. D

PROPOSITION 3. Given a ring R, the following conditions are equivalent:

(1) R has a simple injective, projective and faithful right module.

(2) R is a prime right QF 3 ring.

(3) i? is a subring of a right full linear ring Q and Soc Q c R.

Proof. (1) => (2) is clear from [5, Theorem 1].

(2) => (3). It follows from (2) that R has a nonzero homogeneous

projective essential socle S. Moreover, since R is right QF 3, there is an

idempotent e e R such that eRR is faithful, injective with a simple

essential socle P. Inasmuch as P is prime, then P2 = P and hence P = eR

by Lemma 2, so all minimal right ideals of R are injective. Let Q be the

maximal right quotient ring of R. It is well known that Q = End SR =

E(RR) and Q is a right full linear ring (see e.g. [12, page 249]). Now if N

is a minimal right ideal of R, then, by the above, R Ώ N = E(NR) = NQ.

The latter equality tells us that Soc QQ = SQ c R.

(3) => (1). Suppose that Soc QQ c R c ζ), where Q is a right full

linear ring. Then R is right primitive, Soc R = Soc QQ and Q is the

maximal right quotient ring of R. If N is a minimal right ideal of i?, then

NR is faithful, projective, and, as in the proof of the implication (2) => (3),

E(NR) = NQ, therefore N is essential in NQR. Since the latter is semi-sim-

ple, it follows that TV = NQ and hence NR is injective. D

COROLLARY 4. A ring R is a prime QF 3 ring if and only if R is simple

artinian.

Proof. The "if" part is obvious. Assume that R is prime and QF3.

Then R has both a right and a left simple injective, projective and faithful

module by Proposition 3. It follows from Jans [9, corollary 2.2] that R is

simple artinian. D
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In what follows we fix a simple projective right i?-module P and we

set L = lR(SocP(RR)). Then, in view of Proposition 1, we have SocP(RR)

• L c SocP(RR) Π L = L SocP(i?Λ) = 0, so that P may be regarded as

a simple right R/L-module. The proof of the following lemma is left to

the reader.

LEMMA 5. With the above notations, R/L is a right nonsingular ring

with essential and homogeneous right socle; to be precise, the canonical map

R -> R/L induces an isomorphism SocP(RR) = Soc(R/L)R/L. D

LEMMA 6. With the above notations, the following conditions are equiva-

lent:

(1) PR is infective.

(2) PR/L is infective.

(3) R/L is a prime right QF 3 ring.

If any of the above conditions holds, then L = rR(P).

Proof. (1) => (2) is obvious.
(2) => (3). It follows from Lemma 5 that Soc(R/L)R/L is homoge-

neous and essential in R/L and, since PR/L is injective, we have J(R/L)

= 0. Thus R/L is primitive and PR/L is a simple faithful, injective and

projective module, therefore R/L is right QF 3 by Proposition 3.

(3) => (1). If R/L is a prime right QF 3 ring, then, again by Proposi-

tion 3, R/L is primitive with P as a simple faithful injective and projective

right R/L-module. This implies J(R) c L and, taking Proposition 1 into

account, we get J(R) Π Socp(RR) = J(R)SocP(RR) = 0. We may now

apply [3, Theorem 1.3, equivalence of conditions (1) and (8)] and we infer

that E((SocP(RR))R/L) is jR-injective. From that, since PR/L is injective,

we conclude that PR is injective.

Finally, the arguments in the proof of the last implication together

with [3, Theorem 1.3], show the last part of our lemma. D

If PR is injective, then J(R) Π SocP(RR) = 0 and [3, Theorem 1.3]

implies that SocP(RR) = SocP,(RR), where P' is some simple projective

left jR-module (to be precise, P' = HomR(P, R)); moreover L = rR(P) =

lR(Pf). The condition that RP' also is injective is very sharp, as it is shown

by the following corollary.

COROLLARY 7. With the above notations, the following conditions are
equivalent:

(1) PR and its dual RP' = HomR(P, R) are injective.

(2) R/L is a simple artinian ring.

(3) Socp(RR) = eRfor a central idempotent e G R.
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Proof. (1) => (2). As we observed before, the injectivity of PR implies
that L = rR(P) = lR(P'). Thus, according to Lemma 6, (1) implies that
R/L is a prime QF 3 ring; hence R/L is simple artinian by Corollary 4.

(2) => (3). If (2) holds, then/(i?) c L and hence/(i?) Π SocP(RR) =
0. According to the above remarks, there is a simple projective left
i?-module P' such that SocP(RR) = Socp,(Λi?). Taking Lemma 5 into
account, we see that R/L = SocP(RR) = SoCp^i?), therefore R/L is
projective both as a right and a left i?-module. We conclude that L = fR
for a central idempotent/ e i? and (3) holds with e = 1 — /.

(3) => (1) is a consequence of [2, Theorem 2.7]. D

Recall that the ring R is semiprime if it has no non-zero nilpotent
right (and hence left) ideals. Without any hypothesis on i?, if N is a
minimal right ideal of R, then either N2 = 0 or N = eR for some
idempotent e ^ R. Thus, if i? is semiprime, it follows from Proposition 1
that Soc RR = Soc^(i?Λ) and every two-sided ideal contained in Soc RR is
of the form Soc^(RR) for some subsets/c 0*\ moreover, it was proved by
Jacobson (see [8, Ch. IV, n. 3, Theorem 1, page 65]) that every homoge-
neous component of SocRR is also a homogeneous component of SocRR
and conversely, so that SocRR = SocRR.

LEMMA 8. Let Q be a ring with essential and projective right socle S and
let R be a subring of Q containing S. Then the following are true:

(1) S = SocRR = Socg*.
(2) SR is projective.
(3) S<RR<QR.

Moreover, if Q is semiprime, then R is semiprime as well.

Proof. Let U be a minimal right ideal of Q and let 0 Φ x e U. Taking
Proposition 1 into account we have U = xQ = xS c xR c £/, hence
xR = U. This shows that S c SocRR. Since S<QQ, then xS Φ 0 for each
non-zero x e β and therefore S<RR. We infer that S = Soc i?Λ and SR is
projective since S2 = S. Moreover S<QR, so S = Soc <2Λ. If Q is semi-
prime, then every minimal right ideal of Q is generated by an idempotent.
This fact, together with S<RR, implies easily that R is semiprime. D

Following L. Levy [11], we say that the ring R is an irredundant
subdirectproduct of a family ( i ? λ ) λ e Λ of rings if:

(a) R is a subdirect product of the i?λ's,
(b) canonically identifying R with a subring and each Rλ with a

two-sided ideal of Π λ e Λ i?λ, we have R Π Rλ Φ 0.
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LEMMA 9. Given a ring R, the following conditions are equivalent:

(1) R is semiprime with essential socle,

(2) R is an irredundant subdirect product of a family ( i ? λ ) λ G Λ of prime

rings each with a non-zero socle Sλ.

(3) R is a subdirect product of a family ( Λ λ ) λ e Λ of prime rings, each

with a non-zero socle Sλ, and, canonically identifying R with a subring and

each Rλ with a two-sided ideal o / Π λ G Λ Rλ, the equality SocRR = φ λ e Λ Sλ

holds.

Proof. (1) => (3). Inasmuch as R is semiprime, SocRR is projective.
Let (P\)\GA b e a family of representatives of all simple projective right
/{-modules and, for each λ e Λ, let us write Lλ = rR(Pλ) and Rλ = R/Lλ.
It follows from [3, Theorem 1.3] that L λ = lR(SocPλ(RR)), hence R is a
subdirect product of the family ( i ? λ ) λ e Λ by Gordon [7, Theorem 2.3];
moreover each Rλ has essential right socle Sλ and is prime by the above.
Let us identify R with a subring and each Rλ with a two-sided ideal of the
ring Π λ e Λ i ? λ and let pλ: R -> Rλ be the canonical projection. Then
SocPχ(RR) is canonically identified with Sλ via pλ (see Lemma 5). It
follows that Sλc R n Rλ and hence Soc R = 0 λ e Λ Sλ.

(3) => (2) is clear.
(2) => (1). Let us write Q = Π λ G Λ Rλ. We may again assume that R is

a subring and each Rλ is a two-sided ideal of Q. For each λ e Λ, since Rλ

is prime, every non-zero two-sided ideal of Rλ is essential, thus Sλ is a
minimal two-sided ideal of R; since R Π i?λ Φ 0, then S ^ c i i n i ^ c i ? ,
whence Soc β^ = φ λ e Λ 5 ' λ c i ? . Inasmuch as Q is semiprime, it follows
from Lemma 8 that R is semiprime with essential socle. •

We are now in position to state and prove our structure theorem on
semiprime N-QF3 rings. Recall that R is a right QF3' ring if E(RR) is
torsionless. A torsion theory (^ , &) is jansian (or "TTF") if ^~is closed
by direct products; this happens if and only if there is an idempotent
two-sided ideal / of R such that ̂ ~= {LR\LI = 0}.

THEOREM 10. Let R be a given ring, let ( P λ ) λ e Λ be a family of

representatives of all simple projective right R-modules and let S be a

non-zero cardinal number. Then the following conditions are equivalent:

(1) R is a semiprime right N-QF 3 ring.

(2) R is a semiprime QF 3' ring with essential socle and Card(Λ) = X.

(3) R is a right N-QF 3 ring without nilpotent minimal right ideals.

(4) R is a semiprime ring with essential socle, every simple projective

right R-module is injective and Card(Λ) = X.
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(5) R is an irredundant subdirect product of a family (R\)\<EA of prime

right QF 3 rings and Card(Λ) = N.

(6) R is (isomorphic to) a subring of the direct product of a family

(δλ)λeΛ of right full linear rings, with Card(Λ) = X, and Φ λ e Λ S o c Qλ c

R.

(7) R is right nonsingular, Card(Λ) = X and every nonsingular right

R-module is cogenerated by simple projectiυe modules.

(8) Card(Λ) = N and a module MR is singular if and only if

H o m Λ ( M , Pλ) = Ofor each λ e Λ.

Proof. (1) => (3) is clear.

(3) => (4). Assume that (3) holds. By the definition of a right X-QF3

ring and taking [4, Proposition 2.3] into account, we may assume that each

Pλ is a minimal right ideal and there is a family ( e λ ) λ e Λ of idempotents of

i?, with WR = Σλ€ΞAeλR faithful, such that eλR = E(Pλ) for each λ e Λ.

Our assumption, together with Lemma 2, implies that eλR = Pλ for each

λ G A, so that every simple projective right i?-module is injective. More-

over eλR Π J(R) = PλΠ J(R) = 0, hence eλJ(R) = 0 for each λ e Λ.

We infer that WJ(R) = 0 and then J(R) = 0, being WR faithful. Thus R

is semiprime and has essential socle by [4, Theorem 2.4].

(4) ==> (5). It follows from Lemma 9 that R is an irredundant subdirect

product of the family (i?λ)λ € Ξ Λ> where Rλ = R/lR(SocPχ(RR)) for each

λ e A . Moreover every Rλ is a prime right QF 3 ring by Lemma 6.

(5) => (6). Suppose that (5) holds. It follows then from Lemma 8 and

9 that R is a semiprime ring with essential socle and Soci? =

0 λ e Λ Soc Rλ. Now Proposition 3 tells us that each i? λ is (isomorphic to)

a subring of a right full linear ring Qλ and Soc Qλ c Rλ. This is enough to

conclude that R has the properties stated in (6).

(6) => (1). If (6) holds, then it follows from Lemma 9 that R is

semiprime and Soci? = © λ e Λ S o c Qλ. Moreover E(RR) = Π λ e Λ Qλ (see

[12, Ch. XII, Proposition 2.4, page 247]). There is a family (eλ)λGA of

pairwise orthogonal and pairwise non-isomorphic idempotents of R such

that eλQλ = eλR is simple and injective. Since ΣλGAeλQλ is faithful as a

right ideal of Π λ G Λ β λ , then it is faithful as a right ideal of R and

therefore R is right N-QF 3.

(4) => (7). Inasmuch as R is semiprime with essential socle, R must be

right (and left) nonsingular. Thus the Lambek torsion theory and the

Goldie torsion theory on Mod-i? coincide, so that every nonsingular

( = torsionfree) right Λ-module is cogenerated by E(RR). It follows from

the equivalence of conditions (4) and (6) that E(RR) = Π λ e Λ β λ , where
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each Qλ is a right full linear ring. Since Qλ is isomorphic to the direct

product P[λ for some Γλ, we infer that the family ( i \ ) λ e Λ cogenerates

E(RR), hence it cogenerates every nonsingular right i?-module.

(7) => (8). This implication is clear, taking into account that, since R

is right nonsingular, the Goldie torsion class in Mod-i? consists of all

singular modules.

(8) => (4). Assume that (8) holds and let us prove first that Z(RR) = 0.

Let us denote by S the projective component of SocRR. Since S Φ 0, (8)

implies that S Φ 0 and R(R/S) is flat by Proposition 1, so that we may

consider the jansian torsion theory ( y , &) associated with the idempo-

tent two-sided ideal S: 3Γ^ {LR\LS = 0}, &= {MR\MS<M} (for the

last equality see [1, Proposition 1.3]). Now (8) implies that a module MR is

nonsingular iff it has projective and essential socle and, since the latter is

given by MS (see Proposition 1), we infer that (&~9 J^) coincides with the

Goldie torsion theory. Moreover (8) implies that the class of all singular

right i?-modules is a (hereditary) torsion class, whence it must coincide

with&". From this we conclude that the Gabriel topology {/ < RR\S c /}

associated with ^consists of all essential right ideals, whence S<RR and

so Z(RR) = 0. Let us prove now that each Pλ is injective. Indeed, since

E(Pλ) is nonsingular, it follows from (8) that there is a non zero

homomorphism E(Pλ) -» Pμ for some μ e Λ. Thus, since Pμ is projective,

E(Pλ) has a direct summand isomrophic to Pμ9 which implies λ = μ and

E(Pλ) = Pλ. We conclude from the above that every minimal right ideal

of R is idempotent and, since S = Soc RR<RR, R must be semiprime.

(1) <=> (2). By the equivalence of conditions (1) and (4), a semiprime

right N-QF 3 ring has essential socle. Since a semiprime ring with essential

socle is nonsingular, the equivalence of (1) and (2) follows from [4,

Theorem 2.11 ]. D

In the following corollary we characterize those semiprime rings

which are X-QF 3.

COROLLARY 11. With the same hypothesis as in Theorem 10, the

following conditions are equivalent:

(1) R is a semiprime N-QF 3 ring.

(2) Soc RR<RR, there is a family ( / λ ) λ e Λ of idempotents of R such that

thefλR
9s are the homogeneous components of Soc RR and Card(Λ) = X.

(3) R is (isomorphic to) a subring of the direct product of a family

(<2λ)λeΛ of simple artinian rings, with Card(Λ) = K, and Θ λ e Λ Q\ c R.

(4) R is right nonsingular, every non-zero injective nonsingular right

R-module is a direct product of pairwise independent semisimple and homo-

geneous modules, and Card(Λ) = S.
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Proof. (1) => (3). In view of Theorem 10, (1) implies that every simple
projective right or left i?-module is injective; hence it follows from
Corollary 6 that R/lR(SocPχ(RR)) is a simple artinian ring for each λ e Λ.
Thus (3) holds with Qλ = R/lR(SocP(RR)) (see the proof of the implica-
tions (4) => (5) => (6) of Theorem 10)."

(3) => (2) is straightforward.
(2) ==> (4). It follows from (2) that SocRR is projective and, taking [2,

Theorem 2.7] into account, every semisimple, projective and homogeneous
right iί-module is injective. Assume that MR Φ 0 is injective and nonsin-
gular. Then SocΛf = M(SocRR)<M and it follows from (2) that the
homogeneous components of SocΛf are the Mfλ (λ e A). Moreover
θ λ e Λ M F λ is essential in Π λ e Λ M / λ ; indeed, if 0 Φ (xλ) e Π λ e Λ M / λ ,
then xλfλ Φ 0 for some λ e Λ, so that 0 Φ (xλ)λ(Φλ€ΞAf\R) c

Mfλ. Since all Mfλ

9s are injective, we conclude that M =

(4) => (1). Assume that (4) holds. Then one easily checks that every
non-singular i?-module is cogenerated by simple projective modules, hence
R is a semiprime right K-QF 3 ring by Theorem 10. Also, (4) implies that
every projective semisimple and homogeneous right i?-module is injective,
whence every homogeneous component of SocRR is generated by a
central idempotent (see [2, Theorem 2.7]). Inasmuch as R is semiprime,
then every homogeneous component of SocRR is also a homogeneous
component of Soc RR and conversely. From this and again by [2, Theorem
2.7] we infer that each simple projective left i?-module is injective. Finally,
since Soci? is essential both as a right and a left ideal, it follows from
Theorem 10 that R is left N-QF 3 as well. D

REMARK. The assumption that R is right nonsingular in condition (7)
of Theorem 10 and condition (4) of the last corollary cannot be omitted.
In fact, if R = S X T, where S is a quasi-Frobenius ring with essential
singular ideal and T is a semisimple ring, then R is QF3 and every
nonsingular i?-module is semisimple and injective, but R is not semiprime.
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