SEMIPRIME ℵ-QF 3 RINGS

GIUSEPPE BACCELLA

A ring R (associative with identity) is called *right* \aleph -QF3 if it has a faithful right ideal which is a direct sum of a family of injective envelopes of pairwise non-isomorphic simple right R-modules. A right QF3 ring is just a right \aleph -QF3 ring where the above family is finite. The aim of the present work is to give a structure theorem for semiprime \aleph -QF3 rings. It is proved, among others, that the following conditions are equivalent for a given ring R: (a) R is a semiprime right \aleph -QF3 ring, (b) there is a ring Q, which is a direct product of right full linear rings, such that Soc $Q \subset R \subset Q$, (c) R is right nonsingular and every non-singular right R-module is cogenerated by simple and projective modules.

A ring R is called a right QF3 ring if there is a minimal faithful module U_R , in the sense that every faithful right R-module contains a direct summand which is isomorphic to U; one proves that if there exists such a module U, then it is unique up to an isomorphism. It was proved by Colby and Rutter [5, Theorem 1] that R is right QF 3 if and only if it contains a faithful right ideal of the form $E(S_1) \oplus \cdots \oplus E(S_n)$, where each $E(S_i)$ is the injective envelope of a simple module S_i , and the S_i 's are pairwise non-isomorphic. Following Kawada [10], we say that R is a right ℵ-QF3 ring if there is a family $(e_{\lambda})_{\lambda \in \Lambda}$ of pairwise orthogonal and pairwise non isomorphic (in the sense that $e_{\lambda}R \neq e_{\mu}R$ whenever $\lambda \neq \mu$) idempotents of R such that: (a) each $e_{\lambda}R$ is the injective envelope of a minimal right ideal, (b) the right ideal $W_R = \sum_{\lambda \in \Lambda} e_{\lambda} R$ is faithful; here \aleph stands for the cardinality of the set Λ . It is clear from Colby and Rutter's result that a right QF3 ring is nothing other than a right 8-QF3 ring where \aleph is a finite cardinal. By a \aleph -QF 3 ring we shall mean a ring which is both right and left **X**-QF 3; similarly for QF 3 rings.

In [4] we studied those right \aleph -QF3 rings which have zero right singular ideal. Our purpose in the present paper is to characterize the semiprime right \aleph -QF3 rings. Our main result is that the following conditions are equivalent for a given ring R: (a) R is a semiprime right \aleph -QF3 ring, (b) R is a semiprime ring with essential socle and every simple projective right R-module is injective. (c) R is right nonsingular and every nonsingular right R-module is cogenerated by simple projective modules, (d) R is (isomorphic to) a subring of a direct product $\prod_{\lambda \in \Lambda} Q_{\lambda}$ of right full linear rings and $\bigoplus_{\lambda \in \Lambda} \operatorname{Soc} Q_{\lambda} \subset R$. As a consequence we obtain that R is a semiprime \aleph -QF3 ring if and only if it satisfies one (and hence all) of the following conditions: (a) R is a subring of the direct

GIUSEPPE BACCELLA

product of a family $(Q_{\lambda})_{\lambda \in \Lambda}$ of simple artinian rings and contains the direct sum $\bigoplus_{\lambda \in \Lambda} Q_{\lambda}$, (b) *R* is right nonsingular and every nonsingular injective right *R*-module is a direct product of pairwise independent semisimple and homogeneous modules (we say that two semisimple right *R*-modules *L*, *M* are *independent* if Hom_{*R*}(*L*, *M*) = 0, i.e. if *L* does not contain a simple submodule which is isomorphic to some submodule of *M*).

Throughout, all rings will be associative with identity, all modules will be unitary and all maps between modules will be module homomorphisms. For a given ring R, we shall denote with Mod-R the category of all right R-modules. If M is a given right R-module, we shall denote with E(M), Z(M), J(M) and Soc M resp. the injective envelope, the singular submodule, the Jacobsen radical and the socle of M; if \mathscr{A} is a set of pairwise non-isomorphic simple right R-modules, then $Soc_{\mathscr{A}}(M)$ will denote the \mathscr{A} -homogeneous component of Soc M (we shall write $Soc_{P}(M)$ in case $\mathscr{A} = \{P\}$); the notation $N \leq M_{R}$ (resp. $N \leq M_{R}$) will mean that Nis an R-submodule (resp. an essential R-submodule) of M. Given a subset $X \subset M$, $r_{R}(X)$ will be the right annihilator of X in R; similarly, if M is a left R-module, then $l_{R}(X)$ will be the left annihilator of X in R. We assume the reader familiar with elementary facts about torsion theories, in particular the Goldie torsion theory (see e.g. [6] and [12]).

We proceed to give first several preliminary results concerning the projective components of the socle of a ring; these results are mainly based on the following one, which was proved in [2, Proposition 1.4 and Corollary 1.5].

PROPOSITION 1. Let R be a given ring, let \mathcal{P} be a set of representatives of the simple projective right R-modules and let K be a two-sided ideal contained in Soc R_R . Then the following conditions are equivalent:

 $(1) K^2 = K.$

(2) $_{R}(R/K)$ is flat.

(3) There is a subset $\mathscr{A} \subset \mathscr{P}$ such that $K = \operatorname{Soc}_{\mathscr{A}}(R_R)$. If these conditions hold, then for each module M_R we have $\operatorname{Soc}_{\mathscr{A}}(M) = MK$.

By a *right full linear ring* we mean a ring which is isomorphic to the endomorphism ring of a right vector space over some division ring. It is well known that R is a right full linear ring if and only if R is a prime von Neumann regular right self-injective ring with essential socle (see [12, Ch. XII, Corollary 1.5, page 246]); if it is the case, then R is a right QF 3 ring

(see Tachikawa [13, page 43, 44]). The following proposition tells us that prime right QF 3 rings can be characterized as special subrings of right full linear rings (see however [13, Proposition 4.3]). We need a lemma.

LEMMA 2. Let P be a minimal right ideal of the ring R and let e be an idempotent such that $P \trianglelefteq eR_R$. Then either eR = P or $P^2 = 0$.

Proof. If $P^2 \neq 0$, then, by the modular law, P is a direct summand of eR and hence equals eR.

PROPOSITION 3. Given a ring R, the following conditions are equivalent:

(1) *R* has a simple injective, projective and faithful right module.

(2) *R* is a prime right QF 3 ring.

(3) *R* is a subring of a right full linear ring *Q* and Soc $Q \subset R$.

Proof. (1) \Rightarrow (2) is clear from [5, Theorem 1].

 $(2) \Rightarrow (3)$. It follows from (2) that R has a nonzero homogeneous projective essential socle S. Moreover, since R is right QF 3, there is an idempotent $e \in R$ such that eR_R is faithful, injective with a simple essential socle P. Inasmuch as P is prime, then $P^2 = P$ and hence P = eRby Lemma 2, so all minimal right ideals of R are injective. Let Q be the maximal right quotient ring of R. It is well known that $Q \cong \text{End } S_R \cong$ $E(R_R)$ and Q is a right full linear ring (see e.g. [12, page 249]). Now if N is a minimal right ideal of R, then, by the above, $R \supset N = E(N_R) = NQ$. The latter equality tells us that Soc $Q_O = SQ \subset R$.

 $(3) \Rightarrow (1)$. Suppose that Soc $Q_Q \subset R \subset Q$, where Q is a right full linear ring. Then R is right primitive, Soc $R = \text{Soc } Q_Q$ and Q is the maximal right quotient ring of R. If N is a minimal right ideal of R, then N_R is faithful, projective, and, as in the proof of the implication $(2) \Rightarrow (3)$, $E(N_R) = NQ$, therefore N is essential in NQ_R . Since the latter is semi-simple, it follows that N = NQ and hence N_R is injective.

COROLLARY 4. A ring R is a prime QF 3 ring if and only if R is simple artinian.

Proof. The "if" part is obvious. Assume that R is prime and QF 3. Then R has both a right and a left simple injective, projective and faithful module by Proposition 3. It follows from Jans [9, corollary 2.2] that R is simple artinian.

GIUSEPPE BACCELLA

In what follows we fix a simple projective right *R*-module *P* and we set $L = l_R(\text{Soc}_P(R_R))$. Then, in view of Proposition 1, we have $\text{Soc}_P(R_R) \cdot L \subset \text{Soc}_P(R_R) \cap L = L \cdot \text{Soc}_P(R_R) = 0$, so that *P* may be regarded as a simple right R/L-module. The proof of the following lemma is left to the reader.

LEMMA 5. With the above notations, R/L is a right nonsingular ring with essential and homogeneous right socle; to be precise, the canonical map $R \rightarrow R/L$ induces an isomorphism $\operatorname{Soc}_P(R_R) \cong \operatorname{Soc}(R/L)_{R/L}$.

LEMMA 6. With the above notations, the following conditions are equivalent:

(1) P_R is injective.

(2) $P_{R/L}$ is injective.

(3) R/L is a prime right QF 3 ring.

If any of the above conditions holds, then $L = r_R(P)$.

Proof. (1) \Rightarrow (2) is obvious.

 $(2) \Rightarrow (3)$. It follows from Lemma 5 that $\text{Soc}(R/L)_{R/L}$ is homogeneous and essential in R/L and, since $P_{R/L}$ is injective, we have J(R/L) = 0. Thus R/L is primitive and $P_{R/L}$ is a simple faithful, injective and projective module, therefore R/L is right QF 3 by Proposition 3.

 $(3) \Rightarrow (1)$. If R/L is a prime right QF 3 ring, then, again by Proposition 3, R/L is primitive with P as a simple faithful injective and projective right R/L-module. This implies $J(R) \subset L$ and, taking Proposition 1 into account, we get $J(R) \cap \operatorname{Soc}_P(R_R) = J(R)\operatorname{Soc}_P(R_R) = 0$. We may now apply [3, Theorem 1.3, equivalence of conditions (1) and (8)] and we infer that $E((\operatorname{Soc}_P(R_R))_{R/L})$ is R-injective. From that, since $P_{R/L}$ is injective, we conclude that P_R is injective.

Finally, the arguments in the proof of the last implication together with [3, Theorem 1.3], show the last part of our lemma. \Box

If P_R is injective, then $J(R) \cap \operatorname{Soc}_P(R_R) = 0$ and [3, Theorem 1.3] implies that $\operatorname{Soc}_P(R_R) = \operatorname{Soc}_{P'}(R_R)$, where P' is some simple projective left R-module (to be precise, $P' = \operatorname{Hom}_R(P, R)$); moreover $L = r_R(P) = l_R(P')$. The condition that $_RP'$ also is injective is very sharp, as it is shown by the following corollary.

COROLLARY 7. With the above notations, the following conditions are equivalent:

(1) P_R and its dual $_RP' = \operatorname{Hom}_R(P, R)$ are injective.

- (2) R/L is a simple artinian ring.
- (3) $\operatorname{Soc}_{P}(R_{R}) = eR$ for a central idempotent $e \in R$.

Proof. (1) \Rightarrow (2). As we observed before, the injectivity of P_R implies that $L = r_R(P) = l_R(P')$. Thus, according to Lemma 6, (1) implies that R/L is a prime QF 3 ring; hence R/L is simple artinian by Corollary 4.

 $(2) \Rightarrow (3)$. If (2) holds, then $J(R) \subset L$ and hence $J(R) \cap \operatorname{Soc}_P(R_R) = 0$. According to the above remarks, there is a simple projective left *R*-module *P'* such that $\operatorname{Soc}_P(R_R) = \operatorname{Soc}_{P'}(R)$. Taking Lemma 5 into account, we see that $R/L \cong \operatorname{Soc}_P(R_R) = \operatorname{Soc}_{P'}(R)$, therefore R/L is projective both as a right and a left *R*-module. We conclude that L = fR for a central idempotent $f \in R$ and (3) holds with e = 1 - f.

(3) \Rightarrow (1) is a consequence of [2, Theorem 2.7].

Recall that the ring R is *semiprime* if it has no non-zero nilpotent right (and hence left) ideals. Without any hypothesis on R, if N is a minimal right ideal of R, then either $N^2 = 0$ or N = eR for some idempotent $e \in R$. Thus, if R is semiprime, it follows from Proposition 1 that $\operatorname{Soc} R_R = \operatorname{Soc}_{\mathscr{P}}(R_R)$ and every two-sided ideal contained in $\operatorname{Soc} R_R$ is of the form $\operatorname{Soc}_{\mathscr{A}}(R_R)$ for some subset $\mathscr{A} \subset \mathscr{P}$; moreover, it was proved by Jacobson (see [8, Ch. IV, n. 3, Theorem 1, page 65]) that every homogeneous component of $\operatorname{Soc} R_R$ is also a homogeneous component of $\operatorname{Soc}_R R$ and conversely, so that $\operatorname{Soc} R_R = \operatorname{Soc}_R R$.

LEMMA 8. Let Q be a ring with essential and projective right socle S and let R be a subring of Q containing S. Then the following are true:

- (1) $S = \operatorname{Soc} R_R = \operatorname{Soc} Q_R$.
- (2) S_R is projective.

 $(3) S \trianglelefteq R_R \trianglelefteq Q_R.$

Moreover, if Q is semiprime, then R is semiprime as well.

Proof. Let U be a minimal right ideal of Q and let $0 \neq x \in U$. Taking Proposition 1 into account we have $U = xQ = xS \subset xR \subset U$, hence xR = U. This shows that $S \subset \operatorname{Soc} R_R$. Since $S \triangleleft Q_Q$, then $xS \neq 0$ for each non-zero $x \in Q$ and therefore $S \triangleleft R_R$. We infer that $S = \operatorname{Soc} R_R$ and S_R is projective since $S^2 = S$. Moreover $S \triangleleft Q_R$, so $S = \operatorname{Soc} Q_R$. If Q is semiprime, then every minimal right ideal of Q is generated by an idempotent. This fact, together with $S \triangleleft R_R$, implies easily that R is semiprime. \Box

Following L. Levy [11], we say that the ring R is an *irredundant* subdirect product of a family $(R_{\lambda})_{\lambda \in \Lambda}$ of rings if:

(a) R is a subdirect product of the R_{λ} 's,

(b) canonically identifying R with a subring and each R_{λ} with a two-sided ideal of $\prod_{\lambda \in \Lambda} R_{\lambda}$, we have $R \cap R_{\lambda} \neq 0$.

LEMMA 9. Given a ring R, the following conditions are equivalent:

(1) R is semiprime with essential socle.

(2) *R* is an irredundant subdirect product of a family $(R_{\lambda})_{\lambda \in \Lambda}$ of prime rings each with a non-zero socle S_{λ} .

(3) *R* is a subdirect product of a family $(R_{\lambda})_{\lambda \in \Lambda}$ of prime rings, each with a non-zero socle S_{λ} , and, canonically identifying *R* with a subring and each R_{λ} with a two-sided ideal of $\prod_{\lambda \in \Lambda} R_{\lambda}$, the equality Soc $R_{R} = \bigoplus_{\lambda \in \Lambda} S_{\lambda}$ holds.

Proof. (1) \Rightarrow (3). Inasmuch as *R* is semiprime, Soc R_R is projective. Let $(P_{\lambda})_{\lambda \in \Lambda}$ be a family of representatives of all simple projective right *R*-modules and, for each $\lambda \in \Lambda$, let us write $L_{\lambda} = r_R(P_{\lambda})$ and $R_{\lambda} = R/L_{\lambda}$. It follows from [3, Theorem 1.3] that $L_{\lambda} = l_R(\text{Soc}_{P_{\lambda}}(R_R))$, hence *R* is a subdirect product of the family $(R_{\lambda})_{\lambda \in \Lambda}$ by Gordon [7, Theorem 2.3]; moreover each R_{λ} has essential right socle S_{λ} and is prime by the above. Let us identify *R* with a subring and each R_{λ} with a two-sided ideal of the ring $\prod_{\lambda \in \Lambda} R_{\lambda}$ and let p_{λ} : $R \to R_{\lambda}$ be the canonical projection. Then Soc_{P_{\lambda}}(R_R) is canonically identified with S_{λ} via p_{λ} (see Lemma 5). It follows that $S_{\lambda} \subset R \cap R_{\lambda}$ and hence Soc $R = \bigoplus_{\lambda \in \Lambda} S_{\lambda}$.

 $(3) \Rightarrow (2)$ is clear.

(2) \Rightarrow (1). Let us write $Q = \prod_{\lambda \in \Lambda} R_{\lambda}$. We may again assume that R is a subring and each R_{λ} is a two-sided ideal of Q. For each $\lambda \in \Lambda$, since R_{λ} is prime, every non-zero two-sided ideal of R_{λ} is essential, thus S_{λ} is a minimal two-sided ideal of R; since $R \cap R_{\lambda} \neq 0$, then $S_{\lambda} \subset R \cap R_{\lambda} \subset R$, whence Soc $Q_Q = \bigoplus_{\lambda \in \Lambda} S_{\lambda} \subset R$. Inasmuch as Q is semiprime, it follows from Lemma 8 that R is semiprime with essential socle.

We are now in position to state and prove our structure theorem on semiprime \aleph -QF3 rings. Recall that R is a right QF3' ring if $E(R_R)$ is torsionless. A torsion theory $(\mathcal{T}, \mathcal{F})$ is *jansian* (or "TTF") if \mathcal{T} is closed by direct products; this happens if and only if there is an idempotent two-sided ideal I of R such that $\mathcal{T} = \{L_R | LI = 0\}$.

THEOREM 10. Let R be a given ring, let $(P_{\lambda})_{\lambda \in \Lambda}$ be a family of representatives of all simple projective right R-modules and let \aleph be a non-zero cardinal number. Then the following conditions are equivalent:

(1) *R* is a semiprime right \aleph -QF 3 ring.

(2) *R* is a semiprime QF 3' ring with essential socle and $Card(\Lambda) = \aleph$.

(3) *R* is a right \aleph -QF 3 ring without nilpotent minimal right ideals.

(4) R is a semiprime ring with essential socle, every simple projective right R-module is injective and $Card(\Lambda) = \aleph$.

(5) *R* is an irredundant subdirect product of a family $(R_{\lambda})_{\lambda \in \Lambda}$ of prime right QF 3 rings and Card $(\Lambda) = \aleph$.

(6) *R* is (isomorphic to) a subring of the direct product of a family $(Q_{\lambda})_{\lambda \in \Lambda}$ of right full linear rings, with $Card(\Lambda) = \aleph$, and $\bigoplus_{\lambda \in \Lambda} Soc Q_{\lambda} \subset R$.

(7) *R* is right nonsingular, $Card(\Lambda) = \aleph$ and every nonsingular right *R*-module is cogenerated by simple projective modules.

(8) $\operatorname{Card}(\Lambda) = \aleph$ and a module M_R is singular if and only if $\operatorname{Hom}_R(M, P_{\lambda}) = 0$ for each $\lambda \in \Lambda$.

Proof. (1) \Rightarrow (3) is clear.

(3) \Rightarrow (4). Assume that (3) holds. By the definition of a right \aleph -QF 3 ring and taking [4, Proposition 2.3] into account, we may assume that each P_{λ} is a minimal right ideal and there is a family $(e_{\lambda})_{\lambda \in \Lambda}$ of idempotents of R, with $W_R = \sum_{\lambda \in \Lambda} e_{\lambda} R$ faithful, such that $e_{\lambda} R = E(P_{\lambda})$ for each $\lambda \in \Lambda$. Our assumption, together with Lemma 2, implies that $e_{\lambda} R = P_{\lambda}$ for each $\lambda \in \Lambda$, so that every simple projective right R-module is injective. Moreover $e_{\lambda} R \cap J(R) = P_{\lambda} \cap J(R) = 0$, hence $e_{\lambda}J(R) = 0$ for each $\lambda \in \Lambda$. We infer that WJ(R) = 0 and then J(R) = 0, being W_R faithful. Thus R is semiprime and has essential socle by [4, Theorem 2.4].

(4) \Rightarrow (5). It follows from Lemma 9 that *R* is an irredundant subdirect product of the family $(R_{\lambda})_{\lambda \in \Lambda}$, where $R_{\lambda} = R/l_R(\operatorname{Soc}_{P_{\lambda}}(R_R))$ for each $\lambda \in \Lambda$. Moreover every R_{λ} is a prime right QF 3 ring by Lemma 6.

 $(5) \Rightarrow (6)$. Suppose that (5) holds. It follows then from Lemma 8 and 9 that R is a semiprime ring with essential socle and Soc $R = \bigoplus_{\lambda \in \Lambda} \operatorname{Soc} R_{\lambda}$. Now Proposition 3 tells us that each R_{λ} is (isomorphic to) a subring of a right full linear ring Q_{λ} and Soc $Q_{\lambda} \subset R_{\lambda}$. This is enough to conclude that R has the properties stated in (6).

(6) \Rightarrow (1). If (6) holds, then it follows from Lemma 9 that R is semiprime and Soc $R = \bigoplus_{\lambda \in \Lambda} \text{Soc } Q_{\lambda}$. Moreover $E(R_R) = \prod_{\lambda \in \Lambda} Q_{\lambda}$ (see [12, Ch. XII, Proposition 2.4, page 247]). There is a family $(e_{\lambda})_{\lambda \in \Lambda}$ of pairwise orthogonal and pairwise non-isomorphic idempotents of R such that $e_{\lambda}Q_{\lambda} = e_{\lambda}R$ is simple and injective. Since $\sum_{\lambda \in \Lambda} e_{\lambda}Q_{\lambda}$ is faithful as a right ideal of $\prod_{\lambda \in \Lambda} Q_{\lambda}$, then it is faithful as a right ideal of R and therefore R is right \aleph -QF 3.

(4) \Rightarrow (7). Inasmuch as R is semiprime with essential socle, R must be right (and left) nonsingular. Thus the Lambek torsion theory and the Goldie torsion theory on Mod-R coincide, so that every nonsingular (= torsionfree) right R-module is cogenerated by $E(R_R)$. It follows from the equivalence of conditions (4) and (6) that $E(R_R) = \prod_{\lambda \in \Lambda} Q_{\lambda}$, where each Q_{λ} is a right full linear ring. Since Q_{λ} is isomorphic to the direct product $P_{\lambda}^{\Gamma_{\lambda}}$ for some Γ_{λ} , we infer that the family $(P_{\lambda})_{\lambda \in \Lambda}$ cogenerates $E(R_{R})$, hence it cogenerates every nonsingular right *R*-module.

 $(7) \Rightarrow (8)$. This implication is clear, taking into account that, since R is right nonsingular, the Goldie torsion class in Mod-R consists of all singular modules.

(8) \Rightarrow (4). Assume that (8) holds and let us prove first that $Z(R_R) = 0$. Let us denote by S the projective component of Soc R_R . Since $\aleph \neq 0$, (8) implies that $S \neq 0$ and R(R/S) is flat by Proposition 1, so that we may consider the jansian torsion theory $(\mathcal{T}, \mathcal{F})$ associated with the idempotent two-sided ideal S: $\mathcal{T} = \{L_R | LS = 0\}, \mathcal{F} = \{M_R | MS \triangleleft M\}$ (for the last equality see [1, Proposition 1.3]). Now (8) implies that a module M_R is nonsingular iff it has projective and essential socle and, since the latter is given by MS (see Proposition 1), we infer that $(\mathcal{T}, \mathcal{F})$ coincides with the Goldie torsion theory. Moreover (8) implies that the class of all singular right R-modules is a (hereditary) torsion class, whence it must coincide with \mathcal{T} . From this we conclude that the Gabriel topology $\{I \leq R_{R} | S \subset I\}$ associated with \mathscr{T} consists of all essential right ideals, whence $S \triangleleft R_R$ and so $Z(R_R) = 0$. Let us prove now that each P_{λ} is injective. Indeed, since $E(P_{\lambda})$ is nonsingular, it follows from (8) that there is a non zero homomorphism $E(P_{\lambda}) \to P_{\mu}$ for some $\mu \in \Lambda$. Thus, since P_{μ} is projective, $E(P_{\lambda})$ has a direct summand isomrophic to P_{μ} , which implies $\lambda = \mu$ and $E(P_{\lambda}) = P_{\lambda}$. We conclude from the above that every minimal right ideal of R is idempotent and, since $S = \text{Soc } R_R \triangleleft R_R$, R must be semiprime.

(1) \Leftrightarrow (2). By the equivalence of conditions (1) and (4), a semiprime right \aleph -QF 3 ring has essential socle. Since a semiprime ring with essential socle is nonsingular, the equivalence of (1) and (2) follows from [4, Theorem 2.11].

In the following corollary we characterize those semiprime rings which are \$-QF 3.

COROLLARY 11. With the same hypothesis as in Theorem 10, the following conditions are equivalent:

(1) *R* is a semiprime \aleph -QF 3 ring.

(2) Soc $R_R \leq R_R$, there is a family $(f_\lambda)_{\lambda \in \Lambda}$ of idempotents of R such that the $f_\lambda R$'s are the homogeneous components of Soc R_R and Card $(\Lambda) = \aleph$.

(3) *R* is (isomorphic to) a subring of the direct product of a family $(Q_{\lambda})_{\lambda \in \Lambda}$ of simple artinian rings, with $Card(\Lambda) = \aleph$, and $\bigoplus_{\lambda \in \Lambda} Q_{\lambda} \subset R$.

(4) R is right nonsingular, every non-zero injective nonsingular right R-module is a direct product of pairwise independent semisimple and homogeneous modules, and $Card(\Lambda) = \aleph$.

276

Proof. (1) \Rightarrow (3). In view of Theorem 10, (1) implies that every simple projective right or left *R*-module is injective; hence it follows from Corollary 6 that $R/l_R(\operatorname{Soc}_{P_\lambda}(R_R))$ is a simple artinian ring for each $\lambda \in \Lambda$. Thus (3) holds with $Q_\lambda = R/l_R(\operatorname{Soc}_{P_\lambda}(R_R))$ (see the proof of the implications (4) \Rightarrow (5) \Rightarrow (6) of Theorem 10).

(3) \Rightarrow (2) is straightforward.

(2) \Rightarrow (4). It follows from (2) that Soc R_R is projective and, taking [2, Theorem 2.7] into account, every semisimple, projective and homogeneous right *R*-module is injective. Assume that $M_R \neq 0$ is injective and nonsingular. Then Soc $M = M(\operatorname{Soc} R_R) \leq M$ and it follows from (2) that the homogeneous components of Soc *M* are the Mf_{λ} ($\lambda \in \Lambda$). Moreover $\bigoplus_{\lambda \in \Lambda} MF_{\lambda}$ is essential in $\prod_{\lambda \in \Lambda} Mf_{\lambda}$; indeed, if $0 \neq (x_{\lambda}) \in \prod_{\lambda \in \Lambda} Mf_{\lambda}$, then $x_{\lambda}f_{\lambda} \neq 0$ for some $\lambda \in \Lambda$, so that $0 \neq (x_{\lambda})_{\lambda} (\bigoplus_{\lambda \in \Lambda} f_{\lambda}R) \subset \bigoplus_{\lambda \in \Lambda} Mf_{\lambda}$. Since all Mf_{λ} 's are injective, we conclude that $M = \bigoplus_{\lambda \in \Lambda} Mf_{\lambda}$.

(4) \Rightarrow (1). Assume that (4) holds. Then one easily checks that every non-singular *R*-module is cogenerated by simple projective modules, hence *R* is a semiprime right &-QF 3 ring by Theorem 10. Also, (4) implies that every projective semisimple and homogeneous right *R*-module is injective, whence every homogeneous component of Soc R_R is generated by a central idempotent (see [2, Theorem 2.7]). Inasmuch as *R* is semiprime, then every homogeneous component of Soc R_R is also a homogeneous component of Soc $_RR$ and conversely. From this and again by [2, Theorem 2.7] we infer that each simple projective left *R*-module is injective. Finally, since Soc *R* is essential both as a right and a left ideal, it follows from Theorem 10 that *R* is left &-QF 3 as well.

REMARK. The assumption that R is right nonsingular in condition (7) of Theorem 10 and condition (4) of the last corollary cannot be omitted. In fact, if $R = S \times T$, where S is a quasi-Frobenius ring with essential singular ideal and T is a semisimple ring, then R is QF3 and every nonsingular R-module is semisimple and injective, but R is not semiprime.

REFERENCES

- [1] G. Baccella, On flat factor rings and fully right idempotent rings, Ann. Univ. Ferrara, **26** (1980), 125–141.
- [2] \dots , On \mathscr{C} -semsimple rings. A study of the socle of a ring, Comm. Algebra, **8** (10), (1980), 889–909.
- [3] _____, Weakly semiprime rings, Comm. Algebra, 12 (4), (1984), 489–509.
- [4] _____, \aleph -QF3 rings with zero singular ideal, to appear in J. Algebra.
- [5] R. R. Colby and E. A. Rutter, Jr., QF3 rings with zero singular ideal, Pacific J. Math., 28 (1969), 303-308.

GIUSEPPE BACCELLA

- [6] J. S. Golan, Localization of Noncommutative Rings, Monographs and Textbooks in Math., Marcel Dekker, Inc., New York, 1975.
- [7] R. Gordon, Rings in which minimal left ideals are projective, Pacific J. Math., 31 (1969), 679-692.
- [8] N. Jacobson, Structure of Rings, Amer. Math. Soc. Coll. Publ., Providence, R. I., 1964.
- [9] J. P. Jans, Projective-injective modules, Pacific J. Math., 9 (1959), 1103-1108.
- [10] Y. Kawada, On dominant modules and dominant rings, J. Algebra, 56 (1979), 409-435.
- [11] L. Levy, Unique subdirect sum of prime rings, Trans. Amer. Math. Soc., 106 (1963), 64-76.
- [12] B. Stenström, *Rings of Quotients*, Grundlehren der Math. Wiss., Bd. 217, Springer-Verlag, Berlin/New York, 1975.
- [13] H. Tachikawa, *Quasi-Frobenius Rings and Generalizations*, Lect. Notes in Math., No. 351, Springer-Verlag, Berlin/New York, 1973.

Received March 19, 1984 and in revised form August 27, 1984.

DIPARTIMENTO DI MATEMATICA Università dell'Aquila Via Roma, 33 67100 L'Aquila, Italy