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HIGHLY TRANSITIVE GROUP ACTIONS ON TREES
AND NORMALIZING TITS SYSTEMS

BENEDICT G. SEIFERT

The theory of Tits systems associates to each group G with Tits
system a simplicial complex, together with a ' numbering9 of its set of
vertices, on which the group acts in a highly transitive manner. This
numbered simplicial complex is a tree if and only if the Weyl group of
the Tits system is an infinite dihedral group, for example when G is
PSL(2, K\ K is2i local field, with its affine Tits system structure, or
when G is the central quotient of the group associated to a Kac-Moody
Lie algebra of rank 1. There are non-algebraic examples of such groups
as well, such as the full automorphism group of a numbered tree.

In this paper, we investigate the structure of groups acting highly
transitively on a tree without preserving a given numbering of the set of
vertices. Such groups no longer possess the structure of a Tits system.
However, we show that such groups have a pair of subgroups B and N
which satisfy all the properties of a Tits system, except the requirement
that the generators of the Weyl group should not normalize B. We have
called a group G with B and N satisfying these properties a normalizing
Tits system. We show that these groups have some properties closely
related to, but different from, those arising in the theory of Tits systems,
such as the structure of the set of 'parabolic subgroups' of G. There are
very simple examples of such groups, for instance the full group of
automorphisms of a tree of Gl(2, K\ K a local field.

The most important property familiar from the theory of Tits
systems which still holds for the groups we study here is the existence of
a Bruhat decomposition. However, while the Weyl group is still a
Coxeter group, with a distinguished set S of generators, the rule of
multiplying double cosets by elements of S is very different from the
familiar situation: there are elements s in S for which for all w in the
Weyl group, s.B.w.B = B.s.w.B.

For the theory of Tits systems and some of its applications, the
reader can consult Tits, Bruhat and Tits, Iwahori and Matsumoto and
Garland and the bibliographies referred to therein. The idea of studying
groups with Bruhat decomposition more general than those with Tits
system was first introduced in our work. It was in that paper that the
intimate relation between multiple transitivity and groups with Bruhat
decomposition was first noticed. But while this paper is thus conceptually
closely related to our work, the notion of transitivity here introduced and
the proof of Bruhat decomposition are wholly different Also, the central
notion of this paper—that of a normalizing Tits system—is new.

0. Introduction. Trees arise in a variety of mathematical contexts (see
[Serre]). They are the simplest examples of affine buildings (for the
general theory of buildings see [T], for affine buildings and their origin,

447



448 BENEDICT G. SEIFERT

see [IM], [BT]); it is known, for example, that the buildings associated to
Sl(2, K) where K is a discrete valuation field or to a central quotient of
the group associated to a Kac-Moody Lie algebra of rank 2 are trees (see
[G], [K]); more generally, the building associated to a group with Tits
system is a tree iff its Weyl group is an infinite dihedral group (see [Serre],
Ch. 2, §1). It is a general feature of the theory of Tits systems that a group
acting on its building preserves a fixed numbering defined on the set of
points of the building (see [T]). In the case of a tree, the B and N
occurring in the definition of the Tits system are the stabilizers of a link
and a maximal totally ordered subgraph containing that link, respectively.
It follows from this that a group of automorphisms of a homogeneous tree
containing inversions can not give rise to a Tits system with respect to B
and N as above. Now, there are many important groups acting on a tree
with inversions, for instance the group of all automorphisms or PGL(2, K),
K a local field or, for K any field, Gl(2, K([t, r 1])) acting on the building
defined by equivalence classes of ίΓ[/]-lattices in a free rank 2 module
over iφ,*" 1 ] .

It is the purpose of this paper to study an axiomatically defined class
of transformation groups, which include these examples. More precisely,
we shall suppose that our groups satisfy certain transitivity properties
which can be regarded as a natural analogue of multiple transitivity in the
context of trees (see §2, Definition 2.1). They were motivated by [S.I],
where it was shown that a certain geometric notion of multiple transitivity
implied properties closely related to Tits systems. But it turns out that the
condition we impose is in fact a very direct analogue of Tits' theorem
characterizing groups with Tits system in terms of a certain transitivity
property of groups acting on buildings (see [T], 3.11, p. 44). Our main
result then is that transformation groups with this transitivity properties
satisfy an axiom system closely related to Tits systems, which we call
'normalizing Tits systems'. More precisely, we show that (G,B,N,S)
where B and N are the stabilizers of a link in the tree and a maximal
chain containing it, W = N/N Π B and S a certain set of generators of
W, form a normalizing Tits system (see §3, Definition 3.2). This means
essentially that the quadruple (G,B,N,S) satisfies all of Tits' axioms
except the condition that no element of S normalizes J3, which is false for
the groups we study. In particular, by contrast to groups with Tits system,
B is not self-normalizing.

The group of all automorphisms of a building satisfies our axioms, as
do the other examples given above. We should point out that the groups
we study here share many properties of groups with Tits systems. For
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instance, G has a Bruhat decomposition (Theorem 2.1.)- In fact, as in
[S.I], the Bruhat decomposition plays the principal role for these groups.
Moreover, we can give an explicit description of the set of 'parabolic'
subgroups of such a group (i.e. containing a conjugate of B) very
analogous to (but different from) the description of the set of parabolics
in a group with Tits system (Theorem 3.2.). Furthermore we show that
there is always a subgroup of index 2 and a set of reflections giving rise to
a Tits system (Theorem 3.2.).

There are other intriguing contrasts as well as parallels between Tits
systems and normalizing Tits systems. Thus, for the groups here intro-
duced, there exist s in S such that for all w in W, B.s.B.w.B = B.s.w.B,
which is impossible for groups with Tits system, thus illustrating the
crucial role of the axiom B.w.B.s. Φ B of Tits systems in proving the
characterization of the set of Weyl group elements (for given s) for which
B.w.B.s.B = B.ws.B in terms of the length function in a Coxeter group.

Finally, we should note that both the result and the proof of this
paper are closely related to those discussed in [S.I, S.2]. Indeed, taken
together, these results provide evidence for the close relationship between
transitivity properties in transformation groups and groups with Bruhat
decomposition, and the fact that interesting groups with Bruhat decom-
position exist which are very close to groups with Tits systems but do not
fit into the framework of Tits' theory.

We have refrained from any reference to the language of buildings,
partly to keep this paper self-contained and partly to emphasize the
difference to the theory of buildings, where the numbering on the set of
points plays a crucial technical role.

The author would like to thank the IHES for its warm hospitality and
Ofer Gabber for a useful conversation while preparing this manuscript.

1. Preliminaries. In this paragraph, we establish some basic definitions
needed later. By a graph we mean a pair T = (N, L), N a set (called the
set of nodes) and L a subset of N X N (the hnks of the graph) such that
L is invariant under the involution taking (x, y) to (y, x). A tree is a
graph T such that

(i) N is connected, i.e. for any n, nf there exists a path n =
«(0),...,«' = w(m), such that (n(i),n(i + 1)) is in L. m is called the
length of the path.

(ii) There exists a unique path as in (i) satisfying, for all /: n(i) Φ
n(i + 1), n(i) Φ n(i + 2). That unique path is called the 'geodesic' from
n to n'. The unique geodesic from n to n is the empty path.
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We denote the geodesic from n to n' by p{n,n'). The length of the
geodesic from n to n' is called the distance from n to n\ and is denoted
by d{n,n'). A tree is said to be homogeneous of valence v, v any cardinal,
if and only if the set

N(n) = {n'/d(n, n') = 1} has cardinality υ9 independently of n.

From now on we shall always be dealing with homogeneous trees, of
not necessarily finite valence. Such a tree is uniquely defined by its
valence (up to isomorphism).

We shall consider any connected (finite or infinite) interval of integers
as a graph, by defining N(I) to be / and L(I) the set of pairs of adjacent
elements. We shall call such a graph a chain. (A maximal chain, together
with a fixed numbering of its set of points in the sense of Tits is an
apartment of the tree thought of as an affine building—see [IM] and [T]
or [B] for the language of buildings).

For the graph Z formed in this way from the set of integers itself, we
shall use the following well known and immediate fact:

LEMMA 1.1. (i) The automorphism group of the graph Z, which will be

denoted by W, is the infinite dihedral group Z X [s], with s the reflection in

1/2.
(ϋ) Wacts freely and transitively on L(Z).

A graph embedding of a subgraph of Z in T will be called a flag in T.
We denote the set of flags of type / i n T by F(I). Furthermore, given /
contained in /, we shall write F(J,I) as the set of pairs of flags
(///, f/J) of type / and /, respectively, such that f/J is the restriction of
f/I to /.

The finite oriented flags are just the geodesies.
For a subset S of N(T), we shall denote by cl(S') the connected

component of S. If / is a link of T9 n a node, then cl(/,.w) will denote the
closure of the set consisting of n and of the two nodes of /.

2. The Bruhat decomposition. We now define a function from the set
of pairs of links in the tree onto the dihedral group Z XI Z/2.Z, which
will provide a notion of relative position. Suppose that /, Γ are two links
of the tree. Let Z be any maximal chain and /: Z -> T a flag containing
both / and V (such flags can easily be shown to exist). According to
Lemma 1.1., / is uniquely determined by its image and the link /((0,1)).
We shall choose / such that /((0,l)) = /. Then /' =f((m,m ± 1)) in
L{Z). By Lemma 1.1, again, the pair (m, m ± 1) corresponds to a unique
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element w of W = Z X\ Z/2.Z. We have thus associated to the pair (/, /')
of links in Γ an element w in W, by means of a flag / for which
/((0,1)) = /. Furthermore, it easy to see that w was independent of /,
subject to the requirement that /((0,1)) = /. We denote the map thus
defined from L(T) X L(T) onto W by e, and c~\w) by R(w). We think
of c(l, Γ) as the'relative position' of 1 and Γ.

We now define the class of subgroups which we shall consider
throughout this paper.

DEFINITION 2.1. A subgroup G acting faithfully on a homogeneous
tree is said to be maximally transitive if and only if G acts transitively on
the set F(J,Z) of pairs of flags of type / = (0,1) and Z the graph
defined by the integers, with the obvious embedding.

LEMMA 2.1. For a maximally transitive group G, c defines a bijection
from (L(T)X L(T)/G) onto W.

Proof. The subjectivity of c is immediate. Thus it suffices to show that
G acts transitively on each R(w) = c~ι(w). For two pairs of links (/, m)
and (/', m') we can choose embeddings into graphs Z, Z' isomorphic to
the graph defined by the integers which contain / and m, /' and m',
respectively. By hypothesis we can find g in G such that the pair (/, Z) is
mapped to the pair (/', Z'). Since m and mr are uniquely defined as
elements of L(Z), L(Z'), respectively, by the relative position vis-a-vis /
and /', m will be mapped to m', and thus g. (/, m) = (/', m').

We now fix a maximally transitive group G and a maximal flag
/: Z -> T. We shall sometimes identify Z with /(Z), and write m,
(m, m 4- 1), for /(m), /((m, m 4- 1)), etc. We let N be the subgroup of G
leaving /(Z) invariant and B the stabilizer of the link /((0,1)). We shall
prove that G has Bruhat decomposition with respect to B and N, i.e. that
the following result holds:

THEOREM 2.2. (i) B Π N is normal in N. Letting W be the quotient
N/N Π B, we have

Proof. We first note that, by Definition 2.1., N acts transitively on the
set of links in the subgraph Z. The restriction of N to Z defines an exact
sequence

(1) l-> H^N^W^l
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with W still acting transitively on L(Z). Since W acts faithfully on /(Z),
Lemma 1.1. implies that it also acts freely on L(f(Z)). Acting transitively
and freely on L(f(Z)), again by Lemma 1.1., W is the full automorphism
group of the graph /(Z), i.e. it is the dihedral group Z >3 Z/2Z.

B Π N is the stabilizer of (0,1) in N; since W acts freely on L(Z),
this subgroup coincides with the kernel H in the exact sequence (1); hence
it is normal, which proves part (i) of the theorem.

In order to show (ii), we must do the following:
(a) construct a bijection

p: B\G/B -» W

(b) Prove that for n in N9 ρ(B.n.B) = π(n).
Since G acts transitively on L(Γ), L(T) = G/B and hence B \ G/B

= (L(T) X L(T)/G. Applying c and using the Lemma 2.1, we obtain p
as required, hence (a). Now (b) follows immediately from the definition of
the map c.

3. The normalizing Tits system. We remind the reader of the defini-
tion of a Tits system (or BN pair) (see [T]).

DEFINITION 3.1. Let G be a group, N and B two subgroups, such
that

(T.I) the subgroups B and N generate G.

(T.2) B Π N is normal in N.

Furthermore, the group W = N/B Π N has a set S of generators of
order 2 such that

(T.3) for all s in S and for any choice of coset representatives n(s) of
£ in N, n(s) does not normalize B.

(T.4) for each w in W, s in S, the following inclusion holds:

B.w.B.s.B c B.ws.B U 5.W.5

where we write, as usual, B.w = B.n(w) for some «(w) projecting to w

A quadruple (G, 5, JV, S) satisfying these conditions is said to be a
Tits system (or BN pair in the terminology of [T]).
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DEFINITION 3.2. (G, 2?, N, S) as above is said to be a normalizing Tits
system if and only if it satisfies the axioms above with condition (T.3)
replaced by the condition

(T.3) There exists s in S such that n(s) normalizes B.

We now let G be a group acting faithfully and maximally transitively
(see Definition 2.1.) on a homogeneous tree, / a fixed flag, and let B, N
and W be defined in terms of / as in §2, and denote by (w, n + 1), etc.
the elements in L(T) defined by this embedding. We shall denote by / the
element (0,1) in L(Z) embedded in L{T). In particular, W is the
automorphism group of the integers thought of as a graph. For each i in
1/2.Z we let st be the reflection in i. We let S = {so,sι/2}. It is well
known that (W, S) is a Coxeter system [B, ch. 4].

THEOREM 3.1. The quadruple (G,B,N,S), forms a normalizing Tits
system. Furthermore, there exists no S' c W such that (G, B, N, S') is a
Tits system.

Proof. From Bruhat decomposition for the pair (B, N) we know (T.I)
and (T.2).

We now prove that (G, B, N9 S) satisfies (T.3). Let (a, b) be in L(T).
Then it is immediate that B coincides with the stabilizer of {a, b) if and
only if (a,b) = (0,1) or (1,0). Hence, the normalizer of B in G consists of
the set of elements in G which preserve the set {0,1}. In particular, if n is
an arbitrary element in N projecting to sι/2, then n normalizes B, and
(B, n) = B\J B.n(s). This proves that (T.3) is verified.

It remains to prove (T.4). As in §2, R(w) will denote the G-orbit in
L(T) X L(T) indexed by w.

Suppose now that wl9 w2 are two elements of W. We are interested in
the subset W(wv w2) defined as follows:

DEFINITION 3.3.

B.wvB.w2.B = U B.w.B.

By Bruhat decomposition, any minimal 5-bi-invariant subset of G is
clearly of the form B.w.B. Hence it is clear that the left-hand side in
Definition 3.3., being 2?-bi-invariant, must be a disjoint union of such
double cosets, and hence is of the form indicated. We wish to characterize
the set W(wvw2) geometrically.
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DEFINITION 3.4. A triple (/, /', /") of elements in L(T) is said to be of
type (wl9w29w) iff (/,/') e R(wλ\ (/',/") e Λ(W2), and (1,1") e Λ(w).
For wx, w2, we let

Δ(w1?w2) = {w/there exists a triple in L(T) oi type (wl9w29w)}.

PROPOSITION 3.1. For any wl9 w29

γy(w w \ — A(w w ) .

Proof, (i) Suppose w e Δ(w1? w2), and let (/, /', /") be a triple of type
(wl9w29w).

Then, according to §2, we can write /' = b'.wvl, /" = b".w.l. Further-
more,

By G-invariance of c, we obtain c^w^.b'^.b".wΛ) = w2. Hence, again
by §2, we can write (modulo B) the element g = wίλ.b'~ι.b".w = b'".w2,
and hence b".w = bf.wvb

Uf.w2 (modB on the right), which is the result
required.

(ϋ) Conversely, suppose w in W(wl9w2). Then we can write b.w.l =
bvwvb2.w2.l. Letting Γ = b^wx.l and Γ = b.w.l, we see that c(/, /') = wv

c(/, /") = w. Furthermore,

c{l\l") = c(b1.w1.l,b1.wι.b2.w2.l) = c(l,b2.w2.l) = w2.

Hence (/, /', Γ) is a triangle of type (wv w2, w), as required.
To complete the proof of Theorem 3.1., it suffices to characterize, for

st, i = 1/2 or 0, and for w e W, the set Δ(w9 st). In fact, in view of the
Proposition 3.1, (T.4) is clearly a consequence of the following result:

LEMMA 3.1. (i) Δ(w9sQ) = {w,so.w}.
(ii) Δ(w9sι/2) = {sι/2.w}.

We shall prove a more general result about Δ(w9 v) of which this is a
special case and which will be used later on.

First, we observe that w = wvw2 is in Δ(wvw2). Indeed, fixing a
common apartment Z containing /, /' = wvl, I" = wvw2.l, and using the
invariance of c, it is clear that (/, /', /") is a triple of type (wl9w29wvw2).
Given two links /, /' we define the interval between / and /' as follows:

φ if 1 and V coincide as sets;

the smallest integral interval [a, b], for which a < b

are integers of which one belongs to 1 and the other

to 1', otherwise.
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PROPOSITION 3.2. Δ(w1?w2) = {wτ.w29

 r

p-wvw2/rp is the reflection in

the point p, where p ranges over the set P = [1, 1"] Π [/', /"]}.

Proof. We choose the triple (/, /', /") of type (wvw2,w) (where w =
wvw2) lying in a fixed apartment Z. Suppose p is in P. We choose an
apartment Z' such that Z Π Z' = cl(/>,/'). It follows from val(Γ) > 2
that such a Z' exists. Let m" be the unique element in L(Z') such that
(/', m") is in R(w2). Clearly m" = rp(l"). Let Z" be any apartment
containing both /, and m"'. It is easily verified that Z" contains /". Since
/, /", m" all Ue in Z" and (/, /") e i?(w), (1", m") e Λ(rp), m" = r ^ / ) .

On the other hand, suppose (/,/', m") is a triple of type (w1)w2,w),
with m" not in Z (the apartment containing / and /'), and let p be the
unique point of Z of minimal distance to m". Suppose g, g' are geodesies
from 1 and Γ, respectively to mh\ Both of them contain a link one of
whose points is p. One sees easily that if p is not in P, then one can
choose Z' containing /, /', m'\ and hence u = w. If, on the other hand, p
is in P, then choose Z' and Z" as above. We can then repeat the
argument above to see that (/, m") G i?(rp.w). This proves the proposi-
tion.

We shall use it in the following slightly more convenient form, which
uses the fact that the product of reflections in / and i + 1 is translation by
2 in the Weyl group:

COROLLARY 3.1. Δ(w l9 w2) = {w, s.w, d.s.w,... dr~ι.s.w), where w =

Wi.H>2> T = #(-P), ^ = ^o ̂ ^ I ? and d translation by 2 in the Weyl group.

We now prove Lemma 3.1, and hence (T.4) from Proposition 3.2.
First, if s = sι/2 then [1,1'] is empty, and hence Δ(^,w) = {s.w}. If
s = sλ then [1,1'] = {1}. Hence,

\{5.w) otherwise.

Notice that there exists s, namely s1/2, for which, for all w in W,
Δ(s.w) = { ̂ .w}, a situation which can not occur for Tits systems.

Finally, it is easy to see that S is the unique set of generators of W
for which (T.4) holds. Hence we have proved the last statement of the
theorem.
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DEFINITION 3.2. A parabohc subgroup of G is a subgroup containing
some conjugate of B. We shall denote the set of parabohc subgroups by
Par(G), and those containing B by Par( G/B).

We wish to describe the set of such parabolics. We use the obvious
result

LEMMA 3.2. The map assigning to P the image in W of its intersection

with N defines a bijection between Par( G/2?) and the set of subgroups W of

W, for which, for any w and v in W\

B.v.B.w.B c IJ B.w'.B,

The lemma follows immediately from Bruhat decomposition.

The set of subgroups of W is very easily listed. Each subgroup of W
is of one of the following three types:

(i) W = n.Z XI Z/2.Z, where n is any positive integer; W is a
dihedral group.

(ii) W = n.Z, n a positive integer.
(hi) W = Z/2.Z

LEMMA 3.3. Suppose P = B.W'.B is a parabolic.

Then W is either Z/2.Z or else it contains both one of the reflections s0

or sx and the subgroup of even translations in W.

Proof. We let h = max{#[/,w(/)]/w e W% where / = (0,1). We
distinguish three cases:

(i) h = 0
(ii) h = 1

(iϋ) h > = 2.
Clearly (i) is equivalent to W being either trivial or the group (s1/2).

If (ii) is the case, then according to Proposition 3.2, W must contain the
reflection in at least one of the points 0 or 1. On the other hand, if W
strictly contained the group (s), where s is that reflection, then it would
have to contain some translation which would immediately imply that in
fact h > 1. Hence (ii) is equivalent to W = (s), s the reflection in one of
the points 0 or 1. On the other hand, h > = 2 implies, in view of
Corollary 3.1. that W contains both the translation by 2 and the reflec-
tion in either 0 or 1. This proves the lemma.
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The proof of Lemma 3.3. allows us to completely characterize the
possibilities for Par( G/l?) and consequently for Par(G). To do this most
conveniently, we introduce the following equivalence relation in N(T):

DEFINITION 3.4. n and nf are said to be of equal parity if and only if
d(n,n') is even.

It is immediately verified that in a tree, parity is a G-invariant
equivalence relation. There are obviously two equivalence classes, and the
consequent action of G on the 2-element set of equivalence classes gives
rise to an extension 1 -» G( + ) -> G -> Z/2.Z -> 1.

THEOREM 3.2(a) Par(G/£) = B.W'.B, where W is one of the following
(i) W = <1> andP = B; W = WandP = G.

(ii) W is = 2.Z XI (s0) = 2.Z XI (sx), isomorphic to the infinite
dihedral group.

(in) W = (s) = Z/2.Z, ands = s0 or sv

(iv) W = (s1/2).
(b) Par(G) is the set of the following four types of subgroups in G:

(i) G itself and the stabilizers of links in T.
(ii) G( + ), the subgroup of parity preserving automorphisms of JΓ, i.e.

preserving the sets T( + ) and T(-). Equivalently, the subgroup of G of
elements g satisfying, for each n in N(L), d(n, g.n) is even. It is a normal
subgroup of index 2 in G.

(in) Stabilizers of points in N(T).
(iv) The subgroups of G preserving a set consisting of a link and its

opposite link: they are the normalizers of stabilizers in G of links.

Proof, (a) That (i)-(iv) is an exhaustive list follows from Proposition
3.2 and Corollary 3.1, as in the proof of Lemma 3.3.

(b) Since G acts transitively on L(T), Par(G) is precisely the set of
subgroups containing the stabilizer of a link. Hence it suffices to show
that the four types of subgroups in Par(G/B) are defined by the proper-
ties indicated, (i) is obvious.

(ii) We must show that the subgroup B.W'.B of (a) (ii) equals G( + ).
B stabilizes 0, hence is contained in G( + ). N\ the inverse image of W in
N maps 0 to even elements of Z, hence is also contained in G( + ). Hence
B.W'.B is contained in G(0). On the other hand, if g is in G( + ), then any
inverse image of w in N in any expressions g = b.w.V must lie in G( + ),
since both b and b' are in B, hence in G( + ).
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(iii) From Bruhat decomposition it follows, as in ϋ) that for g = b.w.b'
to stabilizes i it is necessary and sufficient for w to stabilize it. This
proves the claim.

(iv) Since the stabilizer of the unordered pair {0,1} in W is sι/2,
again Bruhat decomposition implies the characterization given.
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