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CONSTRUCTIONS OF TWO-FOLD BRANCHED
COVERING SPACES

JθSίs M. MONTESINOS AND WlLBUR WHITTEN

To Deane Montgomery

By equivariantly pasting together exteriors of links in S3 that are
invariant under several different involutions of S3, we construct closed
orientable 3-manifolds that are two-fold branched covering spaces of S3

in distinct ways, that is, with different branch sets. Sufficient conditions
are given to guarantee when the constructed manifold M admits an
induced involution, h, and when M/h = S3. Using the theory of char-
acteristic submanifolds for Haken manifolds with incompressible
boundary components, we also prove that doubles, D(K,ρ), of prime
knots that are not strongly invertible are characterized by their two-fold
branched covering spaces, when p Φ 0. If, however, K is strongly
invertible, then the manifold branch covers distinct knots. Finally, the
authors characterize the type of a prime knot by the double covers of the
doubled knots, D(K; p, η) and D(K*; p, η), of K and its mirror image
K* when p and η are fixed, with p Φ 0 and η e { — 2,2}.

With each two-fold branched covering map, p: M3 -» iV3, there is
associated a PL involution, h: M -> M, that induces p. There can,
however, be other PL involutions on M that are not equivalent to Λ, but
nevertheless are covering involutions for two-fold branched covering maps
of M (cf. [BGM]). Our purpose, in this paper, is to introduce ways of
detecting such involutions and controlling their number. We begin with
compact 3-manifolds with several obvious PL involutions.

An oriented link L in M is 2-symmetric, if N3 s S3 and if h(L) = L.
In §1, we give examples of knots and links in S3 that are 2-symmetric in
two or more ways; for example, a trefoil knot is both strongly invertible
and periodic (definitions in §1). In §2, we paste the exteriors, E(L) and
E{L'), of 2-symmetric links, L and L', together along a torus-boundary
component of each exterior; Proposition 2.1 gives the pasting instructions
/ that must be followed in order for the involutions, h and h\ of E(L)
and E(L') to extend to an involution hf of E(L) U fE{L'). Theorems
2.2 and 2.3 allow us to conclude, under fairly relaxed conditions, that the
orbit space of hf is S3.

415
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In the remainder of §2, we apply these results to our examples of
2-symmetric links to construct two-fold branched covering spaces of S3.
(Recall that any such branched covering space can always be constructed
by suitable surgery on some strongly invertible link in S3; this idea was
first introduced in [MoJ.) The construction process shows clearly that
many of the manifolds produced have at least two different Heegaard
splittings. Some of our covering spaces are hyperbolic manifolds (obtained
by surgery on the figure-eight knot) with different Heegaard splittings; W.
Jaco has asked whether a hyperbolic manifold could have this property.

In §3, we take the opposite tack and construct 3-manifolds that are
two-fold branched covering spaces of S3 in exactly one way; that is, these
manifolds characterize the type of the link in S3 over which they branch.
Theorem 3.7 characterizes many doubled-knot types in this way. If,
however, K is a prime, strongly invertible knot, then the two-fold branched
covering space of any double of K covers S3 in at least two distinct ways
(Proposition 3.8). Along the way, we classify the strong equivalence
classes of involutions on Seifert fibered manifolds of the form (O, o; 0|0;
2 k/I) with fibered neighborhoods of two regular fibers removed, for k a
nonzero integer (Theorem 3.6). In Corollary 3.10, we characterize the knot
type of a prime knot by the topological type of the two-fold branched
covering space of a certain doubled knot.

We wish to thank S. Bleiler, W. B. R. Lickorish, J. Przytycki and M.
Sakuma for helpful comments. We work in the PL category. One can refer
to [Ja] for most basic definitions and results.

1. Examples of 2-symmetric links. Let p: M -> S3 be a two-fold

branched covering map, let h be the covering involution, and let B be the
branch set of p. An oriented link L in M is 2-symmetric if h(L) = L.
The image L ( = pL) is a disjoint union of knots and arcs. The preimage
of an arc is a strongly invertible subknot of L; that of a knot in L Π B, an
invariant subknot ofL\ that of a component K of L such that Lk(i?, K) = 1
(mod 2), a periodic subknot ofL. The link L is periodic, if all components
of L are periodic simultaneously. Finally, the preimage of a component K
of L such that Lk(5, K) = 0 (mod 2) is an interchangeable two-component
sublink of L.

Let U be a relative regular neighborhood of L in (S3,B). In each
torus component of dU9 we take a meridian-longitude pair (m, /) of the
corresponding knot. In each spherical component of 31/, we take a pair
(m, /) of arcs such that m Π B = dm and / Π B = 3/; moreover, m Π / i s
one point, and m together with an arc of U Π B bound a disk in U. In
each component of the preimage of 3ί/, take a coordinate pair (m, /) that
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projects under p onto one of the above defined pairs (m,/). These
coordinate pairs are related to the canonical meridian-longitude pairs of
the components of L as follows.

PROPOSITION 1.1. Assume that M = S3. Then the coordinate pair
(in, I) of an invariant or periodic subknot KofL is also a meridian-longitude
pair of K. If (mj) belongs to a component Kι of an interchangeable
sublίnk Kx U K2 ofL, then m is a meridian of Kv and any longitude of Kλ

is homologous to I 4- Lk(Kv K2)fh inp~ι(dU).

Proof. Let A be an oriented, connected 2-manifold bounded by K
and transverse to B. Then A ( = p~ιA) is an oriented 2-manifold and
dA = K. Assume that / is contained in A. If K ( = p~λK) is connected,
then 7 is contained in A and is a longitude of K. If K is not connected,
then the canonical longitude V of Kγ is homologous to / + Int(^ί, V)fh in
p~ι(dU). The second part of the proposition follows, since

Ώ, V) = Lk(£ 1 ? K2)., 70 = Lk( £ 1 ? V)

REMARK. When M = S3, we shall take the arcs (m, /) of any spherical
component of dU so that the preimages (m, 7) form a meridian-longitude
pair of the corresponding strongly invertible subknot of L.

We are interested in links in S3 with more than one interpretation as
a 2-symmetric link. We give some examples.

(a) A strongly invertible link that is interchangeable in two different

ways.

FIGURE 1
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(b) A periodic link that is interchangeable in two different ways.

rotation

around o

FIGURE 2

(c) A knot that is periodic and strongly inυertible.

rotation

around E

FIGURE 3

REMARK. In Figure 3 (and in the rest of the figures of this section), we
depict the arc K so that its coordinates (m,/) lie in the plane of
projection. We note that the two constructions of Figure 3 first appeared
in [Mo2].
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(d) An amphicheiral knot: periodic and, in two ways, strongly invert-

ible.

FIGURE 4

(e) K#K: strongly inυertible in two different ways.

rotation

around E

FIGURE 5
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(f) A knot that is invariant, periodic, and strongly inυertible.

First Example.

rotation

around K

(m,l) is canonical

l - 2 η

rotation

around E
( m, /) is canonical

rotation

around E'

FIGURE 6

The knot K (see Figure 6) is contained in the manifold M obtained by
surgery on a link N of two components. We take (mj) as a meridian-
longitude pair of K thought of as part of the link, K U N c S3.

REMARK. For η = 1, the manifold M is the lens space L(3,1)
depicted in Figure 7, which is a two-fold covering space of S3 branched
over the trefoil.

FIGURE 7
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Second Example.

(see [BoGM; Remark 2.6])

(m,l) canonical

FIGURE 8

The knot K is contained in the manifold M obtained by surgery on the
figure-eight knot N. We take (m,/) as a meridian-longitude pair of K
thought of as part of the link K U N.

2. Constructions of two-fold branched coverings of S3. Our goal in
this section is to construct two-fold branched covering spaces of S3 by
pasting together the exterior of links that are 2-symmetric in different
ways. The following proposition gives the condition under which the
resulting manifold admits an induced involution.

PROPOSITION 2.1. Let E(L) and E(L') denote the exteriors of 2-sym-
metric links L and V in the manifolds M and M', with involutions h and W.
Let T and tf be tori in dE(L) and dE(L') with coordinates (m,/) and
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(m',Γ). Form E(L)UfE(L')9 that is, the result of pasting E(L) and
E{L') together along t and 7" according to a homeomorphismf: T' -» t,
such that

on f; the matrix, (β ]) is an integral matrix with determinant — 1. Then
the involutions h and h' extend to an involution of E(L) U fE{L') if and
only if one of the following holds:

(i) both t and T' correspond to periodic knots and γ is even;
(ϋ) t is periodic, f' is invariant, and a is even;

(iii) t is invariant, f' is periodic, and 8 is even;
(iv) both t and T' are invariant, and β is even; or
(v) both f and T' are strongly invertible. D

It is more difficult to decide whether the orbit space under such
involutions (as in Proposition 2.1) is S3. The next two theorems give two
interesting particular cases for which this happens.

THEOREM 2.2. Let Lbe a 2-symmetric link in M such that the link part
of L is trivial, that is, a collection of unlinked trivial knots. For each
component K of L, let N(K) be a knot in a manifold. We assume that
N(K) is 2-symmetric, except when K belongs to an interchangeable sublink
of L. Identify the boundaries of E{L) and E(N(K)) by a homeomorphism,
f: dE(N(K)) -• W{K), given homologically by

on dU(K); the det(£ J) = - 1 and we set A = (£ I); the set U(K) is a
regular neighborhood of K in M, the pair (rh,ί) is a coordinate pair for K,
and (m\ Γ) is a coordinate pair for N(K). Assume also that

(i) if both K and N(K) are periodic, then the orbit space of E(N(K))
is a solid torus and A = (% I);

(ϋ) if K is periodic and N(K) is invariant, then A = (βa\), if the orbit
space of E(N(K)) is a solid torus, and A = (?£), otherwise;

(iii) if K is invariant and N(K) is periodic, then A = (% 2J), if the orbit
space of E(N(K)) is a solid torus, and A = (? JX otherwise;

(iv) K and N(K) are not both invariant;
(v) if K is strongly invertible, then so is N(K); and

(vi) // K belongs to an interchangeable sublink K U K' of L, then
N(K') = N(K) and both matrices are equal to (£ \), if N(K) is trivial in
S3, and to (ι\), otherwise.
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Then the resulting oriented closed ̂ -manifold M admits an involution
whose orbit space is S3. D

REMARK. The manifold M of Theorem 2.2(vi) might admit another
involution arising from a second involution on M that interchanges
KU K'. For example, one involution h on M might arise from an
involution on M that preserves the orientation of each component of
K U K\ and a second involution W on M might arise from an involution
that reverses the orientation of each component of K U K'. In the second
case, we must also assume that N(K) (= N(K')) is invertible, assuming
that M itself arises from the first described involution on M. Generally,
however, M/hf £ S3, as example g(4) (following) shows, when hf = hc

and h = hA in g(4).

EXAMPLES. We have chosen the following examples to illustrate the
representation of 3-manifolds as two-fold branched cyclic covering spaces
of S3 in different ways. We shall use the following notation (Figure 9), in

a > 0; = ycooz a<°
M

FIGURE 9

which det(£ !) = + 1 . Set

1 '

and assume further that α/jβ = [a l 5 . . . ,a 2 n ] and γ/δ = [av...,a2n-ι\
Figure 9 corresponds to the case when

30 \
7/
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We also use the notation of Figure 10, with γ/δ = [av...,a2n_1]

when a/β = [al9..., a2n]. In Figure 11, we depict the case a/β = 43/10.

We now give our examples.

•D-c
FIGURE 10 FIGURE 11

(a) Take L to be the link Kx U K2 of Figure 1, let N(K) be a trivial
knot in S3, and take A = (° ]). The manifold M is a two-fold covering
space of S3 branched over the curves of Figure 12(a), because L is
interchangeable, and over the curves of Figure 12(b), because L is
strongly invertible.

FIGURE 12

(b) Take L to be the (right-hand) trefoil knot of Figure 3, let N(K)
be trivial in S3, and take A = (%]) (respectively, A = (2£ £)). Then the
manifold obtained by 2/δ-surgery (δ odd) on the trefoil (respectively,
l/δ-surgery) is a two-fold branched covering space of S3 in the two ways
depicted in Figure 13 (respectively, Figure 14) (cf. [G]).
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FIGURE 13

REMARK. The knot of Figure 14(a) is the (3,1 - 6δ)-torus knot; the
knot of Figure 14(b), for δ = - 1 , is the ( - 2,3,7)-pretzel knot (cf.
[BGM]). The knots of Figures 14(a) and (b) are equivalent precisely when
δ = 1. By the same method used in [BGM], the homology 3-spheres
obtained by surgery on the trefoil (except the Poincare manifold) have at
least two different Heegaard splittings of genus 2 (note that the knot of
Figure 12(b) has 3 bridges).

(b)

FIGURE 14

(c) Take L to be the figure-eight knot of Figure 4(a), let N(K) be
trivial in S3, and take A = (jg g) (respectively, (2$ J)). The manifold
obtained by 2/δ-surgery (δ odd) (respectively, 1/δ-surgery) on L is a
two-fold branched covering space of S3 in the way depicted in Figure 15
(Figure 16, respectively).

FIGURE 15 FIGURE 16
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On the other hand, since the figure-eight knot is strongly invertible in
two ways (Figures 4(b) and (c)), the manifold obtained by γ/δ-surgery on
the figure-eight is a two-fold branched covering space of S3 in two ways
(Figure 17).

FIGURE 17

REMARKS. (1) For γ/δ = m, the knots in Figure 17 are 3-bridge
knots, and their Conway potential functions show that they are of
different types, if m Φ 0 (S. A. Bleiler has also noted this [Bl]). By the
method used in [BGM], it follows that the manifold obtained by m-surgery
(m Φ 0) on the figure-eight knot has at least two different Heegaard
splittings. Since some of these manifolds are hyperbolic [Th], this answers
the question of W. Jaco: Can there exist inequivalent, minimal, Heegaard
splittings of a hyperbolic manifold?

Jozef Przytycki has pointed out that since the knots of Figure 17 are
3-braid knots, there exist infinitely many 3-manifolds with two different
open-book decompositions of genus 1; the simplest such example is
obtained by 5-surgery on the figure-eight knot.

(2) For γ/δ = - 1 , the knots of Figure 17 take the form of those in
Figure 18. (Note that the knot of Figure 16 (with δ = -1) coincides with
that of Figure 18(a).) The knot of Figure 18(b) is the left-handed (3,7)-torus
knot. The manifold M is the Seifert fibered manifold (O o; 0| - 1; 2,3,7)
(see [M]). We also get M by a +1-surgery on the left-handed trefoil, as
Figure 14(b) shows (cf. [G], [BGM], and [Ta]).

(b)

FIGURE 18
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(3) Note that the manifold obtained by γ/δ-surgery on the figure-eight
knot is the same as that obtained by ( - γ/δ)-surgery.

(4) As observed in [Th], the manifolds obtained by ±1-, ±2- and
± 3-surgery on the figure-eight knot are Seifert fibered manifolds. The one
obtained by ±4-surgery is a graph manifold. We recognize these mani-
folds in Figure 19 [M].

- - 3

m - -2 (Oo; 0| - 1; 2/1; 4/1; 5/1) (Qo; 0| - 1; 3; 3; 4)

(00-1).

(-10-1)

(1,0)

FIGURE 19

(5) For γ/δ = 1/δ (δ Φ -1), the manifold is the two-fold branched
covering space of the knots in Figure 20, which are probably of different
knot types. Because they have three local maxima, the corresponding
manifold would have three different Heegaard splittings.
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REMARK. That the knots in Figure 20 for Example c(5) are, in fact, of
different type for 8 Φ 0 was kindly pointed out to us by M. Sakuma (see
[FS]). The two authors of [FS] obtained this result independently. As
noted on page 191 of [FS], part of the result was known to M. Takahashi
[Taj.

(d) Take L to be the trefoil knot of Figure 3, take N(L) to be the
knot K of Figure 6, and set A = (% j) (respectively, A = (? I)). The
manifold M of Theorem 2.2 is a two-fold branched covering space of S3

(Figures 21 and 22). Since both L and N(L) are strongly invertible, the
manifold M is a two-fold branched covering space of S3 in another form
(Figure 23).

FIGURE 21 FIGURE 22

FIGURE 23

REMARK. For η = 1, the manifold M corresponding to A = (® \)
(Figure 22) is the result of 3-surgery on a double of the trefoil [BoGM].

(e) Take L to be the knot K of Figure 8, take N(L) to be the trivial
knot in S3, and take A = (£ j), (2a

β

 ι

8), or (£ 2l). The corresponding
manifolds MA are two-fold branched covering spaces of S3, and the
branch sets are depicted in Figure 24.
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= Γ2" ιΊ
(b)

= [ o

(d)

FIGURE 24

REMARKS.

(1) For A = (β 2), the manifold MA is the result of 0-surgery on the
trefoil, and so MA is a torus bundle over S1 with periodic monodromy; in
Seifert's notation, MA = (Oo; 0| - 1; 2,3,6) (cf, [M]). The branch set is
shown in Figure 25(a). The branch set of Figure 25(b) comes from Figure
14. That these two branch sets (Figure 25) are equal was pointed out to us
by Sakuma (see his paper [Sa]).

(b)

FIGURE 25
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(2) For A = (β Q), the manifold MA is the result of 0-surgery on the
figure-eight knot. The branch set is shown in Figure 26 in two ways
(corresponding to the fact that MA is symmetric).

FIGURE 26

(f) Take L to be the knot K of Figure 8, let N(L) be the trefoil knot,
and let A be (%l) or {a

β 2g). Then MA is a two-fold branched covering
space of S3 and, in each case, is the result of 0-surgery on a double of the
trefoil (cf. [BoGM]). The branch sets are shown in Figure 27(a) and (b).

2« full twists

(c)

FIGURE 27



DOUBLE BRANCHED COVERINGS 431

Since both L and N(L) are strongly invertible we get another two-fold
branched covering space of S3, whose branch set is shown in Figure 27(c).

(g) The link KXU K2 (= L c S3) of Figure 28 is interchangeable in
two ways, strongly invertible, and periodic. Figures 28(a) and (c) show
(respectively) the orbit spaces V and U of E{Kx ϋ ί 2 ) under involutions
(rotations) of S3 with fixed-point sets A and C; the fixed-point set A is
perpendicular to the plane of projection of Kλ U K2. Figure 28(d) and the
top portion of (b) show the images of Kx U K2 under covering maps
induced by involutions (rotations) of S3 with fixed-point set F (a circle in
a plane perpendicular to the plane of projection of Kλ U K2 and indicated
by two crosses) and 5, respectively. The bottom portion of Figure 28(b)
shows the orbit space, S2 X /, of E(KX U K2) under an involution of S3

with fixed-point set B. The fixed point sets A, B, and C are mutually

φM+ L

FIGURE 28
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perpendicular in R3 U {00} (= S3), and in all four cases k denotes the
image of the fixed-point set under the particular covering projection. We
shall denote the restrictions of the four involutions of S3 to E(Kι U K2)
by gA> 8B> go a n d ZF\ n°te that Fix(gβ) (the fixed-point set of gB) is a
collection of four arcs properly imbedded in E(K1 U K2). Finally, we can
choose tubular neighborhoods of Kλ and K2 so that E(Kλ U K2) remains
invariant under all four rotations of S3.

Set V = E(Kι U K2\ and let Tt be the boundary component of V
corresponding to Kt (i = 1,2); note that gA{Tt) = 7} (1 Φj). Let K be an
oriented knot in S3, set N(Kλ) = N(K2) = K, and let (m\Γ) be the
coordinate pair — in this case, a meridian-longitude pair — for K on
dE(K). Finally, let Eλ(K) and £ 2 (if) be copies of E{K) with corre-
sponding copies {ήι[, Ί[) and (m'2, Ẑ ) of (ra', /'), and let p denote a fixed
integer.

(1) By Theorem 2.2(vi) with pasting matrix (£ *), the involution gA on
F extends to an involution hA on a two-fold branched covering space Z)
of *S3; let p: ί> -> S3 denote the covering map that hA induces. The
branch set pA is a doubled knot — the double of K with twist p. Set
D(K, p) = pA, and write D = Eλ(K) U Tγ V U Ti E2(K).

REMARK. Note that (for fixed p Φ 0) the knot type of D(K,ρ)
depends on the isotopy type of K and that our class of doubled knots
contains all doubled knots up to knot type. We only need the stricter
doubled-knot notation, D(K; p, η), for the statement of Corollary 3.10.

(2) Again, by Theorem 2.2(vi) with pasting matrix (° ^), the involution
gc on V extends to an involution on a two-fold branched covering space
M of S3. The manifold M is the two-fold branched covering space of a
(4p + l,4)-cable about K (Figure 28(c)). We thank W. B. R. Lickorish for
pointing out that in this case, it is necessary to change the orientation of
Kx (or K2) in Figure 28 so that the oriented link Kλ U K2 is inter-
changeable with respect to gc. Thus, the coordinate pairs for Kx (or K2)
(see Proposition 1.1) in (1) and (2) differ in the /-coordinate by ±4m, and
so M = D if and only if M s S3 = Z), which is clear from g(4) (below).

(3) If K is strongly invertible, then the involution gB extends to an
involution hB on D (by Theorem 2.2(v)) that induces a two-fold branched
covering map p'\ D -> 5'3. The Fix(Λ^) is a simple closed curve whose
intersection with V is Fix(g5); abusing notation, we set B = ¥ix(hB).
Hence, the branch set p\B) is a knot in S3 (Figure 28(b)); set Dr = p'B.
By Proposition 3.8, the knot D' is not a doubled knot, when K is prime.

(4) If K is invertible, then gc extends to an involution hc on D. To
obtain D/hc, we attach the boundary of the solid torus U (Figure 28(c)),
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to dE(K) by a homeomorphism ψ: dU -* dE(K) such that

+ 4p -

If p =£ 0, then 1)/ΛC is clearly not S3. If p = 0 and if we attach a
2-handle to £ ( # ) along the curve m! - 4/' on dE(K), then there is (at
the present time) a possibility for obtaining a homotopy 3-cell (K might
not have Property P).

(5) Suppose that gF extends to an involution hF on D with Fix(ΛF)
= F (Figure 28). To see this involution, we consider the link Kλ U K2 of
Figure 28 as a (2,4)-torus link L on a standardly imbedded torus T in S3;
we have 2?(L) = V. The Fix(ΛF) is now the core of the solid torus
bounded by T such that |Lk(£,., F)\ = 1 (i = 1,2). The orbit space V/gF

(= S1 X Sι X I) is the exterior of the Hopf link K? U K% of Figure
28(d). Moreover, if K is knotted, then each of Eγ(K)/hF and E2(K)/hF

is a knot manifold (not a solid torus), if D/hF s S3, because the two-fold
unbranched covering space of a solid torus is a solid torus. But then
E2(K)/hF would belong to the solid torus S3 — lnt(Eι(K)/hF) in a
nontrivial way (not in a 3-cell in the solid torus). This is impossible [BM];
hence, if K is nontrivial and if gF extends to Z), then D/hF £ S3.

(6) Since Kλ U K2 is a (2,4)-torus link, there is one final obvious
involution gf of E(Kλ U K2). This is a free involution that interchanges
the boundary components of E(Kλ U K2). We will show that later
(Theorem 3.6) that the five involutions gA, gBy gc, gF, and gf on V are
the only possible ones, up to strong equivalence (defined in the next
section). One can easily see, by considering orbit spaces and fixed-point
sets, that no two of these involutions are strongly equivalent.

REMARK. Example (g) is important, because it forms the core of the
next section.

In the statement of Theorem 2.3, we shall use the concept of surgery
instruction χ. Given a link in S3, the function χ associates to each
component of the link a rational number and determines, in the usual
way, a manifold obtained by Dehn surgery on the link.

THEOREM 2.3. Let L be a 2-symmetric link in M such that the link part
of L admits a surgery instruction χ that produces S3. Assume also that

(i) // Kλ U K2 is an interchangeable sublink of L, then both N(Kλ)
and N(K2) are trivial in S3, the matrix A = (£ J), and χ(pKλ) = γ/δ;
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(ii) if K and N(K) are both periodic, then the orbit space of E(N(K))
is a solid torus, the matrix A = (β 2£), and χ(pk) = y/δ;

(iii) // K is periodic and N(K) is invariant, then the orbit space of
E(N(K)) is a solid torus, A =(2a

β

y

δ), and χ(pk) = γ/2δ;

(iv) // K is invariant and N(K) is periodic, then the orbit space of
E(N(K)) is a solid torus, A = (jj 2l), and χ(pK) = γ/δ;

(v) if K and N(K) are both invariant, then the orbit space of
E(N(K)) is a solid torus, A = (2yδ), and χ(pk) = 2γ/δ; and

(vi) // K is strongly invertible, then so is N(K). Then, the resulting
oriented, closed 3-manifold M admits an involution whose orbit space is S3.Π

3. Double covers of doubled knots. So far, we have constructed a
variety of 3-manifolds with nonunique representations as two-fold
branched covering spaces of S3. The uniqueness question, however, is also
of interest. In fact, in [BGM; §1, p. 98], the authors ask for a cataloguing
of those knots (and links) in S3 whose two-fold branched covering spaces
characterize their type, and some basic cases are already known to be on
the list. Results of F. Waldhausen [W2], J. L. Tollefson [TolJ, and C.
Hodgson [Ho] show that S3, and S2 X S1, and all lens spaces have unique
representations as two-fold branched covering spaces of S3, and J. H.
Rubinstein [Ru] has shown that certain Seifert fibered 3-manifolds also
have this property. In this section, we extend this list to include the
two-fold branched covering spaces of all the doubles (with nontrivial
twisting) of any prime knot that is not strongly invertible. (Note that this
is a larger class of knots than that covered in the theorem of our abstract
[MW]; we do not require that the exterior of the prime knot that we are
doubling contain no essential annuli.)

Much of the notation that we shall use comes from Example (g) of the
previous section and will not generally by referenced or explained in the
present section. We begin with several lemmas leading to our Theorems
3.6 and 3.7.

Autohomeomorphism h and g of a manifold M are strongly equiva-
lent, if there exists a homeomorphism /: M -> M such that / is isotopic
to the identity and such that h=fgf~ι. To prove our main result
(Theorem 3.7) of this section, we need to classify the strong equivalence
classes of involutions on V. For this we need several lemmas. Note first
that V is a Seifert-fibered solid torus of type (2,1) [Ja; p. 84] with a
fibered neighborhood of a regular fiber removed (V is a bundle over S1

with a disk-with-two-holes as the fiber). Hence, V has one exceptional
fiber (= Fix(gF) = F), and the orbit manifold Fo of V is an annulus.
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LEMMA 3.1. The only closed incompressible surfaces in the two-compo-
nent link exterior V are boundary-parallel tori.

Proof The space V is the exterior of a (2,4)-torus link (the link
Kx U K2 of Figure 28), which is a 2-bridge link, and it is well known that
the exterior of a 2-bridge link contains no closed nonperipheral incom-
pressible surfaces (see, for example, [GL; Corollary 1.2]. D

REMARK. Note that V is the exterior of a well-defined infinite class of
links [BuM], but we shall be interested only in Kx U K2.

A surface in a 3-manifold is essential, if it is properly imbedded,
incompressible, boundary incompressible, and not boundary parallel. A
surface in a Seifert fibered manifold is fiber complete, if the surface is a
union of (Seifert) fibers; this is a variation of the term "saturated" [Ja; p.
87]. By a "surface," we shall always mean a "connected surface."

LEMMA 3.2. The manifold V contains exactly three distinct ambient-iso-
topy classes of essential annuli, each containing a fiber-complete representa-
tive.

Proof. To obtain representatives of the three classes, we lift three,
suitable, properly imbedded arcs (missing the exceptional point) in the
orbit manifold Vo to V. The boundary of one of these annuli is in Tv the
boundary of another is in Γ2, and the third annulus has a boundary
component in each of Tx and T2. Obviously, these are the only fiber-com-
plete essential annuli in V (up to isotopy). But, in V, any essential annulus
is isotopic to one that is either fiber complete or transverse to all the
(Seifert) fibers [WaJ. The restriction of the projection map V -> Vo to an
annulus transverse to all the fibers would, however, yield a covering with
exactly one branch point of an annulus by an annulus. Since an Euler-
characteristic argument shows that this is impossible, our conclusion
follows. D

REMARK. Bleiler has also observed Lemmas 3.1 and 3.2 [Bl].

LEMMA 3.3. Let Q be a (fixed) annulus from the unique isotopy class of
essential annuli in V (Lemma 3.2) with one boundary component in each
component of 3F, and let h be a PL involution on V. Then there exists a
homeomorphism, σ: V -> V9 such that σ is isotopic to the identity and
σhσ~\Q) « Q.
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Proof. By [Tol2], we can assume that h preserves the Seifert-fiber
structure on V. Hence, h induces an involution h0 on the orbit manifold
Vo; if e: V -> Vo is the projection map, then eh = hoe, and the excep-
tional point v0 in Vo (corresponding to the exceptional fiber in V) is a
fixed point of h0.

Now considering Vo as S1 X /, we can find a product fibering of Vo

and an involution g of Sι such that, relative to this fibering, ho(x, t) =
(g(x), k{t)), in which A:(0 = t or 1 - t, for (JC, ί) e S1 X /; this is just a
two-dimensional analogue of Theorem 1.3 of [Kί]. Then there exists a
unique point xQ e Sι such that {x0} X / contains the exceptional point
υ09 and so ho({xo} X /) = {x0} X /. Splitting Fo along {x0} X /, we
obtain a disk 2)0, which must contain a fixed point (x l 5 ίx) of hQ.
Assuming, as we can, that Do is the complement in Vo of a small
Λ0-invariant neighborhood of {JC0} X /, it follows that ho({xλ} X /) =
{xλ} XI Φ {xo}XL

Let Q' = e " 1 ^ JCX} X /). Then Q' is isotopic to Q in F and A(βr) =
2 r To complete the proof, let σ be any homeomorphism on V such that σ
is isotopic to the identity and oQf = Q. Then σho~\Q) = Q. D

LEMMA 3.4. Lei W be a Seifert-fibered solid torus and let h be a PL
involution on W preserving the fibration. Then there exists a meridional disk
D of W that is transverse to the fibration and to the Fix(A), and for which
either h(D) Π D = 0orh(D) = D.

Proof. The proof is the same as that of Lemma 3 in [KT2, p. 267]
except that admissible disks (the collection Σ in the proof of [KT2;
Lemma 3]) are transverse to the fibration, and the Λ-general position
isotopies and the isotopies of α-operations and ^-operations [KT1? pp.
223, 224, 226] are to be taken as fiber preserving (cf. proof of Corollary
4.3 of [Tol3; p. 334]). (Note that Σ Φ 0 , because we can easily find a
meridional disk transverse to the fibering and then put it into A-general
position by a fiber-preserving isotopy.) D

REMARKS. The conclusion of Lemma 3.4 also holds when W is a solid
Klein bottle, but Lemma 3.4 cannot be extended to any other Seifert
fibered manifold, because a solid torus and a solid Klein bottle are the
only Seifert fibered manifolds with a compressible boundary component.

LEMMA 3.5. Let {Av...,An} be a nonempty collection of disjoint

fiber-complete annuli on the boundary of a Seifert-fibered solid torus W of

type (p,q) ((p,q) = 1 and 0 < q < p/2), and let hx and h2 be PL
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involutions on Wsuch that h1\Ai = h2\Ai and hj{At) e [Al9..., An) (i =

1,. . . ,«; J = 1,2). TTieπ fectf/z /2X απJ /z2 <2f*e O P (orientation preserving),

and there exists a homeomorphism f: W' -* W isotopic to the identity

τcl(Aλ U UAn) for which h2 = βj~\

Proof, Let T be a boundary component of Al9 and let ( μ ? λ ) be a

nonoriented meridian-longitude pair for W such that μ meets each

(Seifert) fiber of 3W exactly p times and λ meets each such fiber exactly q

times. Orient λ. Then, for suitable orientations of μ and r, we have

T - qμ + pλ on dW. If hj (j = 1,2) were OR (orientation reversing), then

either hj(τ) - qμ - pλ or hj(τ) ~ —qμ + pλ (on dW). But hj(τ) ~
±(gμ + pλ) (because hj{A^) e {v41?..., An}), and neither gμ + pλ nor

~{qμ+pλ) is homologous to either qμ ~ pλ or —qμ+pλ (because

/?, # =£ 0). Hence, both hx and Λ2 are OP.

Choose a (/?, #)-fibering o n 9 ^ that contains the curves in

{dA v ..., dAn} as (regular) fibers and for which hλ\dW is fiber preserving.

To do this, cut dW along each of the curves in {dAl9...,dAn}. The

closure of each component is an annulus and there are In of them; let Ao

be one of them. Now either hλ(A0) Π Ao = 0 or hλ(A0) = Ao, and

dA0 adA1U •- UdAn. If Λ ^ Λ Q ) Π Λo = 0 , then any (Seifert) fibering

of Ao that includes dA0 induces a fibering of Λ^^o) so that Λ1|

(^40 U /ι1(^40)) is fiber preserving. If h^A^) = Ao, then (as pointed out in

the proof of Lemma 3.3), we can regard hλ\A0 as a product map φ X ψ :

Sι X / -> Sι X / such that φ 2 = 1 and ψ(/) = / or 1 - t, for each t G /.

Hence, we can take { 5 1 X { / } | ί G / } a s a n /zrinvariant fibering of Ao

when H^AQ) = Ao. Continuing through the remaining annuli of our

cut-open version of dW, just as for Ao, we can choose the fibering of dW

to be /i rinvariant.

Now extend this fibering of dW to a (/?,g)-fibering ^' of W. By

[Tol2; Lemma 6, p. 526], there exists a fiber structure #* of W such that

//x preserves the fibers of J^ and such that 2Pf and $F agree on 9ίF.

By Lemma 3.4, there exists a meridional disk Dx of W that is

transverse to both #" and Fix(Λ1), and for which either h^D^) Π Dλ = 0

or h^D-)) = Dv We now apply the proof of Lemma 3 of [KT2] (this is just

the equivariant-disk theorem referred to in the proof of Lemma 3.4

(above)) to find a second meridional disk D2 of W such that Όλ Π

(Ax U U ^ ) = D2 Π ( ^ u U^4W) (which is a collection of span-

ning arcs {a l 9..., α^^} of Al9..., An), such that D 2 is transverse to

Fix(Λ2) and such that either h2(D2) Π D2 = 0 or A2(D2) = D2. The set

Σ of admissible disks in the proof of Lemma 3 (of [KT2]) is taken to be
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the set of all meridional disks of W that intersect Ax U U^4rt in
aγ U ••• Uapn (only) and that are either A2-invariant and in general
position with respect to Fix(/ι2) or are in /i2-general position; the proof of
Lemma 3 (of [KT2]) then goes through with isotopies of W that leave
Aλ U UAn pointwise fixed.

Since 92). meets each At in p ( > 2) arcs, the collection of curves in
{dDp hj(dDj),dAv...,dAn} ( = I}; j = 1,2) induces an /^-invariant cell
decomposition <€j of dW\ note that either Λ1(2)1) Π ί ) 1 = 0 and h2(D2)

Π ΰ 2 = 0 or Λi(2>!) = 2)x and Λ2(2)2) = Di> because hι\Ai = h1\Ai for
each i. The 0-cells of tfj are just the points in

[32)yUΛy(32)j]n[3^1U ... \JdAn].

The 0-cells divide the curves of Γy into arcs — the \-cells of Ήj.

Since dDλ Π dD2 Π(AιU UΛΠ) is the collection {α l 9 . . . , apn) of
pn disjoint arcs (1-cells of both Vι and ^ 2 ) and since hι\Ai = h1\Ai

(i = 1,...,«), there is a homeomorphism fx\W-*W that is isotopic to
the identity r e l ^ U VAn) and that takes Dλ onto D 2 and h^DJ

onto Λ2(2)2). Note that MVJ = ^ 2 and that A ^ i / Γ H ^ ) = ^2; w e s h a l l
denote fιhλf{

1 by Ax and say (following Hartley [Ha]) that we have
varied hλ).

Obviously, hx and h2 correspond on the 0-cells of # 2 ^ ^s a ^ s o

obvious that, if d is either a 1-cell or 2-cell of ^ 2 , then hλ(d) = h2(d);

moreover, hx(D2) = h2(D2). Consequently, by Hartley's trick (Lemma 2.1
and technique A of [Ha]), we can vary hx\(D2 U h2(D2) U dW) so that /*!
and h2 correspond on D2 U h2(D2) U 3W (cf. [Ha, Proof of Lemma 2.3,
p. 178]). Finally, if we split W along the disk(s), D2 and Λ2(Z>2), and
apply Hartley's trick to the resulting 3-cell(s), we can vary hx so that
hλ = h2 on W. Since all these variations of hλ can be chosen to leave
Aλ U UAn pointwise fixed, the proof is complete. D

Let S be a properly imbedded, two-sided surface in a 3-manifold M

and let ΣS(M) denote M split along S. There is a natural projection γ:
Σ S ( M ) -> M, and γ~1(S') is the union of two copies of S each of which is
mapped by γ homeomorphically onto S. An involution g on M with
g(S) = S lifts to an involution g of Σ S ( M ) such that γg = gγ, because S

is two-sided in M.

THEOREM 3.6. Le/ A: be any (fixed) nonzero integer and let Vk denote

the Seifert fibered manifold (O, o : 0|0; 2k/ϊ) with fibered neighborhoods of

two regular fibers removed. There exist exactly five (nontrivial) strong
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equivalence classes of PL involutions on Vk, and every PL involution on Vk

is orientation preserving. The fixed-point sets of these five classes are as
follows: (1) 0 , for one class; (2) S1, for three classes; and (3) four properly
imbedded arcs, for one class.

Proof. The Seifert manifold Vk is the exterior (in S3) of (2,4|&|)~torus
link (meeting each meridian (on some torus) twice and each longitude 4\k\
times) and can also be obtained from (S1 X /) X S1 by (2A:/l)-surgery on
a regular fiber in the (product) Seifert fibration. Note that the conclusions
of Lemmas 3.1, 3.2 and 3.3 hold for each Vk just as for V_x ( = V); the
proofs are the same.

Let gλ and g2 be any two PL involutions on Vk, and let A0 be an
annulus from the unique isotopy class of essential annuli in Vk with one
boundary component in each boundary component of Vk (Lemma 3.2).
By Lemma 3.3, we can assume that gi(A0) = Ao without changing the
strong-equivalence class of g, (i = 1,2). Now suppose that gλ\AQ and
g2\A0 are strongly equivalent. We will show that gλ and g2 are themselves
strongly equivalent.

Because gλ\A0 and g2\A0 are strongly equivalent and because Ao is
bicollared in Vk by a product neighborhood meeting each component of
dVk in an annulus, we can vary gλ so that gλ\A0 = g2\A0; we assume that
this has been done. The space ΣA(Vk) (= Vk split along Ao) is a solid
torus W; let γ: W -> Vk denote the natural projection. Then y~\A0) is a
pair of disjoint annuli {AVA2} on the dW each of whose median is a
(21 A: |, l)-torus knot. If gλ and g2 are the lifts to W of gx and g2, then
gj(Ai) e { Al9 A2] (i = 1,2; j = 1,2). By the first paragraph in the proof
of Lemma 3.5, it follows that each of gx and g2 is OP; consequently, each
of gx and g2 is also OP. Thus, by considering a small 3-cell Q in Vk that
meets Ao in a disk in 3<2, one can easily show that both gx and g2

preserve the sides of Ao or both reverse them. But then, gi{At) = g2(Ai)
(i = 1,2), and so gϊ\Ai = g2|^t/9 because gλ\A0 = g 2 |^ 0 It follows im-
mediately from Lemma 3.5 that gx and g2 are strongly equivalent. Hence,
if gι\A0 and g2|^40

 a r e strongly equivalent, then so are gλ and g2.

As Kim noted in [Ki; p. 382] and as we noted earlier, any involution
on Sι X / is strongly equivalent to one of the form φ X ψ, with φ2 = id
and ψ(/) = / or 1 — ί, for each / e /. Therefore, there are exactly five
(nontrivial) strong-equivalence classes of involutions on S1 X / and, hence,
at most five such classes of involutions on Vk.

As we have seen, however, there are at least five strong-equivalence
classes of involutions (represented by gA, g5, gc, gF and gf) on V. As
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with the (2,4)-torus link Kx U K2 (whose exterior is V)9 it is not difficult
to see that a (2,4|Λ:|)-torus link (whose exterior is Vk) is interchangeable in
two ways, strongly invertible, periodic, and freely periodic (by an involu-
tion in S3). Therefore, there are at least five strong-equivalence classes of
involutions, each composed of OP involutions on Vk. D

THEOREM 3.7. If K is a prime knot that is not strongly invertible, then
the two-fold branched cyclic covering space D of a double D(K,p) of K
characterizes the knot type ofD(K, p), if p Φ 0 (or if K has property P).

Proof. We have D = Eλ(K) U ^ K U ^ E2(K). Let hA be an OP
involution such that Fix(hA) = A (see Figure 28) and such that the
induced covering map p: D -> S3 maps A onto D(K,ρ). Let h' be a
second OP involution on D with Fix(Λ') a simple closed curve A'.
Moreover, suppose that W induces a covering map p'\ D -> S3 with
p\Af) = D'. We shall show that D(K, p) and D' belong to the same knot
type, provided that the prime knot K is not strongly invertible and that
p Φ 0 (which is a technical condition to avoid the possibility that K does
not have property P).

Let Σ denote a characteristic submanifold (called a characteristic
Seifert pair in [Ja; p. 172]) for Z). By [JS; Lemma V.3.3, p. 152], the
inclusion map i: V -> D is nondegenerate [JS; p. 55]. By [Ja; Theorem
IX.17, p. 174], the inclusion map i is homotopic to a map g: V -> ί> such
that g(V) c Σ, and so we can assume (after an ambient isotopy) that
V Q Σ [JS; Squeezing Theorem, p. 139]. Since all incompressible tori in V
are boundary parallel (that is, V is simple), we can assume that, in fact, V
is either a component of Σ or contained in a nonsimple component σ of
Σ. Suppose that the latter holds. Then σ = Wλ U Tγ V U Ti W2 for which
at least one of Wλ and W2 is not 0 .

By [JS; Corollary V.5.1, p. 164], D contains a unique (up to ambient
isotopy), mutually disjoint, minimal family of incompressible tori T (a
characteristic family) such that each component of ΣT(D) is either a
Seifert fibered manifold or a simple manifold. According to the splitting
theorem [JS; p. 157], we can assume that Γ c 3Σ; we can evidently also
assume that 3σ c T [JS; Proposition V.4.4, p. 156].

Since σ is not simple, it must be Seifert fibered [JS; Corollary V.5.1
p. 164], We assume that Wx ( c σ) is not 0 . The torus 7\ is incompressi-
ble in σ (since K is nontrivial), and so 77>

1(σ) contains an infinite cyclic
normal subgroup [JS; Lemma IL4.2(i), p. 23] N. Evidently, ^(σ) is a
nontrivial free product with amalgamation (on ^(7^)), since K is a
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nontrivial knot and Wγ £ Sι X Sι X /. Now suppose that there is no
Seifert fibration of σ in which 7\ is saturated (that is, fiber complete).
Then N <£ ̂ (T^) [Ja; VI.25, p. 102], and so ^(7^) has index two in each
of iΓiiWJ and πλ(VU W2) [GH; Lemma 1, p. 305]. By the corollary of
[Ze l 9 p. 1116] (which is a corollary to the theorem of [Ze2, p. 366]), it
follows that irx{V U W2) « Z X Z, which is not true, whether W2 = 0 or
not. Hence, there is a Seifert fibration of σ in which Tx is fiber complete,
and so Wx is Seifert fibered manifold.

By [Ja; Lemma IX.22, p. 188], Wx is either a cable space, a torus-knot
space, or a composing space (an S^-bundle over a disk with n holes). (It
follows that W2 = Wv because Eλ{K) = E2(K), the family T is minimal,
and the fiber structure on hAW1 is compatible with that of WΎ U V.)
There is an essential fiber-complete annulus Aλ in Wx with 3̂ 4X c Tl9 and
by the construction of Z), /?(<^i) is a pair of meridians of V (= pV) on
dV (cf. Figure 28(a)). But then pAx is an essential annulus in E(K) whose
boundary components are meridians of K, and so Wλ (as well as W2) is a
composing space; that is, AT is a composite knot, contrary to hypothesis.
Therefore, σ = V; that is, V is a component of Σ.

Since 3σ c Γ, it follows that {Tl9 T2] c Γ. Now there exists a char-
acteristic family of tori T' for Z) such that h'T' = Γ r [MS; Proof of
Theorem 3.6]. By [JS; Corollary V.5.1, p. 164], there is a homeomorphism
f:ϊ)-^b such that / is isotopic to the identity and such that f(T')= T.
We shall denote fi'f~ι by h'\ hence, h'T = T.

We claim that h'{Tλ U T2) = 7\ U T2. If not, then for some / and y
in {1,2}, we have h% <£ dV and A'?;, c Ej(K). Hence, ΛT c Ej(K), for
otherwise, ΛrF contains a characteristic torus (either 7\ or T2) in its
interior that is not boundary parallel (because of the minimality of Γ),
which contradicts Lemma 3.1. But if A T c Ej(K), then K must be a
companion of itself, because V is a cable space. Thus, since no knot can
be a companion of itself [Sch], we have h\Tx U T2) = Tλ U Γ2, and so
A'F= V.

Next we claim that A' (= Fix(Λr)) c IntF. If Λ7 c I n t £ z ( ^ ) , then
h'\V is a free involution. By Theorem 3.6, there is exactly one strong
equivalence class of free involutions on V9 and each involution of this
class interchanges the boundary components of V. Hence, h'E^K) =
Ej(K) (i Φ j). This is a contradiction, however, because Fix(Λ/) c Et{K).
On the other hand, if A' Π (Tx U T2) Φ 0 , then h% = η , for at least
one i e {1,2}, and A' Γ\ Tt contains exactly four points, because W is
OP. But then K is strongly invertible, contradicting our hypothesis. Thus
A' c IntF.
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Therefore, by Theorem 3.6, there exists a homeomorphism φ: V -> V
such that φ is isotopic to the identity (on V) and such that φ(h'\V)φ~1 is
either gA, gc or gF. Since φ is isotopic to the identity, we can extend φ to
D. Thus, (φh'φ~ι)\V is either gA, gc, or gF; we denote φh'φ~ι by W. But,
as we pointed out in the constructions of hc and hF, if h'\V is either gc

or gF, then D/h £ S3, because p Φ 0 or K has property P. Hence,
h'\V=gA(=hA\V).

To see that D' and D(K, p) belong to the same knot type, define a:
D -> D by αK^i(^) U K) = id and α | £ 2 ( i 0 = (hAh')\E2(K) (this is
part of Hartley's trick [Ha]). Clearly, a is a well-defined homeomorphism
and Â  = ah'a~ι. Hence, there exists a homeomorphism 5: (S3, D') ->
(S\ D(K, p)), defined by ap' = pa. D

Recall that, if K is strongly invertible, then there is an involution hB

on D that induces a two-fold covering /?': D -* S3 branched over a knot
D'\ also, Fix(/*β) = 5.

PROPOSITION 3.8. If K is a nontriυial, strongly invertible, prime knot,
then D(K,p) and D' belong to distinct knot types] in fact, Df is not a
doubled knot (Figure 28(b)).

Proof. Since D is irreducible, D' is a prime knot. Since K is
nontrivial and V is boundary irreducible, the torus Tx (= θiŝ .KT)) is
incompressible in Z). Now 7\ is invariant under /*#, meets Fix(/z#) ( = 5 )
in exactly four points, and splits D into irreducible, boundary-irreducible
parts. It follows from a result of W. B. R. Lickorish, as Bleiler pointed out
in [Bl], that Df is the join of two prime tangles.

On the other hand, Bleiler has shown that any double of a prime knot
is not the join of two prime tangles [Bl; Theorem 3.1], and so D(K, p) and
D' belong to distinct knot types. Moreover, if D' is a doubled knot (say,
D' = D(K\ p)), then K' is composite [Bl; Theorem 3.1].

Thus, assuming that D' = D(K\ρ') (with Kf composite), we can
write

with respect to K'; as usual we have

Let Σ be a characteristic submanifold for D. After ambient isotopies of
Z), we can assume (as shown in the Proof of Theorem 3.7) that V is a
component σ of Σ (because K is prime) and that V' belongs to a
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component σ' such that

in which Wi is a composing space (/ = 1,2). Since the number of compo-
nents of dσ' is 2n (> 4) (here n is the number of prime factors of the
composite knot K') and the number of components of 3σ is 2, we have
σ £ σ'; hence, σ Π σ' = 0 . Therefore, σ' c £,.(jfi:), for / = 1 or / = 2.
Consequently, σ' is. a torus-knot space, a cable space, or a composing
space [Ja; Lemma IX.22, p. 188]. But σ' is obviously neither a torus-knot
space nor a cable space. It is not a composing space either, because it has
one exceptional fiber and a composing space has none. Thus, we have a
contradiction to our assumption that D' is a doubled knot. D

COROLLARY 3.9. // K is a prime knot and if p Φ 0, then the two-fold
branched covering space D of the double D(K,ρ) of K characterizes
D(K,ρ) among all doubled knots.

Proof. We begin as we did in the proof of Theorem 3.7. We have
ί) = £ 1 ( ί : ) U 7 1 K U Γ 2 E2(K). Let hA be an OP involution on D such
that ¥'ιx{hΛ) = A (Figure 28) and such that the induced covering p:
D -» S3 maps A onto D(K, p). Let W be a second OP involution on D
with Fix(&') a simple closed curve A'. Moreover, suppose that W induces
a covering p'\ D -> S3 with p'(A') = D(K\p'). If K is not strongly
invertible, then D{K,ρ) and D(K\ρ') belong to the same knot type
(Theorem 3.7).

So suppose that K is strongly invertible. Then, by an argument
analogous to that in the proof of Theorem 3.7, we can vary W so that
h\V) = V and h'\V is either gA or gB. The proof of Proposition 3.8
shows that, on the one hand, D(K\ p') is the join of two prime tangles
and K' is composite, if Λ / |F=g β , but that, on the other hand, a
contradiction occurs, because K is prime. Hence, h'\V = gA, and the last
paragraph of the proof of Theorem 3.7 shows that D(K', ρr) and D(K, p)
belong to the same knot type. D

Unoriented knots Kλ and K2 in S3 belong to the same isotopy type, if
there exists an OP homeomorphism (S3, Kj) -> (S 3, K2). Let {K) denote
the isotopy type of a knot K; let K* denote the mirror image of K. With
each doubled knot, we associate a pair of integers (p, η) such that the
twisting number p is arbitrary and the self-intersection number η belongs to
{-2,2}. The triple ({AT}, ρ,η) characterizes {D(K; ρ,τj)}, the isotopy
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type of the (p,η)-double of K; moreover, {D(K; p,τj)} completely de-
termines the triple ({K), p, η) except in two cases when K is trivial [Sch;
p. 234] (cf. [Wh^ p. 261]). Note that the mirror image of D(K; p,τj) is
D(K*, — p, — ij). Our last result follows from Theorem 2.1 of [WhJ and
from Corollary 3.9.

COROLLARY 3.10. Let K and K' be knots in S3, and suppose that K is
prime. Let p and η be fixed integers; p Φ 0, but otherwise arbitrary;
η = ±2. Finally, let D, D' and DQ denote the two-fold branched covering
spaces of D(K\ ρ,η), D{K'\ p, η), andD(K'*; ρ,7j), respectively. Then K
and K' belong to the same knot type if and only if either D = Όf or D = D'o.

Proof. Necessity. Suppose that K and K' belong to the same knot
type. Then, by [Wh^ Theorem 2.1, p. 263], either E(D(K; p,τ?)) =
E(D(K'; p,η)) or E(D(K; p,η)) s E(D(K'*; p9η)). Hence, either
D(K; p,η) and D(K'; p,η) or D(K; p,τj) and D(K'*; p,η) belong to
the same knot type ([G], [BM]). But then, either D = Dr or D = DQ, as
required.

Sufficiency. Suppose that D = Dr or D = Ϊ)Q. By Corollary 3.9, either
D(K; p,η) and D(K'; p,η) or D(K; p,η) and D(K'*; p,η) belong to
the same knot type. Hence either {D(K; p,η)} = [D(K'\ ρ,τj)},
{D(K; p,η)} = {D(K'*; p,η)}, {D(K; p,η)} = {D(K'*; - p , -i,)},
or {D(K; p,η)} = {D(K'; — p, — η)}. But neither of the last two possi-
bilities can hold, because K is nontrivial and η = ±2 (cf. the proof of
Theorem 2.1 of [WhJ). Therefore, either [K] = {K'} or {K} = {K'*}
(see the paragraph preceding the statement of this corollary). D
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