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ON SepX SPACES FOR SMALL λ

DALE E. ALSPACH

It is shown for 1 < p Φ 2 < oo that for each &p λ subspace X of
Lp [0,1] with λ sufficiently close to 1 there is a nonlinear projection from
Lp onto X which factors through a linear projection on LJO,!] with
norm close to 1. Some additional results on representation of certain
operators on Lγ are also proved.

Introduction. It is well known that for 1 < p < oo the range of a
contractive projection on Lp(μ) is isometric to Lp{v) and conversely if X
is a subspace of Lp(μ) and X is isometric to Lp(v) for some measure v
then there is a contractive projection from Lp(μ) onto X, [8]. If X is a
JPpX subspace of I^ίμ) and λ is close to one then it is still true that X is
complemented in Lp(μ) and the projection may be chosen to have norm
close to one, [12], [2]. However, it is an open question whether such a
space X must be isomorphic to Lp(v) for some v.

In this paper we investigate this question and show (Proposition 2.10)
that the question is equivalent for all p, 1 < p < oo, p Φ 2. We also
reprove the theorems of Zippin [13] and Dor [5] on J?Ptλ subspaces of lp

and the result of [2]. We believe our proof clarifies the role of the atomic
measure space in these results and the difficulty in the non atomic case.

The paper is divided into three sections. In the first section w*
integral representations are considered for conditional expectations and
isometries of Lv In the second section the main results are proved and in
the third section some ideas about directions for further work are de-
scribed.

Throughout the paper we will use Lp = ^([0,1], ^ , λ) where 38 is
the Lebesgue measurable sets, λ is Lebesgue measure and p e [1, oo),
p Φ 2. If & is a sub-σ-algebra of the Lebesgue measurable sets <?( |^) will
denote the conditional expectation operator with respect to (S. The
following theorem summarizes the contractive case:

THEOREM 0.1. [3], [8].

(a) If P is a contractive projection on Lp[0,1], 1 < p Φ 2 < oo, then the
range ofP is of the form

{β:f<=Lp([0,l],$,\h\Pdλ)}

where & is a sub-σ-algebra of a, h e Lp, and g(\h\p\<$) = l s u p p Λ .
257
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(b) If X is a subspace of Lp isometric to Lp(v) for some measure v then

X is of the same form as above and the operator Q defined by Qf =

<ί(\h\p-2hf\&)h, for all/e Lp is a projection onto X, with \\Q\\ = 1.

We will also need some results about ££p λ spaces for λ close to one

which are summarized in the following theorem:

THEOREM 0.2. Letp e [1, oo), p Φ 2.

(a) [4] // {jt,: / G N} is contained in Lp(v) for some measure v, such

that for any set of scalars [at: i e N}, with finitely many nonzero,

and if ε is sufficiently small then there exists disjoint measurable sets {At:

i e N} such that \\Xi\A^\ < aλ(p,ε), where Ac

t denotes the complement of

Ar Moreover, aλ{p, έ) -> 0 as ε -> 0.

(b) [12] // { xt: i G N} is as in (a) and {A{. i e N} is a set of disjoint

measurable sets such that

ί \Xi\Pdv>c for alii G N

then

/or α// sets of scalars {at: i ε N ) wiϊA finitely many non-zero, and

a(ε, c) -> 0 as ε -+ 0 and c -> 1.

(c) [9], [2]. Suppose that X is a $?pX subspace of Lp and that {Pn:

n e N} w Λ sequence of projections from Lp onto Xn a X which on X

converge in the strong operator topology to the identity on X. Then if

sup 11 Pn 11 = X is close enough to one there is a projection P from Lp onto X

with \\P\\ < K(p, λ') such that K(p, X) -* 1 as λ' -> 1.

We will use standard notation and facts from Banach space theory as

may be found in the books of Lindenstrauss and Tzafriri [3]. We will

make one particular abuse of notation which deserves comment. If / e Lx

then / acts a functional on C[0,1], namely by (/, g) = / gfdλ however

we will at times simply write / even when we are thinking of the measure

p(A) = jA fdλ as an element of C[0,1]*. Also we will assume that the

scalar field is the reals although simple modifications will give the same

results in complex case. Finally let us mention a simple inequality for Lp9

p > 1, which we will frequently use without comment

(0.3) I M t - W f <p\\z-x\\P, max(||x|U|z||)<l.
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1. Representations of operators. In this section we present a way of

looking at the isometric results (Theorem 0.1) that will motivate the

approach we take to investigate J£p λ for small λ. The representations

that we get are essentially known for general classes of operators but our

proofs use some special properties of the operators and allow us to

conclude that the vector valued functions involved have special properties.

Our first proposition is about conditional expectation operators. The

representation itself is the same as in [6], p. 499, (see also [7]).

PROPOSITION 1.1. Suppose that & is a sub-σ-algebra of the Lebesgue

measurable subsets, 36, of [0,1]. Then, there is a w* Borel measurable

function g: [0,1] -> & where & denotes the probability measures on [0,1]

such that

(a)
d

where

Ij f(ω)g(ω)dλ, h\ = ff(ω)(g(ω), h) dλ for all h G C[θ,l].

(b) rangeg = uvb/1(Γ) (usual unit vector basis oflλ(T)).

(c)

ί g(ω)dλ\G= ί g(ω)dλ for all G E ^ ,
JG JG

Conversely if g is a & to w* Borel measurable function from [0,1] to 0*

satisfying (c) and, for all (?G <&, fG g(ω) dλ is absolutely continuous with

respect to λ then, there is a function h G Lx such that

Proof. Let 9X c ^ 2 c c <gn be a sequence of finite sub-σ-al-

gebras of ^ which generate ^ and let {Λnk)
k

k^\ be the atoms of %.

Define

k{n)

A: = l

(gn) is a martingale valued in &> and by the Martingale Convergence

Theorem ((g r t, h)) converges a.e. for each h G C[0,1]. Because C[0,1] is

separable it follows that the exceptional set may be chosen independent of

h and thus (gn) converges w* a.e. to a function g: [0,1] -» ̂ .
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Clearly g is ^ to w* Borel measurable and thus the operator

Tf = j fgdλ

satisfies Tf = TS{f\S) for all f e Lv Now suppose that / is a &n

measurable function,

k(n)

So

and hence

k(n) k(n)

ΣaJ gdλ= Σ akλ\Ank

Because such functions are dense in L x (^,λ), (a) follows, (c) is an
obvious consequence of (a).

To prove (b) we will show that for each n there are sets A'nk c Ank

with λ(A'nk) = λ(Ank) such that if wk G A'nk, k = 1,2,..., k(n), (g(wk))
- uvb lf(n\ Indeed for each s e N choose i7/"1 c i7/ c ^Λ A :, a closed
subset such that λ(An/c\F£) < 2~2λ(Ank) and let (fk)kk"l b e a partition
of unity on [0,1] such that

/;<->-ί 1" "6JΪ

* |0, ωeFί k'Φk,

i.e., subordinate to {(U^# A F^,)c: A: = 1,2,..., k{n)}. We have that

gdλ,fj\=( (g(ω),ti)dλ(ω) = \im f (gM

Hence

)>fk) > l ~ 2 ~ S / 2 > <° ^ A n k ]
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is a subset of Ank of measure at least (1 — 2~s/2)λ(Ank). If ωk e
limingBs

k for each k then (g{ωk), fk) > 1 — 2~s/1 and necessarily
Σk,Φk(g(ωk), fk,) < 2~s/2 for all s. Thus (g(ωk)) is one equivalent to the
usual unit vector basis of /*(n). Clearly λ(liminf5l?£) = λ(Ank) for each
k, proving our claim and (b) because g(ω) Φ g(ω') only if there is an n
and a k such that ω e Ank and ω' £ Ank. (To be precise we may have to
alter g on a set of measure zero.)

For the converse let h = (d/dλ)JQ gdλ. Clearly the operator Tf =
(d/dλ)f fgdλ is a norm one operator on Lλ and Tf = T<g(f\<g). Sup-
pose that / is <9n measurable and / = Σk

k

{=laklAnk. Then

k(n) , k(n)

T f Σ
k(n)

gdλ=Σ akh\Ank (by (c))
JAk & 1

proving the result. D

Our interest in the contractive case and thus in conditional expecta-
tion operators arises from the results in [1]. There we showed that a
subspace X of Lp which is close in the Banach Mazur distance to L (P) is
actually a perturbation of a subspace 7of Lp which is isometric to Lp(v).
Thus if it is true that a ££p λ subspace of Lp for small λ is isomorphic to
Lp(p) and the distance goes to one as λ goes to one, then there must be an
isometric copy of Lp(p) nearby. Moreover the standard projection as in
Theorem 0.1(b) would then be an isomorphism on the S£p λ subspace.
Hence we are looking for a function g as above and a change of measure
and sign (the h in Theorem 0.1(a)).

Our next result shows that functions like g in the previous result play
a role in isometries as well. Before stating the result we need to introduce
a definition.

DEFINITION. Suppose g: [0,1] -> C(K)*, K compact metric, is w*
Borel measurable and bounded. Then we will say that g is disjointness
preserving on a σ-algebra ^ with respect to a measure μ if for every GΛ

and G2 in ^, Gx Π G2 = 0 then

f gdμ± ί gdμ.
JGγ JG2

Note that condition (c) of Proposition 1.1 guarantees that the func-
tion there is disjointness preserving on ^.
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PROPOSITION 1.2. Let X be a subspace of Lλ isometric to Lλ(v) and
suppose that X = {/• h\f e L x(^, \h\d\)} where & is a sub-σ-algebra of
$8 and h ^ Lx such that #(\h\\9) = l s u p p Λ . Then an operator T: X -*
C(K)*, ,fiΓ compact metric, is an isometry if and only if there is a *& to w*
Borel measurable function g: [0,1] -> C(A")* with ||g(w)|| = 1 α.e. \h\d\
such that g is disjointness preserving on & with respect to \h\d\ and

Tf=ff(Sgnh)gdλ

Moreover, rangeg = uvb/^Γ), (except on a set of measure zero) for some
index set Γ.

Proof. As in the proof of Proposition 1.1 let (%) be a nested sequence
of finite sub-σ-algebras of ^ which generate ^ and let {Ank)

k

k

{"\ be the
atoms of ^ .

Assume that T is an isometry.
Define gn: [0,1] -> C(K)* by

*»= Σ \h\dλ

As before (gn) is a martingale but with respect to \h\d\ and thus
converges w* a.e. |A|rfλ to a function g: [0,1] -> C(K)*.

Defined: Lx -> C(A')* by

For each n and k

SΛl^ = jf \h\gd\ = f \h\gnd\ = T(hlAJ

and thus T = S | x .
Because

ΛM

jfg(h)dλ

| |g(ω)|| = l i e . |Λ|</λ(||g(ω)|| < 1 because ||gB(ω)|| = 1 for all ω e [0,1]).
Finally it is well known that for an isometry T of Lx(γ) into Lx(μ), if
l/il Λ IΛI = 0, |77il Λ |772| = O. Hence g is disjointness preserving on ^
with respect to \h\ dλ.

For the converse suppose that g is given and

Tf=ff(sgnh)gdλ.
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Because g is disjointness preserving, if / =

263

117711 =
k-l

g\h\dλ
k(n)

= Σk /

Thus T will be an isometry if and only if \\JAnk g\h\dλ\\ = j A n k \h\d\, for
all n and k.

Let gn = £(g\@n) (the expected value is with respect to \h\d\)
gn^gw* a.e. \h\dλ. Because ||g(ω)|| = 1 a.e. \h\dλ, lim||gw(ω)|| = 1
a.e. \h\d\.

Let ε > 0 and choose / such that

Then

= Σ

= Σ
Λ,r<zAnk

= /
J A

\h\dλ>(l-ε)[ \h\dλ.
JAk

/ g\h\dλ
J A.

/ g,\h\dx = Σ /
Air AlrcAnk Air

\h\dλ.

dλ

Because ε was arbitrary \\JAnk g\h\dλ\\ = j A n k \h\d\, as required.
The "moreover" assertion is proved in a similar manner to the proof

of (b) of Proposition 1.1 once we observe that the condition of preserving
disjointness implies that there is a nested family (S^) of σ-algebras of
subsets of K and atoms {A'nk)

k

k^\ of Ψn such that

g\h\dλ\A>k=ί g\h\dλ
J A .

for each n, k. We omit the details. D

REMARK 1.3. The condition range g = uvb/x is not sufficient to
guarantee that g is disjointness preserving. Indeed let

ίλ, *e[0,i),
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Then

^
0
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and / g(t)dλ
A/2

/ 2 /2
δ,-i/2*?λ|= 2

[1/2,1]

= λ
[0,1/2] 2

REMARK 1.4. An "isomorphic" version of disjointness preserving
would be that there exist δ > 0 such that if GvG2,..., Gn e @, disjoint,
then

for all scalars (at). It follows easily from this that Tf=jfgdλ is an
isomorphism of L x(^, λ) into C(K)*.

Because we are searching for isometric copies of Lp(y) in Lp which
are perturbations of ££p subspaces in Lp there is little difference be-
tween the case p = 1 and p > 1. More precisely

PROPOSITION 1.5. Suppose S is an isometry from the subspace X = {fh\
f^Lp(&, \h\'dλ)}9 Sψιγ\<§) = 1, ofLp intoLp(Ώ,^,v). Then,

(i) the nonlinear bijections

V: LxandU: L^Q defined by

and

(Ug)(ω)=\g(ω)f-pVpg{ω)

are uniformly continuous on bounded sets and
(ii) the operator

Xp = {f

T = U~ιSV~ι is a linear isometry from

\hΓlh: / ^ , \h\Pdμ)) intoL^Q^.v).

(iii) Qg = U(£{V(g) sgnh\@))V(h) is a (nonlinear) projection of Lp

onto X.

We believe that this proposition is essentially known although we do
not have a suitable reference. We will simply outline the proof:
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The uniform continuity of U follows from the simple inequalities

| ^ - / * | ^ | J - tf ίoτs,t> 0, s,t G R

and

I \ι/p +\t\ι/p

For V we use another inequality: for any ε > 0 there is a constant K
such that

K\s - t \ > \P~ls - \ t \ P ~ 1 t P

such that s < (1 — ε)t or / < (1 — ε)s. This inequality can be proved with
simple calculus.

To see that T is a linear isometry one checks the result on function of
the form / \h\p~ιh where / is simple and one uses the fact that S must
send disjoint functions to disjoint functions.

It is easy to verify (iii).

2. ££p λ descriptions. In this section we will show that given a
nested sequence of finite dimensional subspaces Xn, n = 1,2,..., of a
£ePiX subspace X of Lp such that ΊΪXn = X and d{ Xn, lfmx») < X with λ'
close to 1 that we can find a sequence of finite dimensional subspaces Yk9

k = 1,2,..., of X which are almost nested, [Yk: k e N] = X, and the
y^'s have nicer properties than the Xn's. The intuition for the arguments is
most apparent for the case p = 1, so the reader may find it helpful to
assume that p = 1. Let us also note that we will not keep track of the
actual values of the estimates which occur in the arguments and we have
made no effort to keep them smaller than necessary to achieve qualitative
results.

Let us begin by fixing a Jδ^ description of X which we will use
throughout this section. Thus we have for each n a subspace Xn of X with
dimXrt = k{n) and (xn

k)
k

k^\ c Xn such that the operator Tn: l
k

p

{n) -> Xn

defined by

Tneί = xn

k where en

k = (0,0,..., 0,1,0,..., 0) ("1" in the Jfcth place)

is an isomorphism with ||ΓΠ|| < λl9 WT'1]] < λ1? ||JC£|| = 1, for each k and

Our first lemma shows that there are natural descendents of elements
on the upper levels on all lower levels. (We will speak of downward as the
direction of greater dimension, i.e., (xk~

λ) is above {xn

k)) The reader
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should think of the normalized (in Lp) indicator functions of dyadic
intervals in [0,1] as the ideal case. In that case the descendents are
normalized restrictions of upper level functions to smaller sets.

We will adopt the notational convention that indicator functions will
be written as the set alone, i.e., f\A = fA and to prevent confusion we will
use capital Roman letters from the first part of the alphabet to denote
subsets of [0,1].

LEMMA 2.1. For each Π G N and k e (1,2, ...,k(n)} there is a
measurable subset An

k c [0,1] and for each I > n there is a subset s/£ι of
{1,2,..., k(l)} such that

(b) for each s e j / ^ 7 , there is σ = ± 1 such that

\\x"k{Al Π A's) - ox's\\x"k{Al n A'n) 11 < a^X^x^Al Π A

and

\\x"k{AinA's)\\Φ0.

(c) \\x"k(A"k Π U{A'S: s e < " } ) l l > 1 " Mλx)
(d) α 2(λ 1) ^ 0 as λx -» 1.

Proof. By Theorem 0.2 for each « e N there are disjoint measurable
sets A"k c [0,1], k = 1,2,..., k(n) such that

Clearly we may assume that inf |.x£(ω)|: ω e i" t ) > 0, by passing to
slightly smaller sets.

Suppose xn

k = Σasx's, I > n. By Theorem 0.2(b)

||Σ a,x'.(A,y\ < (Σ W.fY'aiK - 1,1 - βl(/>Λ - 1)')

and consequently

< ax{p, K - 1) + λ iα(λx - 1, (1 - a^p, λx - 1)"))

= bx{p, λ j - λ^ip, λλ - 1).
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Also

k\Λk - Y a2Las

Π A1,) I - a \") '

,\xk*k(Al Π

-λ1a1{p,λ1 - 1).

Let p > 0 and let

^ p = {s: \\x"k{A"k Π ̂ ) -

and

We have that

= {J: |μz(^Z Π

xl{A"k) -

s<=@p

2 ( ^ Π

0 and

267

- 1)

n4)l*ί(4)|

n^)IW(^ί)lΓ)1

Σ | χ ί ( ^
1/P
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Thus

i/P I

- Σ
\s<=38p

>\\xn

k(A»kn[J{Aι

s:s = 1 ,2 , . . .,

P

n\\ - I II YΛ - Yn γιί Λ
11 \\\xk Z^asχA

-x*k(Aln\J{A'.:s-1,2,...,

Hence if p = yjlb^p, Ax) + ^ ( ?, λx — 1) and

p, λ j + α ^ , λx - 1), (b), (c) and (d) will be satisfied. D

While this lemma gives us for each level n a nearby isometric copy of

jk(n) t h e r e j s n o apparent relationship between the sets chosen for one

level and those for lower levels. To help understand this difficulty con-

sider the following simple example.

EXAMPLE 2.2. Fix ε > 0 and let (Bn) be an infinite sequence of

(stochastically) independent subsets of [\ — ε, \ + ε) with normalized

Lebesgue measure and let Xx = [ l [ O i + ε ) , l t i _ ε l ) ] . If we apply Dor's result

(Proposition 0.2(a)) to xλ = l[0,i+ε)> χi = l[|-e,i) a n ^ °̂  ^ e P a^Γ S °f s e t s

C" = [0,1 - ε) U 5Π, C2

W = [ | - ε,l)\ JBM satisfy the conclusion. Now

suppose that Xx c X2 c is the first of the spaces in the £(?p λ

description of X. It is conceivable that in choosing sets Aι

k for the space

Xl9 U{Aι

k: k^s/l1} = C[ and U{Aι

k: kej*}1} = C[. Thus there is no
consistency in the choice of sets.
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The next proposition is actually the key step in our refinement of the
£Cp description of X. It will allow us to fix the shape (change of measure)
for X. Thus we will be able to determine a function like h in Theorem
0.1(a). The notation in this lemma is the same as in the previous lemma.

PROPOSITION 2.3. There exist a sequence z = x£(o> * = 1,2,..., an
infinite subset M c N and for each i e N and I e M9 / > / ( / ) , there is a set
3S\ c ( 1 , 2 , . . . , k(l)} such that

(a) 9S\ Π aj = 0 for alii Φj9 I G M
(b) Wz^Bi Π U{Alj: j G &!})\\ > 1 - β 3 ( λ 1 ) /<?r each i <Ξ N and I <Ξ

M, / > /(/) where Bi = ^ 4 ^
(c)/orfl///G JSf

B 5 d(f9 [x1/. j G Λ/, / = 1,2, . . .] ) < fl3(λi)||/||
/eΛf

(d) //5 G ̂ / /Λ̂ re w α ̂ eί fij c A\ such that \\zi(Bi Π fij)|| # 0 ««rf

where σ = ± 1 .
(e) α3(λ 1) = α3(λ1, p) ^> 0 as λλ-> 1.

Proof. We will determine the sequence (zf ) by examining each x^ in
the order (&, «) < (k\ n') if and only if n < n\ or k < k' and « = n'. Let
ε > 0. (We will place conditions on ε later.)

To begin the process let zx = x\y Bλ = A\ and ^[ = sί\ι for / =
1,2,..., where srf\ι is as in Lemma 2.1, and Mx = N. Now suppose that
we have chosen z; for i = 1,2,..., j , Bi = A%fy, Mt c Mi_1 c N infinite,
and ^/ = s/£$ι for / > /(/), / G M,..

We next consider each xn

k, (k(j), n(j)) < (k,n) until we find the
first (k,n) such that

(1) lim inf χl- Σ

= ± 1 > 1 - ε .

Let z + 1 = xl (k = k(j + 1), n = n(j + 1)).
If no such xl exists then the sequence (z,-) terminates at 7. Assuming

we have zJ + 1 let



270 DALE E. ALSPACH

and let Mj+1 c Mj so that the limit in (1) over MJ+ι exists and equals the
limit superior.

Thus we have defined the sequence (zy) and by a simple diagonaliza-
tion argument we can find an infinite subset M of N so that M \ Mj is
finite for each j . Note that the sets ^ , j = 1,2,..., are disjoint for each
/. We will first prove

(V) l^.nuM:;^'})!^-^)
for each /, and / e M, / sufficiently large, where

^ ( λ j - > 0 a s λ 1 ^ l .

First we estimate

Ί - Σ σJz,.(5(

where σs = ± 1 is chosen as in Lemma 2.1(b).

,- Σ

I
1/P

Σ aΛλrVHB

< (1 - ( 1 - β

(by Lemma 2.1)

+ ^(λ,) < (p + lJα^XJ 1/'

(assuming a 2(^i) < l)

Thus

(2)

and a minor change in the above argument gives

l)a2(λ1)
ι/p

(2a) ,(B,)- Σ
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Also note that these estimates hold for any x^, An

k in place of zi9 Bt.
Next suppose that j G s/»$ι n Uί~i #/. Then for some s

{1,2,...,/ - 1}, fc = 5 and /, σk = ± 1 ,

(3)

and consequently

(4) |μjι

n 4) - n n

(by inequality 0.3).

Hence

n n A n

< Pa2(\1)
1/^zl(A'J) I + , n ,. n ^ n

fa n A'j n B,)\\ - | | φ , nA'J)\\\ +

,. n ^.) ||*j(i?,. n ^ . n Λ,) - *,*,(*, n ^ . n Bs

z, ( Λ, Π Λj Π 5,c) I (|| xj | = 1 and the triangle inequality)

Ϋ^A'j) I + 2/«2(λ1)
1/'|μι(Bi Π 4 ) I

1)||z,(5,. n }̂) I + | | φ , Π ̂ . Π 5;) | (by (3) and (4)).

Thus we have

(5) 1 I φ , n ̂ .) 1̂ .(5,. n 4) -|z,.(5s n 4)|*J(*. n
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Now we are ready to estimate

For large / e M, Π

1 - ε <
i - l

i- Σ Σ ot\zt(A't n Bj)$x',(A', n
7 = 1 tf

i-l

Bt)

(-1

Σ Σ os\Zi{A'sCΛ B) \\x's{A's n Bt)

i-l

Σ Σ UnB^Ain

Σ Σ

^ - Σ

/ - I

Σ Σ iHA'tnBl)lx',(A'.nBl)

i - l

Σ Σ

(by the triangle inequality and the disjointness of the sets
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/ - I

Σ Σ (5pa2{\1)
1/Ίzl(A'g)i +\z,(Bj Π A's n *,«

1 ^

ί - 1

u u n (by (2) and (5))

(we have used (2) and Lemma 2.l(c))

Hence if b^) = (Ip + 3)a2(λ1)
1^

(6)

From this we see that

(7) !*,(*, n U{4: *e i

Σ σjz,.(^n 5,

> 1 - ε -

Thus we will need

, " Σ σjz,(4n 5,
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The sets ί?/ are not large enough to guarantee (c). But U#/ is large
enough to have dense linear span as we will next show:

(8) iΏflΛx -y\\: y e \χ'k: k e \J <f/, I e M, I > n j = 0

for all x e X and n e N.

In order to actually satisfy (c) we will need to enlarge the sets #/.
To prove (8) note that we have for each k < k(n), n e N, and δ > 0

- Σ Σ *,*ί(4 n Bj < 1 - ε + δ

for some (as) and for / sufficiently large, by (1) or (2), provided

Because (xjt)*^ is equivalent to the unit vector basis of /*(n) Theorem
0.2(a) gives us disjoint sets 2k c {l,2,...,Jfc(/)} such that \\TΓιxn

k{£>c

k)\\
< a^p, λ\ - 1). Thus if x = Eft^x^ then

T Tax1

Σbk[xn

k-Σ Σ as1.

Σ as

Σbk[τr'xn

k{®k)-Σ Σ β/rί)

Γ1**-- Σ Σ

\\a(\\ - 1,1 - at(p,λ\ - l)P)\\x\\ - ε + δ).
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Consequently if

(**) 1 > γ = λ\(a(λ\ - 1,1 - a^pΛl ~ l)P) +(1 - e + δ ) λ j

the standard proof of the Open Mapping Theorem, e.g., [11], shows (8).
We have yet to define the sets Sί\ but to do so we will first introduce

sets 3>\ which will not be disjoint for fixed / but will be related to the sets
9»\ by Λ\ c 2\ for each i and / and U, 3β\ = U, 9\.

Note that for each k e <&? we have

\x*k(Al n A's) - os\x"k(Al Π A1,) \\x's{A's

and

11 (̂̂ 2 Π Bt) - o\\zt(Al Π Bt) \\xn

k{A»k) || < a^λ^z^Al Π Bt) I

Let

Q\ = {s: there exist A c Aι

s such that

<(p^2)a2(λ1)
1/2p\\zi(AΠBi)l

for some σ = ± 1 and | |z y (^ Π 5,.) || # θ}.

(Note that ®\ D j / $ f . )
The two inequalities we sighted above suggest that 3>\ will contain

much of Ufcetgn sίk

ι and our next argument will make this more precise.

a2^\)\zi(Ankn Bt)\ ^ I k ί^ίί n Bi) - AzλAnkn Bi)\\χk(Al

» ^ II I An τ\ Λ I \

(by (2a) but for xn

k rather than z ).
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- ( Σ

VP

1/P

I/P

(definition of 3>\ with A = An

k Π Aι

s)

{p + 2)a2(λι)
1/2'\\zι({J{A»k n BtnA',: s e ^

- | | [ z f . ( ^ Π 5y) - α|μ,-(^Z Π Λ.) \\x"k(A»k)] u{Aι

s:

Rearranging and estimating the last term by a2(\ι)
ι/p\\zi(An

k Π Bt)\\ we
have

(9) 2aΛλ

A's: s

Above we used only those s for which the inequality in the definitions of

3)ι

k fails for A = An

k Π ^ . Denote by 3>i the subset of ^ / for which this

inequality holds for σ = σs and A = An

k Π Aι

s. Next we will see that xk is

close to [jcί(^i): s e j ^ n / n ^/] and thus is close to [ J C ^ ) : S e j ^ w / n

Os\\Xk\Asn Λk)\\Xs\Λs

- Σ

s^s4£l\2)\
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\\xϊ(AinA',)(

l/p

\

(by (2a) applied to xn

k rather than zt

l(Al Π \J{A't: i e

So if A: e %"

(10) d(x"k(A"k), [x's{A's):

+ l ) * , ^ ) 1 " + α 2 (λ x ) + 2 α 2 ( λ 1 ) 1 / 2 '

(because k e <g" and by (9) and the remark following (9)).

ΐ n A)a2{\x)
1/2'

Now we will prove (c). Let / e X By the proof of (8) for any n e N
there are integers /(/) <= M, n < 1(1) < 1(2) < - and

such that | | / - ΣfLiXjl < γ^l/Hand Hx.H < ( γ ^ 1 + γ') | |/ | | .
Suppose that JC,. = ΣweU^/(o «^^°. Then by (10) and Theorem 0.2

for any / sufficiently large there is an element

s u c h that WxZHA'P) -y!n\\ < ( P + 5 ) a 2 ( λ ι ) ι / 2 p for e a c h m
and the 7^'s are disjointly supported. Thus

< [β(λx - 1,1 - «!(/»,λi " 1)') +(/» + SjβΛλ

Let

« = λ j ^ λ , - 1,1 - βl(/»,λi " 1)') +(/» + 5)β 2(λ 1) 1 / 2 '
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Then
N

f <
N

f — V Y

i — \
+ Σ

^yl/B+βΣίr'-N
ι * l

Hence if

(***) α 3(λ 1) >

(c) will be satisfied.
Finally to choose the sets {%[ note that 9>\ D sij$ι => ̂  and the ̂ l

are disjoint and satisfy (7). So to satisfy (b) we need only choose 3$\ D ^/
by allocating U ^ / \ U %ι among the ^/ so that 9)\ D ^/.

It is easy to see that ε and α3(λ1) can be chosen to satisfy (*), (**)
and (***), completing the proof. D

REMARK 2.4. The condition (b) in the statement of Proposition 2.3
also can be made to hold for U{ Bj: j e 96\) in place of U{ A1/, j e &[}
with perhaps a slight change of Λ1(λ1) to 53(λ1) which also tends to zero
as λλ goes to one. Indeed if j e <3t\, (d) and Lemma 2.1(b) show that

n : 7 Π

Λ/P

From this point on we can use the elements

zi{BiΠBi)/\\zi{BiΠBi

in place of the original (x£) Indeed Proposition 2.3(d) guarantees that
x*s - σẑ -B,. Π J5/)||̂ f.(Λf. Π JB/)!!"1 and (c) guarantees that the closed spans
are close together. Because for each n e M, each k < k(n) belongs to at
most one 3&" we will without loss of generality assume that the sign σ in
Proposition 2.3(d) is 1. One could produce a projection on X by ob-
serving that a weak operator limit (p > 1) of projections on

, n 11, i= 1,2,...
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is an isomorphism from X onto its range. However this does not give us

any new information. We will instead produce natural associated opera-

tors on Lv

First we need to refine our family of functions a little more. For each

i consider the sequence (au)l(ΞM where aa = \{Bi Π U{BS: s ^ ^/}). By

passing to a subsequence we may assume that ]imι_^O0Σy=iaJι = at exists

for / = 1,2,....

Note that

(11) ]imau = a,- ai+1 > 0

because \\zi(Bi Π U{5/: s e aι.})\\ > 1 - 53(λ1) by Remark2.4.
Define/,: [0,1]^ C[0,l]*by

(We have omitted the </λ.) Where Vf = \f\p~ιf as in Proposition 1.5.

Because SS\ Φ 0 for at most finitely many ι, /7 is a simple function.

LEMMA 2.5. /// is a measurable subset of [0,1], (/7 fidλ) is uniformly

absolutely continuous with respect to Lebesgue measure. Consequently the

sequence of operators (7)), TJ — j ffιd\, f G Lλ is relatively compact in

the weak operator topology.

Proof. Let ε > 0. choose i(o) such that a/(<?) < ε/2. For each / < i(o)

there is a 8t > 0 such that if A c [0,1] is measurable and λ(^4) < δi9

j \zi\P(A)dλ<(p?)ε/2i(o) where p, = inflz^w): w e J . } > 0 , (by

Lemma 2.1(a)). Now let 8 = minδz. If A c [0,1] and λ(Λ) < δ then

fιdλ\(A) Σ Σ
lv(z,)(B,nB]

ϊ Σ au+ \V(Zi)\dλ < 1
2

for large enough /, proving the lemma.
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We are now in a position to prove a result of this author and W. B.
Johnson [2].

COROLLARY 2.6. There is a constant λ 0 such that if λ < λ 0 and X is a

JSPljλ subspace of Lx then X is complemented in Lv

Proof. With the notation above we have a sequence of operators Tι on
Lλ defined by 7)/ = / fftd\ with 11(7}- 7)|[JC/. Λ e U ^ ] | | < 6(λ) where
b(λ) -+0 as λ -> 1. Indeed

7)4= Σ Σ;/Bng;(sgπz,)x^λ ii ' L ^ ^ π

Because

x ' ( A M < «3(λ1) for some s,

^ - 1

Hence

lXk

(by Proposition 2.3(d))

and thus WTjX^ — xι

k\\ < 4β3(λ1), proving our assertion. ((xι

k) is equiva-
lent to the uvb l()

The previous lemma shows that (7)) has a weak operator limit point
T. If x e X, Proposition 2.3(c) implies that for each / sufficiently large
there is an element yι e [xι

k: k e U^/] such that \\x - yt\\ < 2^3(A1).
Therefore

\\Tx - χ\\ < \im[\\TlX - T,yι\\ +\\Tιyι-y,\\ +\\y,- x
I

Also if z e range T then z = w lim 7)^ for some y e Lx. Then Tty e
[zf.(5f. Π Bj): j e U^/l and thus diT^y), X) < 2λ1α3(λ1). Because z e
coΓ7j, J(z, X) < 2λ1α3(λ1) as well.

It follows that if λx is close enough to one T is an isomorphism of X
onto the range of T and that Q = (T\x)~ιT is a projection onto X.
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Our next lemma states that an operator T which is a weak operator

limit of operators Tι on Lλ is representable in the sense of Proposition 1.1

and that the vector-valued function is an average of the /z.

LEMMA 2.7. Suppose that (7}) is a sequence of operators on Lλ of the

form TJ = / fftdλ, where ff. [0,1] -> C[0,1]*, which converges in the weak

operator topology to an operator T. Then there is a function g: [0,1] ->

C[0,1] * such that Tf = / fgdλ for allf e Lλ and necessarily

I gdλ = w lim I fdλ, for all measurable sets A.
JA JA

We omit the proof of this lemma which follows from general repre-

sentation theorems, [6]. Let us remark that it is also possible to prove this

lemma by considering the functions gj = Σ2

k

J=ι [limy jIjk ffdλ]!^ where Ijk

is the A:th dyadic interval of length 2~j, and then using the Martingale

Convergence Theorem as we did in the proof of Proposition 1.1.

Next we will show that if A" is a ££p λ space for p > 1 the arguments

used in Corollary 2.6 also apply to V( X).

PROPOSITION 2.7. Let TJ = / fftd\ for all f ^ Lv I e M, and let T

be a weak operator limit of 7). Then there is an infinite subset K c M such

that
(i) for each I e K

(I - Γ)|[κ(χ™):5€=u{^;":./=i,2,...}]| < « 4 (λ 1 ) for all m e K, m < I

and T^y^y sGU^L J = = ι 2 ^ is an isomorphism onto range7) with \\Tf~l\\ <

1 + α 4 ( λ 1 ) , // λ x is close enough to one.

(ii) | | ( 7 - 2")[rangeΓil < ^ ( λ i )
(iii) for all I e K,

(iv) α^λi) ^0asλ1^l.

Proof. Fix / e Λf and note that

is 1-equivalent to uvb/[ where r is the cardinality of U y ^ j and thus
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(V(xι

s)) is also equivalent to uvb/[. Suppose that s e (2t\. (Here || || is the
Lγ norm.)

\v(x't) - T,V(x[)\ -|κ(xί) - ff,V(x't)dλ

Hx's) - | ^ ' Π ^ | / | v(x[) sgnztdλ

+ Σ Σj|Φί)(*,n*,')| + Σ |φί)(5,ns;)

r(z,)(*,na;)v(χί) -

1 - /" F(x^)sgnz(Jλ
JB,r\Bl

< 4p( β 3 (λ 1 ))

where p is the modulus of continuity of Von BL.
Because V(xι

s) is (1 - p ί ^ λ ^ ) ) " 1 equivalent to the uvb/x

m we have
that

foranyjG [v{xι

s): s e \j[i*}, j = 1,2,...}].

Thus if λλ is close enough to one Tι\[Vixιs):seUaι^ is an isomorphism. The
other assertion in (i) follows from Proposition 2.3(c) and the uniform
continuity of V if we choose a suitable subset K of M. Indeed, if
x? = Σa,xι,

Now use (c) to make the first term small. The inequality for the span
follows from the fact that (V(x™)) is equivalent to uvb/f where q is the
cardinality of U^/2.

The proofs of (ii) and (iii) are similar to the last part of the proof of
Corollary 2.6 and we leave the details to the reader. D
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We are now ready to prove our nonlinear factorization theorem.

THEOREM 2.8. For eachp, 1 < p Φ 2 < oo, there is a λp such that if X
is a ££pX subspace ofLp, λ < λ^, then there is a linear projection Q defined
on Lλ and a continuous nonlinear projection W from Lp onto X such that

(i) \\UQVx - x\\ < fl5(λ)||jc|| for all x e Bx, as(λ) -> 0 as λ -> 1
(ii) W=PUQV(PUQV\xy

1

where

uf-\fΓ'v'f, vf-uΓ1/,
and P is a bounded linear projection of Lp onto X.

(iii) | |P | | < 1 + fl6(λ), Hβll < 1 + fl6(λ) where a6(λ) ^ 0 as λ -> 1.

Proof. Proposition 2.7(ii) implies that if Y = rangeΓ, Q = (T\γ)~ιT
is a projection onto Y, if λ is close enough to 1.

If x e X, ||x|| = 1 then f or / e ^ sufficiently large there i s a z e
ί): 5 e UΛJ], ||z|| = 1 such that \\V(x) - z\\ < 4(1 - P(a3(\1))r1

By Proposition 2.7(iii),

\\V(x) - QV(x)\\ < | |K(x)-2 | | +\\z-Qz\\ +\\Qz- QV{x)\\

< b{λx) +\\z - Tz\\ +\\Tz -

+ β4(λ1) +
i - a

and thus

||JC - UQVx\\ =\\UV{x) - UQVx\\ <

where δ is the modulus of continuity of U on BLι. Now observe that UQV
is positive homogeneous. Indeed, if γ > 0, UQVyx = UQypVx =
Uy»QVx = yUQVx. Hence for

\\x - UQVx\\ <

Because X is a 3?p λ subspace of Z^ and λ is close to one there is a
projection P of Lp onto X with | |P | | < 1 + b2(λ) where ft2(λ) -> 0 as
λ -> 1.
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Hence

||JC - PUQVxW = \\P(x - UQVx)\\ < (1 +

and / - PUQV maps X to itself. Thus if λ (and thus Xx) is close enough
to one, PUQV has a continuous inverse (Σ^Uί 7 ~ PUQV)n =
(PUQV)~ιconverges uniformly on bounded sets.) D

Next we want to observe that the results of Zippin [13] and Dor [5]
follow from our results.

COROLLARY 2.9. For eachp, 1 < p < oo, p Φ 2, there is a constant λp

such that if X is a ££pX subspace of lp, λ < λp, then X is isomorphic to lp

andd(XJp) -> 1 as λ-> 1.

Proof. We may assume that X c Lp(SSλ) where 8tx is a purely atomic
sub σ-algebra of SS. We may also assume that the sets in the conclusion of
Proposition 2.3 are all &&λ measurable and thus the operators Tι have
range in Lλ{^Sλ) = lv By Lemma 2.5, (Γ7) has a w operator limit T.
Because lx has the Schur property [6], p. 295, T is also a strong operator
limit. Each of the operators Tt is a contractive projection and therefore T
is a contractive projection as well ((7)2) converges to T2). Hence by
Theorem 0.1 the range of T is isometric to lλ and is of the form

h: / G Lτ(a29 \h\dλ)} w h e r e ^ 2 c ^ and g( \h\ \a2) = l s u p p Λ .

Now observe that z = [/(rangeT) is a closed subspace of Lp(48l9 λ)
which is isometric to lp. Moreover the projection P as in the previous
theorem must be an isomorphism of Z onto X. D

Our final result is that the solution of our problem for all p would be
consequence of a solution for any p.

PROPOSITION 2.10. Suppose that for some /?, 1 < p < oo, p Φ 2, there
is a function p(λ): [1,1 + ε] -> R, Iimλ_^1p(λ) = 1, such that if X is a
JPpX subspace of Lp9 λ < 1 + ε, then there is a measure v such that
d(X, Lp(v)) < p(λ). Then for each r, 1 < r < oo, r Φ 2, the same result
holds.

Proof. We will show first that if the hypothesis holds for p > 1, the
result holds for r = 1. Let X be a JSf\ λ subspace of Lx. Let (zz), (2?, ) and
(J?j) be as in the conclusion of Proposition 2.3. Consider the projections
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on Lp defined by

f V V ί \rΓ2rf.i\ z ' ( * ' n * 'ιf= L L I k l Zifdχ-Γ~7~: IT

Each S/ is a contractive projection and because p > 1 we may assume
that (5/) converges in the weak operator topology to an operator Son Lp.

We claim that ||(S - / ) | r a n g e 5 | | < c(λ) where c(λ) -> 0 as λ -» 1. We
will omit the proof of this claim because the proof is similar to that of
Proposition 2.7.

It now follows that if c(λ) is sufficiently small that Q = (S\τangeS)~1S
is a projection onto Y = range S and that Y is a ££p α subspace of Lp and

α = α ( λ ) -> 1.
If λ is close enough to one then d(Y,Lp{v)) < p(α) for some v.

Moreover there is a subspace Z of Lp such that Z is isometric to Lp(v)
and Z is a perturbation of 7, [1]. Hence F(Z) is isometric to Lλ{v) and is
a perturbation of X

Now assume that the hypothesis holds for p = 1 and that X is a JŜ  λ

subspace of Lr. By Theorem 2.8 there is a projection Q on Lx with
range Q a c2\,α(λ) subspace of Lλ where α(λ) -> 1 as λ -> 1. If α(λ) is
small enough there is a subspace Z of Lx which is isometric to Lλ(v) for
some measure P and which is a perturbation of range Q. It follows that
C/(Z) is isometric to Lr(^) and is a perturbation of X. D

3. Final remarks and open questions. The results of the last section
provide some evidence for the conjecture that ££p x spaces are Lp spaces
for λ small enough and suggest that JS?ljλ spaces may be the easiest point
to begin. The results of section one indicate that it may be possible to
obtain results in this case by examining the representing functions.

Question 1. Suppose {Et) is a sequence of conditional expectation
operators, i.e., Ei = <?( | ^ ) , and w.oplim,. £y = T. What conditions on
(Ej) will guarantee that there is a conditional expectation operator E with
\\E - T\\ small? In particular, what if ||Γ - P\\ is small for a projection
PΊ

This is a special case of what we need to solve the general problem.
However, it may be that an extreme point argument, applied to the
representing functions would be an approach.

Question 2. If X is a JSPljλ space, λ near one, is there a sequence of
conditional expectation operators (E^ such that X is isomorphic to
range w op lim Ei9 i.e., can the problem be reduced to Question 1?



286 DALE E. ALSPACH

Proposition 2.3 almost proves this. We have there reduced the "shapes"
to that of the z/s but we would need either a single function z or
equivalently to have disjoint sets Bt as in Proposition 2.3 to obtain this
result. At first glance it might seem that

would be satisfactory. However trivial sign changes could result in z
vanishing on important sets and even the weak limit of the absolute values
does not seem to guarantee that the span of (z(Bi Π 2?/)) is appropriate.
Again what we need is not an average but an extremal element. Another
equivalent viewpoint on this question and Proposition 2.3, is that we need
to decompose the c2\ λ space into an lλ sum of subspaces each with an
appropriate zt.

Finally let us note that it may be possible to obtain at least a
qualitative result by showing that if X is not isomorphic to lλ then
[zi(Bi Π 2?/): s e &!, I = 1,2,...] must contain an isomorph of Lx for
some i and thereby avoid the decomposition difficulty.

Added in proof. Proposition 1.5 is essentially due to Mazur. S. Mazur,
Une remarque sur I Ίtomeomorphism de champs fonctionnels, Studia Math.,
1 (1930), 83-85.
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