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ON THE DIOPHANTINE EQUATION 1 = £ 1//I, + 1/Π"/
AND A CLASS OF HOMOLOGICALLY TRIVIAL

COMPLEX SURFACE SINGULARITIES

LAWRENCE BRENTON AND RICHARD HILL

Let n\,...,riN be integers > 2, and let x e X be an isolated
two-dimensional complex singularity whose dual intersection graph
is a star with central weight 1 and with weights n, on the arms.
Then X is locally the cone on a homology 3-sphere if and only if
Ί2nΓl + ϊln7l — l AM s u c ^ u n ^ fraction expressions for 1 are
given for N < 7, and properties of such sequences {A?,} are discussed
in general.

In this paper we will establish a correspondence between two-dimen-
sional complex singularities whose local fundamental group is perfect
and whose dual intersection graph is a star, and solutions in integers
to the equation

Next we will discuss techniques for finding solutions to (1). We have
found all solutions (there are a total of 42) for N < 7, and many
further examples for larger N. Our techniques involve both elemen-
tary number theoretic methods and computer-aided searches. These
in turn give rise to several unanswered questions in the theory of Egyp-
tian fractions, the most general being as follows (Professor Erdόs offers
$100 for a solution): Let ΠQ, n\,..., n^ be positive integers, relatively
prime in pairs, with Λ, > 2 for / > 0. Under what conditions do there
exist integers Λ* + I , . . . , n^, all > 2, such that

ι=l Ά ι Π = l Λi

It might be remarked that no solution to (2) is known for ΠQ > 1.

We wish to thank our colleagues Daniel Drucker, Judith Longyear,
and Steven Williams for many useful conversations and suggestions.
We also thank the referee for improving the exposition by calling our
attention to some relevant work by other authors.
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1. Geometric preliminaries. Let (X, 0χ) be a reduced, locally irre-
ducible two-dimensional complex space with an isolated singular point
x. A standard technique, due to Milnor, for investigating the topo-
logical structure of X in a neighborhood of x is as follows. Embed
a small neighborhood U of x in a complex polydisc Δ^ c C^ with
x corresponding to the origin. Intersect U c AN with a small sphere
SeN~[, centered at the origin and of radius ε. For all sufficiently small
ε, SeN~ι Π U is a smooth three-dimensional manifold Λf3, indepen-
dent of ε, and B™ Π U is topologically the cone on M 3 = d [BjN Π £/),
where B}N denotes the ball of radius ε. The singularity x G l i s
called homologically trivial if A/3 is a homology sphere—that is, if
Hι(M3,Z) = H2(M3,Z) = 0. Singular points with this property are
the natural analogues in dimension 2 of the higher dimensional sin-
gularities of Brieskorn ([6], [18]), which are locally homeomorphic to
the disc. They are especially interesting from a global point of view
because a compact surface X each of whose singular points is homo-
logically trivial has all the global topological properties of a smooth
manifold. For example, in [2] and [5] we construct examples of singu-
lar complex surfaces X of the homotopy type of the complex projective
plane CP 2 . Since Poincare duality must hold for such a space X, it
follows that each singularity of X is homologically trivial.

To investigate the topological structure of M3 (hence of the neigh-
borhood U of x in X) it is usually sufficient to calculate the funda-
mental group 7Γi(Λf3), called the local fundamental group o f x G l . A
canonical problem in the classification theory of complex surface sin-
gularities is that of finding all singular points for which the local funda-
mental group satisfies some common group-theoretical criterion. For
example, Brieskorn [7] finds all singularities whose local fundamental
group is cyclic, while Orlik [23] and Wagreich [26] similarly investigate
the cases where π\(M3) is nilpotent and solvable, respectively. Since
by the theorem of Hurwicz H\{M3) = π\{M3)/(commutator sub-
group), it follows that a singularity x e l i s homologically trivial ex-
actly when the local fundamental group is perfect—that is, when every
element of π\{M3) is the product of elements of the form a/tar 1/?" 1.
For this reason we have also called such singular points perfect singu-
larities.

Now the local fundamental group %\ of a complex surface singu-
larity can be calculated via a resolution of singularities. (This idea is
due to Mumford [22].) Suppose without loss of generality that x is
the only singular point of the complex surface X. Let p: X -+ X be a
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proper holomorphic mapping of a complex manifold X onto X such
that p restricted to p~ι(X - {x}) is a biholomorphism of complex
manifolds. Then p~ι{x) is a closed complex curve on X called the
exceptional curve of p. Let p~ι(x) = U/*=i Q with C, irreducible. If
each Q is non-singular and if C, meets C7 (if at all) transversally in a
single point, while Q Π Cy n Q = 0 for all distinct indices /, j , and A:,
then p is called a normal resolution of the singularity of X at x. Every
singular point admits a unique normal resolution p : X —• X which is
minimal in the sense that if pf: A7 —• X is any other normal resolution
then p* factors through p. (See Laufer [19], e.g., for an exposition of
the method of Hirzebruch [17] for finding such resolutions.) The min-
imal normal resolution is characterized among all normal resolutions
by the property that if any component Q of the exceptional curve is
rational (homeomorphic to the two-sphere) and has self-intersection
number Cf = - 1 , then Cf meets at least three other components C7.

The exceptional curve C = U"=1 Q of a normal resolution p: X —>
X is usually represented by its weighted dual graph Γp. Γp is the graph
on n vertices y\,...tyn with {γif jj} an edge of Γp if and only if Q
meets Cj and with the positive integral weight rti — -Cf assigned
to the vertex y/. (The sign of Cf is often reversed, as here, so as to
correspond to the conventions of Lie algebra theory in the special case
of rational double points.) If each component C\,..., Cn is rational
and if the dual intersection graph Γp has no cycles, then the local
fundamental group π\ of x e X is the group on n generators y\,...,yn

with the n relations

(3)

7=1

and yijj = yjγi if Q meets C7, where Q Cj is the intersection num-
ber (Mumford [22]). From this it follows that in this case the first
homology group H\(M3) is the Abelian group generated by γ\,..., γn

with the relations (3). That is, H\(M3) is the cokernal of the mapping
φγ'.ΊI1 —• Zn given by the matrix (-C/ C7), Uj = l,...,n. Since
this matrix is positive definite for any exceptional curve C (a fact
first noted by Du Val in [10]), this means that in the case under view
H\ (M 3) is a finite Abelian group whose order is the determinant of
the matrix (—C, C7), regarded as a symmetric bilinear form on the
integers. Thus H{(M3) = 0 if and only if de t (-Q Cj) = 1, in the
case in which all C, are rational and the graph Tp is acyclic.
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On the other hand, if any of the curves Q has positive genus, or if
Γp contains any cycles, then the exceptional curve C = |J?=i Q c o n ~
tains non-trivial 1-cycles which lift to non-trivial 1-cycles in H\(M3)
(indeed, to elements of H\ {M3) of infinite order). If x e X is homo-
logically trivial no such cycles can exist. Thus we have established the
following characterization of homologically trivial two-dimensional
singular points.

1. PROPOSITION. Let x be an isolated singular point of a complex
surface X, and let p: X —> X be the minimal normal resolution of the
singularity of X at x, with exceptional curve p~ι(x) = U/=i Q- Then
x e X is homologically trivial if and only if

(a) each component Q is rational,
(b) the dual graph Γp contains no cycles, and
(c) the bilinear form (—C, Cj) is unimodular.

Conversely, up to homeomorphism type all homologically trivial
complex surface singularities can be constructed from certain positive
definite symmetric integral unimodular bilinear forms φ as follows.
Let φ: Zn x Zn —> Z be such a form. Suppose furthermore that there
exists a basis y\,...,yn of Z" for which

(β) if φ{yi, y{) = 1 then φ(γif γj) = - 1 for at least three indices j ,
and

(γ) there does not exist a sequence ?/,,..., 74, k > 1, of distinct
basis vectors for which φ(γij9 y, 7+1) = - 1 for j — 1,..., fc - 1, and also

For / = 1,...,«, denote by £// the complex line bundle on the Rie-
mann sphere CP ι with Chern class equal to -φ(γi, y{). Denote by Q
the base curve of C//, let C// c C// be the unit disc bundle, and plumb
the spaces C// together as follows. For each / Φ j 9 choose points P(j on
Ci and Pji on Cj9 such that P/y ψ Pik Vy Φ k, V/. Let Dij9 Dβ be discs
in C/, Cj> respectively, centered at Pfj and Pβ and sufficiently small
that Dij Π Dik = 0\/j φ k, Vi. For each /, y, identify the fibres of C//
over Z>/ with the cross sections of the part of Uj sitting over Dj. The
result is an open two-dimensional complex manifold X containing the
curve C = U/Li Q> w ^ h the identifications Pij = Pβ, as a negatively
embedded divisor (in the sense of Grauert [15]). Thus the topological
space X = X/C admits the structure of a normal complex space with
a singular point x such that the "blowing down" map p: X —• X is a
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normal resolution of singularities with exceptional curve C. Further-
more, by work of Neumann [23], every homologically trivial surface
singularity y E Y admitting a resolution whose dual intersection form
is equivalent to the form φ, is locally homeomorphic t o i e l (but
not necessarily, of course, having the same complex structure). Thus
we have a correspondence between oriented homeomorphism equiv-
alence classes of homologically trivial singularities and equivalence
classes of integral symmetric positive definite unimodular forms sat-
isfying the conditions (α), (/?), and (γ) above. We want to exploit this
correspondence to find all homologically trivial surface singularities
of an especially interesting type.

2. DEFINITION. A graph Γ is called a star, or a star-like graph, if it
contains one vertex v0 which meets every other vertex v, , and with no
other edges except those of the form {v0, v£ }:

A positive definite integral bilinear form φ is star-like if there is a basis
7i,...,yπ of Zn satisfying (a) and (β) above and whose associated
graph Tφ is a star. Here Γ^ is the graph on vertices vι,...,vn with
edges {v/, v,} whenever φ(γit γj) = - 1 . A complex surface singularity
is said to have star-like graph if the dual intersection graph Γp of the
minimal normal resolution of singularities is a star.

Note. A "star" is thus a special case of a "star-shaped graph", as
examined, for example, in [24].

3. EXAMPLE. Let X c C 3 be defined by the vanishing of the func-
tion

f(x, y, z) = x2 + y3 + z7,

which has an isolated singular point at the origin. This is a "minimally
elliptic singularity of type Cw" (Laufer's classification [20]). Blowing
up the origin produces a resolution (but not a normal one) whose
exceptional curve is a rational curve C with a simple cusp and with
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self-intersection - 1 . Resolving the singularity of C gives the minimal
normal resolution, whose weighted dual graph is the star

3

The local fundamental group π\ is the group on four generators
γ2, 73 with relations

VΪ1YJ1 = ι>

, γ\,

together with yoy/ = 7/7o for / = 1,2, 3. To confirm that π\ is perfect,
we need only check that

det

• 1

_ J
_1

- — 1

— 1
2
0
0

- 1
0
3
0

— 1 •

0
0
7 J

= 1.

In fact, τi\ is an infinite perfect group which is an extension of the

finite simple group PSL(2,7), as is seen by mapping y§ to 1, j \ to

I ? ~11 > Ϊ2 to I °, \ ], and y3 to [' ~/1 . This singularity corresponds

to the Diophantine equation

1, 1 1 1
1 — i I

2 ^ 3 + 7
under the association which we will now establish.

The following can be obtained as a special case of a theorem of
Seifert [27]. Since the proof in our case is both short and transparent,
we will give it in full.

4. THEOREM. There is a one-to-one correspondence between oriented
homeomorphism equivalence classes of homologically trivial complex
surface singularities with star-like graphs, and solutions in integers N >
3, no>\, ni>2 to the equation

[ 1

i=\ Πf-, n,
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Proof. Let x G X be a singularity whose weighted dual intersection
graph is

(4)

Since by assumption this represents the minimal normal resolution,
tii > 2 V/ > 0, and N > 3 if ΠQ = 1. We compute the determinant of
the corresponding matrix

•«o - 1 - 1

-1 m
- 1 n 2

Φ = [Φij] =

- 1

O

o
. - 1 nN\

as follows:

Ίc ί
i = 0

where £„ is the symmetric group and sgn(σ) is the number of trans-
positions in the decomposition of a into the product of 2-cycles. In
our case Π/Ϊ=o Φiσ(i) = 0 except when σ is the identity or when σ inter-
changes 1 and some index / > 1 and fixes all other indices, in which

case ΠjLo Φjσ(j) = ( - 1 ) Πy^α/ Λy T h u s

det Φ = n ι=l ι=l

Dividing by Π/li ni gives the equation

(6) ik
ί_

i = l ΠίLi nt
In the case of homologically trivial points, dctφ = 1 and we have the
equation (2). Finally, it is clear that there is no solution to (2) for
ΠQ > 1 and N < 2, so N > 3 in every case.

Conversely, if the positive integers n^n\9...9n^ satisfy (2) with
N > 3, and /?/ > 2 Vι > 0, we must first show that the graph (4)
in fact corresponds to the exceptional curve in a resolution of some
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complex singularity. For this it is sufficient to show that the matrix
(5) is positive definite (Grauert [15]). We compute the characteristic
polynomial fφ of φ:

fφ(x)=det(xϊ-φ)
N N

N N-k

Σ
iN-k j=\

-Σ
/=1

N-\

k=0

N+l

Σ
k=0

N-k

Σ Π »

N+l-k

Σ Π ».,
iι<-"<iN+ι-k 7=1

N+l-k N

Σ ( Π -Σ
N-k

Σ

iV+l-Λ:

Σ ( Π »,
n-hl—Λ: ΛΓ+l-A:

> Π ».,- Σ Π«.
7=1 7=1 /^7

TV-hl-A:v π».,

JC"

Σ
/i< </π+i-)t 7=1

« + l A :

Σ Π ",
N+l-k Λ

- Σ ̂ -
7=1

Since for all indices /:,

iV+l-A: N

7=1
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the coefficients of the characteristic polynomial strictly alternate in
sign. Thus all the roots of fφ are positive, so the bilinear form φ is
positive definite as claimed.

Let x e Z b e the singularity constructed from the graph (4) as de-
scribed above. That the graph (4) corresponds to the minimal normal
resolution is again guaranteed by the conditions N > 3 and rtj > 2
V/ Φ 0. That x is topologically trivial (i.e., that det</> = 1) is seen
by comparing the general result (6) with our assumption (2). Fi-
nally, uniqueness up to homotopy type follows from the uniqueness of
our constructions, as discussed above, and uniqueness up to oriented
homeomorphism type follows from the results of Neumann.

2. The equation ΠQ = Σ ^/ni + VΠ^/ The general theory of ex-
pressing rational numbers as sums of reciprocals of positive integers
goes back to the Rhind papyrus of ancient Egypt, hence the term
"Egyptian fraction" for an expression of the form

The reader is referred to section Dl 1 of [16] and section 4 of [11] for
discussions of some of the many unsolved problems in this area, as
well as for extensive bibliographies. (Cf. especially [1], [3], [4] and
[8].) Our equation (2) is the special case in which Q = 1 and the last
integer nχ+\ is the product of all the previous ones. It is our hope
that the connections with complex geometry exposed here will provide
motivation for a further study of this special case. In this section we
will develop the properties of solutions to (2) from first principles. Our
immediate goal is to find all solutions for small N, thus generating,
via Theorem 4, an interesting family of complex surface singularities.

5. THEOREM. The following is the complete list of solutions to the
equation

for N < 6. Thus (excluding the first 3 examples, which correspond
to "resolutions" of the non-singular point) there are exactly 13 (up to
homeomorphism) homologically trivial complex surface singularities
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whose associated dual intersection graphs are stars with 6 or fewer arms.
XT _ 0 1 — ί

w empty product'

N = 1 : 1 = \ + \,

N = 2: 1 = 1 + 1 + ^ ,

N = 3: 1 = 1 + 1 + 1 + ^ ,

N = 4: 1 = 1 + 1 + 1 + ^ + ^ ,

AT c . i 1 j_ 1 _ι_ 1 _L 1 j_ 1 j }

JV _ 3 . 1 ~ 2 + 3 + 7 + 43 + TSΰϊ + 2.3-7.43.1807'
1 — 1 i 1 i 1 i 1 i 1 i 1
1 - I + I + 7 + 47 + 395 + 2 3.7.47.595'
1 = I + I + π + l3 + π + 23.11 23 3P

iV = 6: 1 = 1 + 1 + 1 + ̂  + ̂  + ^ + ^

1 — 1 1 1 1 1 1 1 j

= 1 + 5 + 7 + 47+3^+7^731

— 1 1 1 1 1 1 1 1 1 1 1 j 1

- 2 + 3 + 7 + 47 + 403 + T9403 + JJ
— 1 1 1 1 1 1 1 1 1 j ! 1 1

- 2 + 3 + 7 + 47 + 4T5 + i π + JJ
— 1 1. 1 1 1 1 1 1 1 j

+ + + T +
_ 1 1 1 1 1 1 1 1 1 1 1 j 1

~ 2 + 3 + 7 + 55 + Γ79 + 24323 + JJ
— l i l i l i l l i 1 j 1

- 2 + 3 + π + 53 + π + 47059 + JJ

For N = 7, the complete list of solutions is given in the appendix.
For N = $ there are many solutions which begin with 5 + 3 + 7 and
Ί + 3 + Π ^ n Edition to these there are only two other solutions:

1 1 1 , 1

95T+ ^ + JJ11^4561851
— l i l . l i l i l i 1 1 1 1 1 j 1

- 2 + 5 + 7 + π + Ϊ7 + T57 + 9ST + 4398619 + jf
This last example is the smallest which does not begin with 5 + 3. We

do not know any solution which does not begin with £.
In order to verify that our lists are complete, and to explain how

they were obtained, we will first develop some of the properties of the
sequences n\,...,nN of integers which appear in the solutions. First,
it is clear from the equation (2), or from its equivalent form

N N

1=1
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that niχ and AZ/2 are relatively prime for all distinct indices i\, ii > 0.
From this it is easy to check the following.

6. PROPOSITION. If no > 2 there is no solution in integers nt > 2 to
the equation

N i i

for N < 59.

Proof. Since the Λ/'s are relatively prime in pairs, Λ/ > pt V/, where
Pi is the /th prime number. Thus

But the right-hand side is less than 2 for the first 58 primes, so no
solution to (2) can exist for n0 > 2 and N < 59, as claimed.

REMARK. Similarly, by examining the rate of divergence of the
series Σ^i ^/Piwe c a n estimate the minimum number N(no) of terms
needed for a solution to (2) for no = 3,4, The fact that we need at
least 58 terms to get close even to 2 shows that we are unlikely to find
a solution for fl0 > 2 either by a lucky guess or by an unsophisticated
search. In particular, if we want solutions for small N we may restrict
our attention to the case n$= I.

Even for w0 = 1, some properties of the πf are apparent from
consideration of size alone. For instance, there is no solution to
Σ l/ni + 1/Π^i = 1 w t i h n o n e °f ^ e ni prime. For if n\ = r/S/,
with 2 < r, < 5/ for all /, then, since the r, are distinct, we have

N t t TV - .

(cf. [13]). We will want, then, to keep track of just how close to 1
various expressions of the form Σ l/«z may be.

7. DEFINITION. Let n\,..., nN be positive integers with ΣJLx ^lni <
1. Define the sequence of remainders of(n\,..., n^) to be the sequence
RQ, R\,..., RN defined by

k k \ k k

Σ * -Π"<-ΣΠ»'
i=l J ί = l i=l jφi
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That is, Rk is the unique positive integer satisfying

K 4 γy

8. REMARK. It is trivial to check that the sequence Ro, R\,..., Rn

is also determined recursively by putting RQ = 1 and

k-\

(7) Rk = nkRk.x -

for k = 1, , ΛΓ. Thus if R^ = 1 then each Rk is relatively prime to
n\,...,nk, for if a prime P were to divide both Rk and Π/U nu then
by repeated applications of (1), P divides each of i?&+i> »^iv = 1?
an absurdity.

We also note that by the proof of Theorem 4, Rk is the determinant
of the bilinear form associated to the star

9. LEMMA. Let n\,...,riN be positive integers with ]C£Li 1/Λ/ < *•
Lei R$,..., RN be the sequence of remainders, and for fixed k< N put

i=\

for I = k +1,..., N. Then the positive integers Rk+ι,...,RN satisfy the
relation

N

Π
N-k-2 fk \N~k~r

Σ (N-k-l-r)mnΛ

x Σ Rj{ - RJr+R%-k~ιRN.
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Proof This is a direct computation. Substituting

/ k \

into the equation

* 1 * i J?
I v—<\ 1 I\M

~+ > — + —τr1-

gives

f 1 f i

or
r> N n τ>N-k ,

Π k „ Δs n iflk „ τ-τk T-ΊN (n , rrk „ \'

Dividing by i?^ and clearing denominators yields

N / k \ k N ( k \

TT | ^ + T T / 7 | = T T A 2 V^ TT I Λ + TTΛ I -

That is,

N-k / k

n i ) 2s Kh Rlr
i=\ / k+\<h<-<lr<N

k N N-k-χ ( k ^N-k-r-l

= TT"/ y y ττ«<
11 ι Δ^ Zs I 11 ' i
/=1 l=k+\ r=0 \ί=l /

Σ ΛΛ-^+Λ

/=l

Comparing like powers of Π/=i w/ n o w g i γ e s the desired result.
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10. COROLLARY. Let n\,...,nN, R0,...,RN be as above. Then VA:,

(k Ϋ
(8) I Y[ n, I + RkRk+2 = Rk+ιRk+2

where Rk+2 = nk+2Rk ~ Π?=i «/•

f. Take N = k + 2 in Lemma 9.

We can now give criteria for extending a partial sequence X)f=1 1/Λ/

to a solution 1 = ΣjLi 1 M + 1/ Πί=i */> for small TV - fc.

11. DEFINITION. Let n\,..., nk be positive integers with Σ * = 1 1/Λ/ <
1. Then the sequence {n\9..., n^) can be completed in m steps if
there exist positive integers nk+{, ...,nk+m such that Σ^

12. PROPOSITION. Le/ nι,...,nk, R0,...,Rk be as above. Then
(n\,...,nk) can be completed in m steps, for m — 0,1,2, or 3, z/αm/

if the following criteria are met, respectively.

m = 0:Rk = l.

m = 1 : Π/Li ni = - 1 modi?£.
m = 2 : (Πf=i w / ) 2 + Â: admits a factor F congruent to - Πf=i #/

modi?^.
m = 3 : ΓΛer^ ex/.yί integers X and F such that

k \ 2 *

^ a n d

\/=i / ι=i

A: / * λ

i ^ = - X f J ^ m o d I H Λ : ^ — Π Λ I : ) •

Proof The criteria for m = 0 and m = 1 are obvious (for m — 1,
if Π t i Λ/ = - 1 modΛfc, put nk+ι = (Πf=i »/ + 1)/**). For /i = 2, if
w^+1 and nk+2 exist to complete the sequence, then by Corollary 9 we
haveJΠf=i "i)2 + Rk ' 1 = i^+i^+2> where i? f c+1 = ^ + i ^ - Πf=1 /!/
and i?A:+2 = nk+2Rk " Π/=i Λ/ a s i n ^ a t corollary. Conversely, if
(Πf=i nd2 + Rk = F G with F (hence also (?) = - Πf=i */ modi?^,
put «^+1 = (F+Πf=i Λi)/̂ A: and «^+2 = (G+Πf=i ni)/Rk to complete
the sequence.
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The criterion for m = 3 follows from that of m = 2 by putting

X = nk+ϊ9 Rk+ι = XRk - Π i i */, and F = Λ*+2

REMARK. In practice the criterion for ra = 3 is not very useful since
it does not tell us how to find the integers X and F. But for m = 2 the
criterion is very easy to apply, provided that we can find the factors
of the integer (Π/l72 nd2 + &N-2> which may be quite large.

13. EXAMPLE. Find all completions of the sequence 2, 3, 7, 47 in
two or fewer steps.

Solution. We have

1 . 1 , 1 , 1 , 1 , 5
' l ~ 2 + 3 + T + 47 + 2.3.7.47

Since 2 3 7 47 = - 1 mod 5, a one step solution exists, namely
n5 = (2 • 3 7 47)/5 = 395. That is,

1 . 1 , 1 , 1 , 1 , 1 , 1
1 ~" 2 + 1 + 7 + 47 + 395 + 2 3 7 47.395

is a solution to our equation (1).
For m = 2 we have (2 3 7 47)2 + 5 = 3896681 = 1 41 101 941,

and each of these factors is congruent to -1974 mod 5. Thus we have
the four distinct solutions

- 1974+1 w _ 19744-4MO 1941

= 1974+101.941 ?

= 1974+41-941
4

These are lines 3 through 6 of the list of solutions for JV = 6 in
Theorem 5 above.

In view of the prominence of the expression (Π/Li nd2 + &k> o u r

sequences can be further analyzed via the theory of quadratic residues.

14. LEMMA. Let n\,...,ΠN be positive integers with Σ j l i VΛί < ^
and let RQ, . . . , R^ be the sequence of remainders. Suppose that n\ is
even and R^ = 1. Then Vk = l,...,N, Rk is odd and coprime to Rk-\-
Furthermore, the Jacobi (or Legendre) symbols of the Rk 's satisfy

or
ifRk=Rk~ι - 3 m o d 4

= 3mod4 andRk_x = 1 mod4.

Proof. Since «i is even, Rk is odd for all k by Remark 8. Similarly

if Rk-\ and i?^ had a common prime factor P, then also P divides

Πfj/ ni = n^R^i — Rk, again prohibited by Remark 8. Finally, by
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Corollary 10, for each k, ( Π t / ni)2 + Rk-\Rk+\ = Omodi?^. Thus
{(Rk+\Rk-ι)/Rk) — (—1/-R )̂ The result (9) now follows by consid-
ering the various cases in which Rk and Rk-\ are congruent to 1 or
- 1 mod 4, and using the familiar properties of the Jacobi symbol.

15. PROPOSITION. Let 1 = Σ?=ι 1/Λ/ + 1/Π/Ii ni be a solution to
our basic equation (1). For j = 0,1,2, 3, denote by Aj the number of
terms nι which are congruent to j mod 4. Then

Case 1. IfA2 = 1 ί/̂ tf ^ i = 0mod4.
Case 2. IfA0 = 1 then A3 = 3 mod 4.
Case 3. IfA0 = A2 = 0, then N = 0mod4.

First we note that since the /ι, are relatively prime in pairs,
AQ + A2 < 1, so the three cases listed exhaust all possibilities.

Case 1. Assume without loss of generality that n\ = 2 mod4,
that n2,...,nι+Ai = 3 m o d 4 , and that nx+A^x, ...,n{+Ai+Aι = nN =

Imod4. Then from the relations i?^+1 = nk+\Rk ~ Πf=i ^/, for
jR0,..., i?# the sequence of remainders, it is easy to check inductively
that Rk ΞΞ 1 mod4 for k = 0,1,. . . , 1+A3, and Rχ+A,+k = (~l)k mod4
for k = 1,..., 4̂χ. Thus in particular i?# = 1 => ̂ 4t is even.

Now use formula (9) of Lemma 14 to show that for k = 1,..., 1 +A$
the Jacobi symbol (Rk/Rk-\) *s equal to 1, while for indices greater
than 1 +A$ the sequence {Ri+^+klR\+Ai+k-\) follows the pattern 1,
- 1 , - 1 , 1, repeated in groups of 4. Thus, since {Rι+Λy+AJR\+Λy+Λι-X)
= (1/Rχ-ι) = 1, the fact that A\ is even shows that in fact A\ =
0 mod 4, as claimed.

Case 2 is proved similarly, but it requires division into subcases,
according to the congruence mod 4 of A\, to check all the details. Case
3 can be verified from the recursion formulas R^+i = njc+iRk-Y[^=:l nι
alone, by considering each subcase separately, without appealing to
quadratic residue theory.

16. Application, (a) For N < 12, there is no solution in odd integers

Hi to the equation 1 = ΣΪLi *M + VΠ/li */.
(b) For N < 5, if 1 = Σ?=i *M + V I Ί L *h with nx = 2mod4,

then rii = 3 mod 4 Vz > 1.

(a) For the first 8 odd primes we have

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ^ i
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Hence, since Π/Ii ^lni + 1/Π/ϋi nι strictly decreases as any Πι in-
creases, there cannot be a solution for N < $. By Theorem 14, case
3, then, N is at least 12 if all the W/'s are odd.

(b) If π\ = 2 mod 4 and n-i = 1 mod 4, then by case 1 of the The-
orem, W3, ft4, and ns must also be = 1 mod 4. But, again taking the
smallest possibilities,

1 , 1
Ϊ3 + 77

so no such solution exists.

REMARK. In fact, for TV < 6 every solution has n\ = 2 and «/ =
3 mod 4 V/ > 1. For iV = 7, however, we have the examples

1 = 2 + 3 + π + Π + T0T + T49 + 3T09 + J J ^ ' a n d

1 — l l i l i l i l i l j !

each of which has exactly 4 terms congruent to 1 mod 4.

3 Search techniques. We will now describe a general search method
for finding all solutions for fixed N to the equation 1 = Σ?=\ ^/nί +

1 7 . L E M M A . L e t 1 = Σ?=ι V " / + V Π / I i n i be a solution to {I)
with Π\ < « 2 < • < KN and with remainders Ro,...,Rjy — 1. Then

Proof. Since

* i i / k i λ"1 rr* »

Also, s ince (N - k) >2 a n d Λ ^ + , > Λ ^ + I for j = 2,...,N — k,

1 1

UUiUj=ιk+J nk+ι

1
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or

Rk(nκ=ι)
N-k - (N - k) (fin) {nk^)N-k~x < 1.

Since the left-hand side is an integer, we have

that is

(10)

If equality holds, then both Rk and nk+x cannot be relatively prime to
n\,...,nk, contrary to Remark 8. Thus strict inequality holds and

as claimed.

REMARK. If k = 0 in (10) and equality holds, then n\ = TV, R\ =
TV-1, and if TV-1 > 2, (10) again shows that n2 < (N-l)nι/(N-l) =
rii, contrary to assumption. Thus (11) holds also in the case k = 0,
except for the single example 1 = 1/2 + 1/3 + 1/(2 3).

Assembling all our results, we can now inaugurate a search for so-
lutions. For fixed TV > 3 we construct a tree of possibilities for n\ <
n2 < - - < ftjv-2 recursively as follows. The possibilities for n\ are
2, 3,..., TV - 1. For each possible choice of n\,..., nk, 1 < k < TV - 3,
the possibilities for nk+{ are those numbers in the interval from the
minimum of nk and [Π/=i nil^k\ + 1 t 0 [{N ~ k) Π/=i ni/Rk\ which
are coprime to each of n\,..., nk, where [ ] is the least integer func-
tion. To find actual solutions among these possibilities, for each choice
of nh . . . , nN-2, Put C = C{nu ...,' nN-2) = {UfJi2 «/)2 + ^iv-2- By
Proposition 12 a solution

, ^ 2 1 1 1 1

1 = > — + + — +* " Π i i ntι = l ι

exists if and only if C admits a factor F = - Π/l72 nimo<^ RN-2- Thus

if D is the least positive residue of - Y\?S[2 Πi modi?τv-2?

 w ^ n e e d only
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check to see if D + mRN-2 divides C for m = 0,1,. . . , [l\fj\2 ">i +
D/RN_2] (note that since RN.2 < Ilί'i2 nh Yl^2 nt = [y/C]). If
F = D + mRN_2 does divide C, then we have the solution

KN-2 KN-2

otherwise there is no solution.

We will illustrate the technique by finding all solutions for N = 6,
thus providing a proof of Theorem 5 above. Here is the "(2,3) branch"
of the tree of possibilities of depth TV - 2 = 4, with remainders Rk

shown in parentheses. The candidates for n4 in the bottom row are
all integers in the indicated ranges which are coprime to 2,3, and n3.

2

(i)

3

(1)

13 17 19 23

(7) (11) (13) (17)

43 to 125 17 to 37 17 to 31 19 to 25 23 to 25 None

For each of these possibilities we check the integer (Πt=i w / ) 2 + ̂ 4 f° r

factors congruent to — ΠΛ=I
 nh a s discussed above. Such factors exist

only for (2, 3, 7,43), (2, 3, 7,47), (2, 3, 7, 55), and (2, 3, 11,23). Taking
all appropriate factorizations produces (see Example 13 above) the list
of eight solutions given above in Theorem 5 for TV = 6. The remaining
branches of the tree can be checked similarly to confirm that there are
no other solutions for N = 6, and the cases N < 6 are very easily
computed as well to complete the proof of Theorem 5.

REMARK. TO prune the tree we can also use the relations of Propo-
sition 15. Namely, if A'- now denotes the number of integers n\,...,
nN-2 which are congruent to j mod 4, and if F again denotes the factor
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of (Π/l72 w/)2 + RN-2 that we seek, then

Case 1. lfA'2 = l and if
A\ = 1 mod 4, then there is no solution;

v4Ί = 2 mod 4, then F = 3 mod 4;

^Ί = 0mod4, then F = 1 mod 4;

A\ = 3 mod 4, then no restriction on F.

Case!. If Λo = 1, and if
^3 = 0 mod 4, there is no solution;
Af

3 = 1 mod 4, then F = 3 mod 4;
^3 = 3 mod 4, then i 7 = 1 mod 4;

^3 = 2 mod 4, then no restriction on F.

Case 3. If A'o + A'2 = 0, and if A\ = 1 or 2 and ̂ '3 = 0 or 1 mod 4,
then there is no solution (and for certain other combinations of con-
gruences for A\ and A^ there are various restrictions on F).

Thus in some cases we can eliminate the branch (n\,. ..,nN-2) al-
together, while in some others, in the last step we need check only
one number in every 4RN_2 f°Γ possible factors F. And, of course,
we also need not check those candidates for F which have factors in
common with any of n\,... «JV-2 F° Γ instance if we apply these cri-
teria to the last tier of the tree above, we achieve this shortened list of
possibilities:

2 2 2
3 3 3
7 11 19

43,47, 55, 59, 67, 71, 79, 83, 95,103,107,115 19,23 23

and F must be = 1 mod 4. Thus we have reduced the total number of
computations by about 75%.

For TV > 6 it is impossible to carry out this search procedure by
hand. Already for N = 7 the single branch (2, 3, 7,43) has 504 children
at level 5, even after pruning, some of which require on the order of
105 divisions to search for F.

(504 = i-2-(2.3-7.43)(l ~ k~ \~ \ ~ h +T1 +τϊ + TK +Ti
, 1 , 1 _1 1 _ 1

+ ITT 2T43 2743
l , Λ\ \
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For N = S the full problem involves on the order of 1013 numbers,
with some final products as large as 1052.

4. Some open questions. 1. First we repeat the Erdόs problem men-
tioned in the introduction, in the form of a conjecture.

Conjecture. Given any set of mutually coprime integers n^,n\,...tnk

with Σk

i=x l/rii < n0, there exist integers m, nk+ι,...,nk+m, all > 2,
such that

k+m « *

This can be viewed as a question involving the distribution of points
of the form (ΠJLi njt ΣJ=\ Wiφj ni) i n t n e integer lattice Z x Z c R 2 .
Namely, the equation

is equivalent to

7=1

where P = Rk = (Πί^i Λ/X1 ~ Σ?=i ι/ni) a n d Q = Π?=i ni Since
P and Q are relatively prime, there exist integers XQ, y$ such that
PXQ - Qy0 = 1, and then all solutions to the equation Px - Qy — 1
have the form x = xo + tQ, y = yo + tQ, t eZ. Thus the question can
be generalized as follows:

V. Given any line L = {{xo + tQ, yo + tP)\t e Z} in Z x Z , with Px0-

Qyo = 1, does L contain points of the form (ΠyLi Hj> ΣyLi Xliφj ni)^
We note that if L contains any such point then it contains infinitely

many, for a solution to P/Q = Σ^l j l/rij + \/Q ΠyLi nj can always
be extended to another solution by putting nm+\ = Q Y\™=1 tij + l.

2. If conjecture 1 is correct, for what other collections ¥? of positive
integers (other than ^ — all positive integers > 2) is a solution to

k Λ N-k χ j

possible for any n0, π\,. ..,nkΊ (Cf. [12], [14].) For example, can g7

be taken to be the set of prime numbers? The set of odd integers > 1?
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If g7 is such a set, then certainly Σce& ^lc = °°' ^ u t ^ s condition is
far from sufficient. For instance, if Φ is the set of composite numbers
then the remark preceding Definition 7 shows that there is no solution
to n0 = Σ 1/fl/ + V Π Λ / w * t h n ι G ^ v * Likewise, Proposition 15,
Case 1, shows that for nQ = 1, nx = 2, rc2 = 5, and g* = {3 + 4/|ί =
1,2,...}, there is no solution to n0 = J2?=i ̂ lni + VΠ/Ii ni w ^ h
/ι, € ^ for / = 3, , N.

In a similar spirit, let Π\ be any integer > 2 and let s be any positive
integer which does not generate the multiplicative group of integers
mod rci which are coprime to ri\. Then there exists an integer «2,
coprime to n\, for which there is no solution N to the congruence
sN = —Λ^modΛi. But then the sequence l/rt\ + l/«2 cannot be
completed to a solution to 1 = Σ?=χ l/itj + 1/ Π/li ni w ^ ni> > wiv
all chosen from the set ^ = {$ + niί | ί = 1,2,...}. To see this, clear
denominators and reduce mod^i to obtain the congruence

0 = ΠιSN + 1

which by choice of s and n2 has no solution N.
Does there exist any arithmetic sequence & = {A + Bt\t = 1,2,...},

B > 2, with the property that every initial set Wo>wb >wfc c a n be
completed by elements of g*? (If so, then a slight variation of the
argument of the previous paragraph shows that B is of the form B =
pk for P an odd prime.)

3. The "Greedy Algorithm". Restricting our attention to the case
ΠQ = 1, an obvious procedure for searching for solutions is as follows.
Given any choice of ^ i , . . . , ^ , choose nk+x to be the smallest inte-
ger coprime to n\,..., n^ for which YJ^ll l/π, < 1, and similarly for
nk+2> nk+3> F° Γ instance, the sequence of solutions

2, 3,7,43,1807,. ..,
7=1

is found in this way, starting with the empty set of integers. (These
numbers give the largest values of ΠM+\ to be found in any solution
to 1 = E&i I/"/ + 1/fljv+i (see [9] or [25], e.g.).) We ask: For which
initial sets {n\,..., nk} will this algorithm eventually produce a solu-
tion?

(We note parenthetically that if we do not require that the last term
be the product of the first N terms, then the greedy algorithm always
terminates after at most Rk - 1 steps. That is, given n\,...,nk with
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1 - ΣyLj \/rii = {Rk/Y[ki=\ Λ/) > 0, then choosing nk+j = the small-
est integer for which YJl=\ 1/Λ/ < 1 produces a strictly decreasing
sequence of remainders Rk+j and thus eventually a solution to the
equation 1 = J2?=i ^/ni + l/nN+\- This result is contained in work of
Fibonacci ([24]) dating back to 1202. But the greedy algorithm tech-
nique rarely produces numbers Λ, which are mutually coprime so that
KN+\ = Π/li ni- Nevertheless, it is possible that the answer to ques-
tion 3 is "all sets of mutually coprime integers n\ with Σ l/«/ < Γ\)

4. How many solutions (n\,...t nN) are there for large N, and what
is their distribution in the integer lattice ZNΊ Our search technique
gives the estimate

for the "bushiness" of the tree of possibilities at the (k + l)st step for
the branch (m,..., nk). For given, N,ri\ < <nk, define the width of
the n\,...,nk branch at depth N to be the integer W(N\n\,...,nk) =
the number of sequences (flfc+i,...,rt#) which can be chosen recur-
sively under the constraints that V; = \,...,N - k, nk+j > nk+j_u

nk+j is coprime to n\,...,nk+j_u and

Kk+j κk+j

Let S(N\ n\,..., nk) denote the number of solutions ( ^ + 1 )
to 1 = Σ?=χ l/rii + 1/Π/Ii ni Do there exist positive constants C\
and Cι such that for all pairs {n\,...,nk), (n[,..., n'k,) of sequences,

Cι < l i m i n f ^ ; ^ , , . ) /S(N;n'v...,n'k,)
i m i n f

TJ™W(N;nh...,nk)/ W{N;n\,...,n'k,)
S(N;nh...,nk) I S(N;«'..,«')

/

This would, of course, imply that every sequence n\,...,nk can be
completed in many ways, in particular, in at least one way. It also
means that the solutions are more or less randomly distributed among
all "possibilities". If this is not true, which sequences n\,...,nk are
relatively fertile and which are relatively barren of completions to
solutions to our equation (1)? We note also that solutions to (1) are
extremely sparse among all solutions in integers to 1 = Σ/Ii ̂ lni +

For example, Singmaster (unpublished) calculates that for
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N = 5 there are 3462 distinct solutions with n\ < < ft5 < n6. Only

3 of these have nβ = ΠLi ni a s w e require.

5. What can we say about the singular points x e X which corre-
spond to our solutions? For starters, these points are "highly cusp-
like" in the following sense. Let p: X -» X be the minimal normal
resolution of singularities, with weighted dual graph

Suppose that n\ = 2 and ft 2 — 3. Then the minimal (non-normal)
resolution is obtained by blowing down the exceptional curves Q , C\
and C2 (those with self-intersection - 1 , -2, and - 3 , respectively) to
a point i e l . The resulting surface X is non-singular with negatively
embedded curve C = U/I3 Q> e a °h component of which is a ratio-
nal curve with a cusp of high order, all with the same 1-dimensional
tangent space at x:

This observation provides a natural construction for at least some
of our singular points x. Namely, on the projective plane CP 2, find
N - 2 rational curves C\ with cusps of the form y2 = xm> at the
origin of C2 c CP 2 . Resolve all the other singularities of (j£Li Ch
if any, blow up the origin, then twice blow up the point of mutual
tangential intersection of the proper transform of the C, . Finally, blow
up additional points as necessary to lower the self-intersections of the
new curves to the desired weights -ft/. The perfect singularity x e X
is then obtained by blowing down all the resulting curves Cz, together
with the three new curves introduced in the first three blow-ups. For
example, the minimal normal non-singular model of the minimally
elliptic point x2 + y3 + zΊ = 0 (Example 3 above) is achieved from the
curve zy2 = x3 in CP 2 by blowing up points as pictured below.
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- 1

- 3

3

2

- 1

- 3 - 7

- 1

We also note that the positive definite symmetric bilinear forms φ
associated to these graphs are highly eccentric, in the sense that some
eigenvalues are very large and some are very small. To see this, re-
call that the trace of φ is the large integer Σ?=\ ni + 1> while the deter-
minant is equal to 1. Thus the largest eigenvalue is larger than
CC/Ii ni + *)/(N + 1)> while the smallest is smaller than the - N t h
root of the largest. Renewed interest in the possible geometric inter-
pretation of these eigenvalues was sparked by McKay's observation
[21] of their significance in the case of rational double points. We ask,
then, what properties of the singular points are exposed by an analysis
of the eigenvalues of this unimodular form?

Appendix. All solutions in integers Π\ < n2 <

tion 1 = Σli I/* + 1/Π£i *ι
to the equa-

2, 3,7,43,1807, 3263443,10650056950807

2, 3, 7,43,1807, 3263447,2130014000915

2, 3, 7,43,1807, 3263591, 71480133827

2, 3, 7,43,1807, 3264187,14298637519

2, 3, 7,43,1823, 193667,637617223447

2,3,7,43,3263,4051,2558951

2,3,7,43,3559,3667,33816127

2, 3, 7,47,395, 779731,607979652631

2, 3, 7,47, 395, 779831, 6020772531
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2, 3, 7,47,403, 19403,15435513367

2,3,7,47,415,8111,6644612311

2, 3, 7,47, 583, 1223,1407479767

2, 3, 7, 55,179, 24323,10057317271

2,3,7,67,187,283,334651

2,3,11,17,101,149,3109

2, 3, 11,23, 31,47059,2214502423

2,3,11,23,31,47063,442938131

2,3,11,23,31,47095,59897203

2,3,11,23,31,47131,30382063

2,3,11,23,31,47243,12017087

2,3,11,23,31,47423,6114059

2,3,11,23,31,49759,866923

2,3,11,23,31,60563,211031

2,3,11,25,29,1097,2753

2,3,11,31,35,67,369067

2,3,13,25,29,67,2981
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