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PSEUDOCONVEX DOMAINS WITH PEAK FUNCTIONS
AT EACH POINT OF THE BOUNDARY

ANDREI IORDAN

Under certain conditions, each point of the boundary of a smoothly
bounded weakly pseudoconvex domain D in C" is a peak point of

1. Introduction. Let D be a bounded pseudoconvex domain with
C°° boundary. We denote by A°°(D) the set of holomorphic functions
in D which have a C°° extension to D. A compact subset E of dD is
a peak set for A°°_{p) if there exists / e A°°(D) such that / = 0 on E
and R e / > 0 on 7)\E. Such a function will be called a strong support
function for E. If E = {/?}, p is a peak point for A°°(D).

In [6], [18] it is proved that each point of a strictly pseudoconvex
domain is a peak point for A°°(D) with a strong support function
holomorphic in the neighborhood of D and in [7], [17] it is proved that
each strongly pseudoconvex point of a weakly pseudoconvex domain
with C°° boundary is a peak point for A°°(D). These results fail in the
case of weakly pseudoconvex domains [4], [13]. Other results about
smoothly varying peaking functions in pseudoconvex domains may be
found in [1], [5], [14].

If D is strictly pseudoconvex, Chaumat and Chollet proved in [3]
that each closed subset of a peak set for A°°(D) is a peak set for
A°°(D). The assertion is also true for bounded pseudoconvex domains
in C 2 of finite type [15] and for bounded pseudoconvex domains in
C 2 with isolated degeneracies [11] or with (NP) property [12].

In [16] is given an example of convex domain in C 2 not of finite
type whose weakly pseudoconvex boundary points form a line segment
which is a peak set for A°°(D), but there is a point which is not a peak
point for Λ°°(Z)).

Here we prove that, under certain assumptions, each point of the
boundary of a weakly pseudoconvex domain is a peak point for 4̂°° (D).

Some results of this paper were announced at the International
Workshop Geometric and Quantitative Complex Analysis, Wupper-
tal 1986.
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2. A Morse lemma for non-negative strictly #-pseudoconvex func-

tions.

LEMMA 1. Let φ be a real-valued non-negative function defined in
a neighborhood ofOeCn such that φ(0) = 0. We suppose that the
complex Hessian of φ at 0 has q zero eigenvalues at the origin. Then
there exists a complex-linear change of coordinates in Cn such that

φ(z) = £ ( 1 + λj)xj + ]Γ(1 - λj)yj

where 1 > λj > 0, z = x + iy, r = n - q.

REMARK 1. Lemma 1 is a more complete form of Lemma 4 of [10].
For strictly plurisubharmonic functions the result was obtained in [9].

Proof of Lemma 1. The proof is similar to the proof of Lemma
4 of [10] and most of it is presented there. The point 0 is a local
minimum for φ so grad^(O) = 0 and the real Hessian of φ at 0 is
semi-positive definite. By [18] it follows that the complex Hessian of
φ is semi-positive definite at 0. We denote

x1 = (xh..., xr), x" = (xr+ι,..., xn), yf = (y b . . . , yr),

y" = (yr+ι,..., yn), z' = x'+ iy1, z" = x" + iy".

We have

OZi OZj

1,7=1 J

By making a complex-linear change of coordinates in Cn we may sup-
pose that

£SHO)
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and φ{z) = \z'\2 + Re('zSz) + O(\z\3) where
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Let s = [(*)] be a real 2«-vector in R2n, where x,yeRn,

E' = {se R2n\x" = 0, y" = 0}, £ " = {s e R2n\x' = 0,y' = 0}.

We shall identify E' with R2 r and E" with R 2(w" r). E' and £ " are
complex subspaces of Cn = E'®E" and for 5 € C" we obtain 5 = s'+s"
with y G E'9 s" e E". With these notations we obtain that

φ{s) = \s'\2 + 'sTs + O(\s\3) = \s'\2 + (Ts, s) + O(\s\3)

where (, ) is the inner product in R2n and T = [_^I^] with S =
A + iB, A and B real symmetric matrices. In [10] we prove that

(Ts,s) = (T{s',sf) {T{fs",s')

where
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and A'}, B'[ are the rxr(n-rxn-r) matrices obtained by taking
the first r (the last n-r) rows and columns of A and B respectively.

Let / be the real orthogonal matrix representing the multiplication
by i = >fA, i.e., /[(*)] = [("/)]. If v' e E (v" e E") is an eigenvector
for T[ (Tg) with eigenvalue A, then /v' (/v") is an eigenvector for T[
(Γ2") with eigenvalue -λ. Because A and B are symmetric matrices, it
follows that T'v T!{ are symmetric matrices. We may therefore con-
sider an orthonormal basis of R2n by the form v[,..., vf

n v"+1,..., v̂ ',
/vj,..., Jv'n Jv'r'+ι,..., /v ,̂ where vf

j9 Jv'j, v", Jv'j, are eigenvectors for
Γ/, respectively Γ^. If A; is the eigenvalue of Vj (vj), by interchanging
v7 and /vy if necessary we may assume each λj > 0.
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We have in fact a complex-linear change of coordinates in Cn and
if the new coordinates are denoted also by {z\9..., zn), we have

φ{z) =

(auχiχj + i +

+ Σ λJχj - Σ
y=r+l j=r+l

Because the real Hessian of φ at 0 is semi-positive definite, it follows
that λj < 1 for j = 1,..., r and λ} = 0 for j = r + 1,..., n. If for
some 1 < / < r we have λ, = 1, then c ;; = c/,7 = 0 for j = r + 1,..., n,
because CijXjyi and dijyiyj change sign at the origin if c t; Φ 0, dij Φ 0.
Thus

9(z) =
/ = 1

T

a ιj

ι=l

--χj+ Σ
K

•-yj

dπ

W+1 - M j=r+\ 2 V 1 - M

_iv

> [CLiiCLi

j,k=r+l

2aikbikXjyk)

lyV 1

ι=l
l - A ,

n

+ Σ
j,k=r+\

2cudikXjyk)

O(\z\3),

where Σ' means that we take the sum over the indices / for which
λi < 1. Because φ > 0 in the neighborhood of the origin, we obtain
that ctij = bij = C/y = rfy = 0 for each / = 1,..., r, j = r + 1,..., n.
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3. Local properties of strong support functions.

LEMMA 2. Let D c Cn be a pseudoconvex domain with smooth
boundary, E c dD a peak set for A°°(D), f a strong support func-
tion for E and p eE. Let p be a local defining function for dD in the
neighborhood of p. We denote Cp{pJ) = -(d Ref/dn){p)p + Re/,
where d/dn is the derivative with respect to the normal direction at p.
Then:

(a) HrCp{ρ,f){p) is semi-positive definite, where Hr represents the
real Hessian restricted to the complex-tangent space TCp(dD)\

(b) HcCp{p,f){p) = -(0 Rcf/dn)(p) Lp where Hc is the complex
Hessian restricted to TCp(dD) and Lp is the Leviform at p\

(c) Suppose that Lp has q zero-eigenvalues and r = n-q-l strictly
positive eigenvalues at p. Let eι,...,er be the eigenvectors correspond-
ing to the strictly positive eigenvalues and V'p the real subspace gen-
erated by e\,...,er. IfV+is the subspace of TCp{dD) generated by
the eigenvectors corresponding to the strictly positive eigenvalues of
H'Cp(p,f)(p),thenV;cV+.

REMARK 2. By the Hopf lemma we have (d Rcf/dn)(p) > 0.

Proof. The proof of Lemma 2 is similar to the proof of Proposition
9 of [3] and we shall repeat the arguments from the beginning of it.

By making a complex-linear change of coordinates in Cn we may
suppose that p is the origin and in the neighborhood U\ of the ori-
gin D is given by D Π U\ = {(z;, w) € U\\p(z', w) < 0} where zf =
(zi,...,zΛ_i), Zj = Xj + iyh w = u + iv and ρ(zf, w) = u + Rχ(z) +
Riiz1, H>), where R\(z') is a second order homogeneous polynomial in
z\ z\ and R2(z', w) = 0 ( | z ' | M + M 2 + |z' | 3).

Because (0,0) is a local minimum for Re /, by the Hopf lemma we
obtain that

It follows that in a neighborhood U2 of the origin, ί/2 C l/i, we have

Re/(z', w) = ^ | jp (0 ,0)κ + Kx{z', w) + K2(z', w)
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where K\(z', w) is a second order pluriharmonic polynomial in z', z,
w, w and K2(z', w) = O((|z'| + \w\)3).

From the Cauchy-Riemann equations at the origin we obtain that

^ ^ , 0 , = 0, J . I „ -

Because

£ d(w, w) κ J 2 du J

I t follows that the set Σ = {(z', w)\p{z',w) = 0, Im/(z',w) = 0} is
in a neighborhood C/3 of the origin, [/3 c [/2, a 2n - 2-dimensional
C°°-submanifold of the boundary which contains EnU$.

So, there exists a C°°-function h = Λ(z') defined in a neighborhood
F! of 0 E C"- 1 such that Σ = {(z;, w)|w = A(z;)}.

We have p{z',h{z')) = 0 = Reλ(z ;) + i?i(z') + Λ2(z;,Λ(z;)) and
because the first order derivatives of h vanish at the origin we obtain
that ReΛ(z') = -Rχ{z') + 3

We define

and we obtain (b).
The complex tangent space of dD at (0,0) is {{z1, w)\w — 0}, hence

the complex Hessian of θ has n - q - 1 strictly positive eigenvalues
and q zero-eigenvalues at 0.

Because / is a strong support function for E we have θ(z') > 0
and θ(z') = 0 if and only if (zf,h(zf)) e E. Because the origin is a
minimum for θ , we obtain (a).

We denote by Z = {zeVι |θ(z') = 0}.
From Lemma 1 it follows that there exists a complex-linear change

of coordinates in Cn~ι such that in the new coordinates (which we
shall denote also z ; = (z\,..., zΛ_i)) we have:

n-q-\

(l)θ(z')= Σ(l-λ^

and we obtain (c).

71-9-1

i)χ]+ J2
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PROPOSITION 1. LetD c Cn be a pseudoconvex domain with smooth
boundary, E c dD a peak set for A°°(D), f a strong support function
for E and p e E such that the Levi form has q zero-eigenvalues at
p. We denote by Zp the complex q-dimensional subspace ofTCp(dD)
generated by the eigenvectors corresponding to the zero-eigenvalues.

Using the notations of Lemma 2, suppose that:
(i) HrCp(ρ,f)(p) has at least n - 1 strictly positive eigenvalues;

(ii) There exists a neighborhood V of p and a q + \ codimensional
generic submanifold S ofdD such that E n V c S and TCP(S) ®ZP =
TCp(dD);

(iii) The tangent space TP(S) has a q dimensional complement Vp

in Tp{dD) which is contained in Wp> where V'p@Wp = V+.
Then there exists a neighborhood ω of p, an n-dimensional totally

real submanifold of dD Π ω and c > 0 such that E n ω c M and
Re/(z) > cd(z,M)2 for each zeDnω.

REMARK 3. The conditions (ii) and (iii) mean that there exist p\,...,

pq defined in the neighborhood of p such that

have maximal rank, where z\9...,zq, respectively y[,...,y'q are the
variables corresponding to Zp, respectively to Vp.

Proof. We shall use the notations from the proof of Lemma 2 and
continue the proof with the methods used in the proof of Proposition
9 of [3] and Proposition 3 of [11].

The set

N = iz' e Vx= iz'

is in a neighborhood V2 C V\ of 0 G C " ' 1 an n + q - 1-dimensional
generic submanifold of Cn~ι which contains ZnV2.

We denote by τ(z) = J(gmdp(z)) where / represents the complex
structure on Cn = R2n. Because Γ0(Σ) = {(z, w) \ w = 0}, it follows
that τ is transversal to Σ at (0, 0), hence there exists a neighborhood
£/4 c C/3 such that τ is transversal to Σ on C/4.

Therefore there exists a C°°-diίfeomorphism φ defined on
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with values in dD such that

(2) φ(z',0) = (z',h(z')) and ^(z',0) = τ(z',h(z')).

Because Z n Vι c N we have

(3) E n U4 c φ(Z x {0}) C p(JV x {0}).

We denote by Φ(z', ί) = Re/(^(z', ή) and by

TV = {(*', 0 € 0ε |r;(z', 0 = 0,1 < j < n - <? - 1, Pj(φ(z', ή) = 0,

; = i,...,<?}.

where r/(z', ί) = (dΦ/dxj)(z'f t) and p y are obtained by Remark 3.
Let us suppose that 0 < λj< 1 for 1 < j < q and denote hj = pjθ<p>

j = 1,..., q. Let {^i,..., enj be the standard basis in Cn and let SQ be
the real space generated by e\,...,^«-^-i? Je\,...,Jeq. Because

(4) o ( z . , 0 )

from (1) we conclude that

By Remark 3 we obtain that

d {r\,..., rn

d(xhyh...,yn-ι,t)

has maximal rank n - 1 and N is in the neighborhood of the origin
an n-dimensional submanifold of 0β.

From (1) and (4) we obtain that the restriction to SQ of the Hessian
of Φ at the origin is strictly positive definite. From (iii) we obtain that
So ® 2r(o,o)(jN') = R2n~ι x R and the proof continues as in the proof of
Proposition 3 of [11], the genericity being obtained by (ii).

LEMMA 3. LetD be a boundedpseudoconvex domain in Cn, {En}nem

a family of peak sets for A°°(D) with strong support functions fn which
satisfy (i) of Proposition 1. Then E = f)nEn is a peak set for A°°(D)
with a strong support function which satisfies (i).

Proof. A strong support function for E is / = 1 - J2neN(l/2n)e~f\

neN

and
idRcfn

dn ~~ 2-* 2n dn
neN

and by Lemma 2 (a) the lemma follows.
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PROPOSITION 2. Let D c Cn be a bounded pseudoconvex domain
with smooth boundary, E a compact subset ofdD, ω a neighborhood
ofE in Cn and p a continuous function on ω which vanishes on E. We
suppose that there exists G e C°°(ω n ϊ?) such that:

(z){zeDnω\G(z) = O} = E,
(b) for each a e NΛ, /CGN, there exists Caκ > 0 such that

\D«d(G(z))\<Caκp(z)κ

for each z el)nω,
(c) there exists c> 0 such that Re G(z) > cp(z) for each z e D n ω.

Suppose that Re G verifies (i) of Proposition 1. Then E is a peak
set for A°°(D) with a strong support function which verifies (i).

Proof. We know from [3] that E is a peak set for A°°(D) with strong
support function f = G/(t -uG) where t = 1 in the neighborhood of
E and u is a solution of a 5 problem. It is easy to see that / verifies
condition (i).

4. Peak points in weakly pseudoconvex domains. For simplicity, we
shall say that a peak set E for A°°(D) which verifies (i), (ii), and (iii)
of Proposition 1, verifies the (GC) condition (GC=good convexity).

REMARK 4. The (GC) condition is obviously verified at the points
of strong pseudoconvexity.

THEOREM 1. Let D be a bounded pseudoconvex domain in Cn with
smooth boundary, E a peak set for A°°(D) which verifies the (GC)
condition, and K a compact subset of E. Then K is a peak set for

Proof. The proof is identical with the proof of Theorem 11 of [3],
which uses only the conclusions of Proposition 1.

THEOREM 2. Let D be a bounded pseudoconvex domain with smooth
boundary such that the set of weakly pseudoconvex boundary points
w(ΘD) is contained in a peak set E which verifies the (GC) condition.
Then each subset ofw(dD) is a peak set for A°°(D).

Proof. By Corollary 1 of [11], w(dD) is a peak set for A°°(D). By
the proof of Lemma 1, Lemma 2, Corollary 1 of [11] and by Lemma
3 and Proposition 2 above, w(dD) verifies the (GC) condition and we
obtain the result from Theorem 1.
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From Theorem 2 we obtain the following:

THEOREM 3. Let D be a boundedpseudoconvex domain with smooth
boundary in Cn such that w(dD) is contained in a peak set E which
verifies the (GCj condition. Then each point ofdD is a peak point for

REMARK 5. Using the same proof as in Lemma 2 of [11] we may
suppose in Theorem 3 that the (GC) condition is verified except at a
finite number of points.

EXAMPLE. Let p(z) = | z 1 | 4 + | z 2 | 4 + | z 3 | 4 + | z 3 | 2 ( ( I m z 1 ) 2 + ( I m z 2 ) 2 -
Re zj) and D = {z e C3|/?(z) < 1}. D is a bounded pseudoconvex do-
main in C 3 with real analytic boundary which does not have the (NP)
property (it is a slightly modified version of the domain considered in
Example 3 of [12]). We have w(dD) = C{ U C2 U C3, where

d = {z\ \zx\ = 1, z 2 = z 3 = ° } ' C 2 = {A \z2\ = l,zx=z3 = 0 } ,

C3 = {z\yx = y2 = z 3 = ( U ? + x2

4 = 1}.

The points of C3 are not of strict type in the sense of [2] or [8].
Let E = {z e dD \ z\ + z\ = 1}, which is a peak set for A°°(D) and

C3 c E. At each point of C3 with x\ Φ 0, x2 Φ 0 we obtain that

HrCp{pJ) = 12 (Vxf + xf- l) (xffi + xffi)

+ 4 (y/xf+xί + ή {x\t\ + x\t\)

has 4 strictly positive eigenvalues and in the neighborhood of /?, C3 is
contained in M = {z\p(z) = 15 xf + >̂i + x\ + x 3 = 1}. Because each
point of C\ and C2 is obviously a peak point for y4°°(Z>), it follows
that each point of 3D is a peak point for A°°(D).
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