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ISOMORPHIC BANACH-STONE THEOREMS AND
ISOMORPHISMS WHICH ARE CLOSE TO ISOMETRIES

EHRHARD BEHRENDS

A Banach space X is said to have the isomorphic Banach-Stone prop-
erty if for locally compact Hausdorff spaces K and L one always can
conclude that K and L are homeomorphic provided that the Banach
spaces Co(K,X) and Co(L,X) (=the continuous X-valued functions
on K resp. L which vanish at infinity) are isomorphic with sufficiently
small Banach-Mazur distance.

Our main results are a characterization of the finite-dimensional
spaces with this property, and we also get an abundance of new finite-
and infinite-dimensional examples.

These results appear as corollaries to general theorems about iso-
morphisms between certain spaces of continuous vector-valued func-
tions. They enable us also to conclude that, for certain spaces X, and
all compact K all isomorphisms T on C0(K X) with (1/(1 + τ))| |/| | <

< (1 + τ ) 11/11 f°Γ s m a U τ c a n b e approximated by isometries.

1. Introduction. The classical Banach-Stone theorem asserts that two
locally compact Hausdorff spaces K and L are homeomorphic if and
only if the Banach spaces CQK and CQL are isometrically isomorphic
(Co#=the space of continuous scalar-valued functions which vanish at
infinity, provided with the supremum norm). Several generalizations
of this theorem have been studied in the literature. For example, there
have been investigated Banach spaces X such that "scalar-valued" can
be replaced by "Λf-valued" in the assertion of the Banach-Stone the-
orem. X is then said to have the Banach-Stone property. This gen-
eralization is well understood; the interested reader is referred to [4]
and [5] where it is shown that in a sense which can be made precise
one knows all possibilities to determine spaces with the Banach-Stone
property.

Another generalization is due to Amir [2] and Cambern [9] who
proved independently that in the assertion of the theorem one may
replace "CQK and CQL are isometrically isomorphic" by "the Banach
spaces CQK and CQL are isomorphic, and the Banach-Mazur distance
is smaller than two". Later it was shown that also in this version
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one may replace the scalars by certain Banach spaces if the Banach-
Mazur distance of the function spaces under consideration is suffi-
ciently small. The most far-reaching results into this direction are
those of Cambern [11] and Jarosz [15].

1.1. DEFINITION. Let X be a Banach space. We will say that X
has the isomorphic BanachStone property if there is a δ > 0 such that
the following holds: whenever K and L are locally compact Hausdorίf
spaces such that there exists an isomorphism T: CQ(K, X) —• CQ(L, X)
(these are the continuous Λf-valued functions on K resp. L which van-
ish at infinity, and this function space is provided with the supremum
norm), then K and L are homeomorphic provided that ||7"||||T""11| <
l+δ.

Cambern proved that uniformly convex spaces have this property,
and by Jarosz's result a certain rather technical condition concerning
the dual of X is sufficient.

Given K and L and a homeomorphism φ: K —• L one can try to
define T: C0(K,X) -> C0(L,X) by (Tf)(φ(k)) = Tk[f(k)]f where Tk

is an isomorphism from X to X for every k. A moment's reflection
shows that T will be an isomorphism with ||3Γ*||||y x | | close to one
if the Tk have uniformly this property, and it even suffices that the
(Tf)(φ(k)) are close to the Tk[f(k)]. One might ask whether every
isomorphism T can be approximated in this way. To be more precise:

1.2. DEFINITION. X is said to have the strong isomorphic Banach-
Stone property if for every e > 0 there is a δ > 0 such that the following
holds: whenever K, L, and T are given as in 1.1, then there exist a
homeomorphism φ: K -* L and a family {Tk)keK of isomorphisms
on X such that

\\Tk\\\\T-ι\\<\+ε and

\\(Tf)(φ(k))-Tk[f(k)]\\<ε

for all k e K and all / € C0(K, X) with | | / | | < 1.
There exist two fairly general approaches to decide whether a given

X satisfies 1.1 or 1.2. They are completely independent, but both
rely on an isomorphic adaption of certain concepts of M-structure
theory (which gave the most far-reaching results in the isometrical
case). T h e ^ ί approach depends on the behaviour of certain M-ideals
under isomorphisms. Using this it can be shown that every X such
that l\ (the two-dimensional Lι -space) is bounded away uniformly
from every two-dimensional subspace of X' (=the dual of X) has the
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isomorphic Banach-Stone property, a result which will be published
in a joint paper of M. Cambern and the author [7].

Here we will study another approach which depends only in part
on M-structure (namely on the behaviour of certain operators which
are just the isomorphic variants of multipliers). In cases where both
[7] and the present results apply the admissible δ's which are deter-
mined by [7] are usually larger. In the present paper, however, we are
provided also with spaces satisfying 1.2, and in the finite-dimensional
case we even obtain necessary and sufficient conditions.

In contrast to the isometric vector-valued theory several interesting
questions are open for isomorphic vector-valued Banach-Stone theo-
rems. In particular there is nothing known about the range of the pos-
sible constants δ for a Banach space X with the isomorphic Banach-
Stone property. The only exception is the case of one-dimensional X:
here precisely the δ < 1 are admissible ([10], [12]).

Our results will be derived as special cases of a much more general
theory concerning isomorphisms between certain spaces of continuous
vector-valued functions. To be more precise, we start with

1.4. DEFINITION. Let Kh...,Kr,Lh...,Ls be locally compact
Hausdorff spaces and X\,...,Xr,Y\,...,Ys Banach spaces.

(i) C0(K{,...,Kr;Xh...,Xr) denotes the space ΠJίi CO{KP,Xp)9

the L00-direct product of the CQ(KP,XP) (this is just the product of
these spaces, provided with the supremum norm). The elements will
be regarded as "functions" / defined on K := K\U- -UKr9 where
for k eKp the element f(k) lies in Xp.

(ii) Let τ > 0 and

T: CQ(K\,...,Kr',X\,...,Xr) —+ CQ(L\,...,L5; Y\,..., Ys)

be an isomorphism. T will be called a τ-isomorphism if

for every / (clearly every isomorphism T is—up to a constant—a τ-
isomorphism for a suitable τ, and we may assume that HΓdHΓ"1!) =
(1 + τ)2; the advantage of considering τ-isomorphisms lies in the fact
T and T~ι satisfy the same norm conditions so that in the sequel one
only will have to prove the assertions concerning T; those concerning
Γ"1 will then be true by symmetry).

We now are going to explain the results in some detail. In §2 we
assign to each finite family Xι,...,Xr of Banach spaces a number
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a(X\, ...,Xr). The definition is rather technical, and there is certainly
no hope to calculate precise values in the general situation. However,
we are able to prove the following:

THEOREM (TH. 2.4). Suppose that a{Xϊf..., Xr) + a{Yh..., Ys) < 1.
Then there exists a τ > 0 such that the existence of a τ-isomorphism

T: Co(K\,...,Kr,X\,...,Xr) —• CQ(LI, . . . , L S \ Y\,..., Ys)

implies that there is a homeomorphism

φ: KιU- UKr -> Lxϋ'-\JLS.

We even can show more. If we denote, for Banach spaces X and Y, the
Banach-Mazur distance

: X->Y an isomorphism)

by d(X, Y), then we have the

THEOREM (TH. 2.5). Suppose that d(Xpf Xp>)y d(Yσ, Yσ,) > 1 for all
p φ p\ a Φ σ1. We further assume that a(X\,..., Xr) and a(Y\,..., Ys)
are sufficiently small. Then there exists a τ > 0 such that the existence
of a τ-isomorphism implies that r = s, that—up to rearrangement—Kp

and Lp are homeomorphic, and d(Xpf Yp) is close to one for every p.

Of course these theorems are of no interest as long as we have no
possibilities to give estimates for the constants a{X\,...,Xr),
a(Y\,...,Ys). We develop two possibilities to get such estimates. For
the first one we introduce a new constant which measures, in a sense,
how large the segments in the unit sphere are:

1.5. DEFINITION. Let X be a Banach space. By a{(X) we denote
the infimum of those numbers a > 0 for which there exists an ε > 0
such that the following holds: if XQ, X are vectors in X with

1 — β < IIJCQII < 1 + β

||*o + θ*ll < 1 + ε for all scalars θ with | θ | = 1,

then ||x|| < α.
In the case of finite-dimensional spaces a\(X) is just the maximal

radius of one-dimensional balls contained in the unit sphere.
a\(X) = 0 just means that X is uniformly convex (which has to be

understood in the sense of [14] for complex spaces).
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The second possibility uses isomorphic variants of multipliers:

1.6. DEFINITION. Let X be a Banach space and R: X -> X an
operator

(i) Suppose first that ||U|| < 1. Then R is called a multiplier (or
M-bounded) if

whenever x0, x are vectors such that ||ΘJC - JCQII < 1 for all scalars
θ with | θ | = 1. Operators with ||i?|| > 1 will be called multipliers if
i?/||i?|| has the above property.

The collection of all multipliers is denoted by Mult(X) (the mul-
tiplier of 'X)9 and this set is said to be trivial if it contains only the
operators K Id; as usual K stands for the scalar field, K = R or K = C.

(ii) For e > 0 we say that R belongs to M\ύte(X) if R satisfies the
following condition:

\\Rx-xo\\< l+e

for all vectors with ||ΘJC - * 0 | | < 1 (a 1 1 Θ w i t h l θl = 1)

Note. For a survey of properties of Mult(-Y) the reader is referred
to [1], [4], and [6]. For our purposes it is important to note that there
are many classes of spaces known where Mult(X) is trivial, e.g.

X strictly convex [16], [19]
X smooth [6]
X = U (μ), and dim X > 2 [6].
X is finite-dimensional and contains no nontrivial Λf-summand (i.e.

no subspace / different from {0} and X with an L°°-complement;
[6]).

Trivially Multo(X) consists of the R in Mult(X) with \\R\\ < 1. We
need to know how close the R e Multε(X), which behave nearly as
multipliers, are to the trivial elements of Mult(Λf), the operators Kid.
This gives rise to the next definition; there we will use the symbol
{M)a to denote, for a subset M of a normed space, the set {x\ there
exists an m € M with ||JC - m\\ < a}.

1.7. DEFINITION. aι{X) denotes the infimum of those numbers a
for which there is an ε > 0 such that

Multe(X) c (KId)α.

A systematic study of M\x\Xε{X) and e*2(Λf) is not intended in this
paper. We only collect together in §3 those properties which are of
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importance for our purposes. In particular we prove (Th. 3.2 and Th.
3.3):

THEOREM.

(i) IfX is finite-dimensional and Mult(JΓ) is trivial then a2{X) = 0.
(ii) a2(X) = 0for every uniformly smooth space.

Our main result, by which we are in a position to apply the inves-
tigations of §2, is then the following theorem. Its proof and the first
consequences are discussed in §4:

THEOREM. Let X\,...,Xr beBanach spaces. Then

a(Xh ...,Xr)< maxmin{αi(Xp),2a2(Xp)}.

It is then fairly easy to derive various isomorphic Banach-Stone
theorems. In §5 we prove:

— uniformly convex and uniformly smooth spaces have the strong
isomorphic Banach-Stone property;

— let X be finite-dimensional; we write X as Π ^ i Xpp> where the
Xp are subspaces which are pairwise not isometrically isomor-
phic and have trivial Mvlt(Xp); such a representation is always
possible and is—up to rearrangement—unique (cf. [6]); then
X has the isomorphic Banach-Stone property

iffmin/^ = 1, and

X has the strong isomorphic Banach-Stone property

iffr = 1 and nx = 1

(which, by [3], is the same characterization as in the isometrical
theory).

Another application of the results of §4 is discussed in §6: how close
can τ-isomorphisms on a space be approximated by isometries?

1.8. DEFINITION. We say that a Banach-space X has the AI-property
(which stands for "approximation by isometries'9) if for every ε > 0
there is a τ > 0 such that every τ-isomorphism lies in (Iso0(X))θ (where
Isoo(^Γ) is the group of all isometries).

We prove that, for certain X, all C(K,X) for arbitrary compact
Hausdorff spaces K have the Al-property. These results seem to be
new even in the case X = K (where, however, there is some overlap
with the work of Benyamini [8]; cf. also theorem 6.1 in Jarosz [17]).
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Some of our investigations, particularly in §2 and §4, are rather
technical It is suggested to the reader to consider first the special case
r = s = 1 and the case of compact instead of locally compact spaces.

NOTATION. Banach spaces are always real or complex and not re-
duced to zero, operators are linear and continuous. Topological spaces
are assumed to be Hausdorff spaces. The symbol " = " means "isomet-
rically isomorphic" when applied to Banach spaces and "homeomor-
phic" in the case of topological spaces. Isomorphisms are always onto
isomorphisms. The spaces CQ(K, K) are abbreviated by CQK for lo-
cally compact K and CK for compact spaces. Finally, B(x, r) stands
for the closed ball with center x and radius r in a Banach space.

Acknowledgment. The author wishes to express his gratitude to
Michael Cambern and his colleagues from the University of Califor-
nia at Santa Barbara for their hospitality during the author's stay in
the summer of 1986.

2. The constant a{Xh..., Xn). Let T: C0(Kh..., Kr; Xu..., Xr) -*
CQ{L\, . . . , Ls\ Y\,..., Ys) be a τ-isomorphism. We will abbreviate

V := Co(K\,...>Kr\X\y.,.,Xr)

W:=C0{Lu...,Ls;Yi,...,Ys),
K:=Kιϋ- ϋKr,

and we will associate certain points of K with points of L.

2.1. DEFINITION. Let a > 0.

(i) For k e K and / € L we write k A / if | |(Γ/)(/)|| < α | |/ | | for

every / e V such that f(k) = 0.
(ii) K A L means that for every k there is an / with k A /.

2.2. PROPOSITION.

(i) Suppose that k-^l Then

for every f e V.

(ii) Suppose that k -^ / and I Λ k. Then k = k provided that

{a + β){\ + τ) < 1. Similarly I A kfk^ϊ yield I = I under the same

condition.
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(iii) Suppose that K^L and L -^ K and that (a + β){\ + τ) < 1.

Then for every k (resp. I) there is precisely one I (resp. k) such that
n

k A / (resp. I A k). This induces mappings φ: K —• L and ψ: L -+
T τ~ι

K.
(iv) Under the conditions o/(iii) we have φ = ψ~ι, and φ and ψ are

continuous (i.e. K = L).

Proof.

(i) Let / G V be given and η > 0. We choose / e F with ||/|| =
11/11, II/-/II < | |/(*)| | + if, /(*) = 0. It follows that \\(Tf)(l)\\ < a

and \\Tf- Tf\\ < (1 + τ)(||/(fc)|| + η) so that

This proves the assertion since η was arbitrary.
(ii) Suppose that k φ k. We choose feV with ||/|| = 1, f{k) = 0,
£ = 1. By k A / it follows that ||(Γ/)(/)|| < a, and (i) yields

l = \\f(k)\\ = \\T-ι(Tf)Ck)\\

<β\\Tf\\ + (l + τ)\\Tf(l)\\

a contradiction.
(iii) Let k, lχ, l2 be given with k A lx, k A /2, and /i 7̂  l2. Choose

g€W with ||g|| = 1, g(h) = 0, \\g{h)\\ = 1. (ii) yields
β so that, also by (ii),

which contradicts our assumption.
(iv) The assertion φ = ψ~x is a reformulation of (ii). Now let

ko € K be given and U a neighbourhood of φ{ko). Choose a g e W
with | |£| | = \\g(φ(ko))\\ = 1, g(l) = 0 for / £ tf, and consider

1/ yields IKΓ"1*)^"1^))!! < ^ by definition so that ^(C/) c U.
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We also have k^eϋ since otherwise

= \\T(T-ιg)(l0)\\ < a\\T-ιg\\ + (1 + τ)β

This proposition motivates the following

2.3. DEFINITION. Let Yχ9...,Ys be Banach spaces. By a(Y\,...,YS)
we mean the infimum of the numbers a > 0 with the following prop-
erty: There exists a τ > 0 such that K -^ L for all Banach spaces

X\,...,Xn all locally compact spaces K\9...9Kr9L\9...9Ls and all τ-
isomorphism T: V —• W (notation as above).

As an immediate reformulation of 2.2 we then have

2.4. T H E O R E M . Suppose that a(Xh..., Xr)+a(Yh ...9YS)<1. Then
there exists a τ > 0 such that, whenever there is a τ-isomorphism

T: CQ(K\, . . . , K r ; X \ , . . . , X r ) —• C${L\, ...,LS; Y\,..., Ys),

then necessarily Kx0 ϋKr = Lx0 ϋLs.

Proof. Choose a > a(X{,..., Xr), β > a(Yh ...9YS) such that a+β <
1. By definition there is a τ > 0 such that the existence of T: V —• W

n

yields K A L and L -^ K. Without loss of generality we may assume

that (α + jff)(l + τ) < 1 so that Proposition 2.2 applies.

We now are going to investigate further properties of the mapping
φ of 2.2.

Let T be given as in 2.2, suppose that (a + β)(l+τ) < 1, and apply
2.2 (iii) to obtain φ.

Let k E K be arbitrarily given, say k e Kp and φ{k) =: I e Lσ. We
choose a fixed h e C0K with support in Kp and ||/t|| = h{k) = 1 and
define

by Sk(x) := (Tx~)(l), where x~ denotes the function

, .__ ί h{k)x for k e Kp,

I 0 otherwise.

Clearly Sk is an operator with \\Sk\\ < 1 + τ.

Similarly we define i?/: Yσ —• Xp, this time using a fixed
and T~ι instead of Γ. Fix an x e Xo. We have
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so that

\\T-ι[T(x~) - Sk(xΓ](k)\\ < β\\Tx~ - Sk(x)~\\ < 2(1 + τ)β\\x\\.

But this means just

and similarly \\y - S^Riy]] < 2(1 + τ)α||y| | is valid. It is then a simple
exercise to show that this implies that Sk is an isomorphism with

\\Sk\\\\S~ι\\ < ά := (1 + τ)2min{(l - 2(1 + τ)a)-\ (1 - 2(1 + τ)/?)"1},

provided that a and β are smaller than 1/[2(1 +τ)]. Thus d{Xp, Yσ) <
ά, and consequently d(Yσ, Yσ>) < a2 if k, k! e Kp are given such
that φ(k) e Lσ, φ(k') e Lσ>. In particular, if the d(Yσ, Yσ>) are all
greater than ά 2, then all k e Kp are mapped to the same Lσ, i.e.
φ{Kp) c Lσ. Considering φ~ι we get φ~ι(Lσ) c Kp, so that φ induces
a homeomorphism between Kp and Lσ. Summing up, we have proved
the

2.5. THEOREM. Suppose that

aχ:=a{Xχ,...,Xr), *γ := a(Yh . . ., Yt) < \

and that

d(Xp,Xp,),d(Yσ, Yσ.) > min{(l - 2axy
2, (1 - 2α y)~ 2} =: ά2

0.

Then for every ε > 0 there is a τ > 0 such that the existence of a
τ-isomorphism T: V —> W implies that r = s and that there ex-
ists a bisection ω: {l,...,r} -> {1,...,^} such that Kp = Lω^ and
d{Xp, Yω[p)) < &o + e for every p.

Proof Choose a > ax, β > βγ> τ > 0 such that the above consider-
ations apply (with a = ά 0 + e).

3. Operators which are nearly multipliers and the constant a2{X). In
this section we discuss the class Multε(X) (see Def. 1.6(ii)). We deter-
mine a2(X) for some classes of spaces and prepare the proof of our
main results in §4. The following assertions are immediate:

3.1. LEMMA.

(i) Multε(X) is a closed subset of the ball with radius 1 + ε.
(ii) Π ε > ε oMult ε(X) = Mu\tεo(X) for every ε0 > 0, so that in particular

n ε > 0Mult ε(X)cMult(Z).
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We start by investigating two classes of examples.

3.2. THEOREM. Let X be finite-dimensional.
(i) For every a > 0 there is an ε> 0 such that

Multε(X) c (Mult(X))α.

(ii) Suppose that in addition Mult(X) is trivial. Then ct2(X) = 0.

Proof, (i) follows from a simple compactness argument by using
the compactness of {R\R e Mult(X), ||jR|| < 1} and 3.1(ii). (ii) is a
consequence of (i).

3.3. THEOREM. Let X be uniformly smooth, this means that for
every η > 0 there is an έ > 0 such that \\x - y\\ < ε implies that
II* + y\\ > \\x\\ + \\y\\ - n\\x - V\\ (see [13], p. 147). Then a2(X) = 0.

Proof The proof is sketched in several steps. Details are left to the
reader

1. For every two-dimensional Banach space XQ there exist XQ, y$ e
Xo with norm one such that

(choose XQ, yo to be an Auerbach-system; see l.c.3 in [16]).
2. Let R: X —• X be an operator on any Banach space X such that,

for a fixed e > 0, we have \\Rx - λxx\ < ε for each x in the unit ball,
where λx e K may depend on x (i.e. every x is nearly an eigenvector).
Then there is a λ e K such that | | ϋ - λlάx \\ < 18ε. (First let x, y be
vectors as in " 1 . " . With λx, λy, λ G K such that

\\Rx-λxx\\, \\Ry-λyy\\, R(
 x + y \ λί
\\\χ + y\\) V

< ε

i t f o l l o w s t h a t \\{λx - λ ) x + {λy - λ)y\\ < 4ε s o t h a t \λx - λ y \ < 8 ε . )
Now let x, y be arbitrary with ||x|| = | | j ; | | = 1. We choose λx, λy

with \\Rx - λxx\\9 \\Ry - λyy\\ < ε, and we claim that \λx - λy\ < 18ε.
To this end, let XQ, yo e lin{x, y} be as in " 1 . " (we note that without

loss of generality x and y are linearly independent). By the first part
of the proof we know that \λXo - λyo\ < Sε is true for the associated
Λ's. Therefore the numbers \\(R - λXo ldχ)(z)\\ are bounded by 8ε for
z in {OXQ + βyo \ |α|, \β\ < 1}, and in particular we have

HΛJC-A^JCH, \\Ry-λXoy\\<8ε

so that \λx-λy\ < 18ε.
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Now choose any XQ with ||;co|| = 1 and define λ := λXo. Then obvi-
ously \\R -λ Id* || < 18ε.)

3. Let ε > 0. For any x we define

I(x,ε;X):=f)B(xOfr(l+ε)),

where the intersection runs over all XQ G X, r > 0 such that Θx G
B(xo,r) for every Θ with | θ | = 1. Then clearly R e Multε(X) iff
Rx G I{x, ε\X) for every x with \\x\\ < 1.

4. Let X be a Banach space. Suppose that for every α > 0 there is
an ε > 0 such that

for any JC with ||x|| < 1. Then a2{X) = 0 (as an immediate conse-
quence of "2." and "3.").

5. Let Y be a two-dimensional smooth Banach space. Then for
every a > 0 there is an ε > 0 with

/(*, ε; Γ) C (Kx)a (all x with ||JC|| < 1).

This follows from a compactness argument and the fact that I(x, 0; Y)
C Kx for smooth spaces.

6. Let ε: ]0,1] ->]0,1] be a fixed function. In &, the set of all
two-dimensional Banach spaces provided with the distance logd( , •),
we consider the subset 3Bξ\ Ye <&$ iff

\\x - y\\ < i(η) =• ||jc + y|| > \\x\\ + \\y\\ - η\\x - y\\

{aΆηe]0Λ],x,yeY).

Then 3§z is closed in £% and thus compact.
7. Let ε be as in "6.". Then for every α > 0 there is an ε > 0 such

that
/(jcfβ;y)c(Kjc)tt

uniformly for all Y in ̂  and X G Γ with ||JC|| < 1 (this follows from
"5." and "6." and a continuity argument).

8. Now let X be a uniformly smooth Banach space. Then there is,
by definition, a function έ: ]0,1] —•](), 1] such that all two-dimensional
subspaces of X belong to 38$. Let a > 0 be given and ε as in "7.". Then,
for x G X with ||x|| < 1, we have

I(x,ε;Y)c(Kx)Q

for every two-dimensional subspace which contains x. But this implies
I(x,e;X)c(Kx)a.

Now a combination of "8." and "4." proves the theorem.



BANACH-STONE THEOREMS 241

We return to the spaces

C(K\,...,Kr\X\,.. .,Xr)> C(L\t... ,L$; Y\9..., Ys)>

and we adopt the notation of §2. Since for every bounded and con-
tinuous h: K —• K with \\h\\ < 1 the operator Mk\ V —>V, defined by
f*-+hf, lies in Multo(F), the operator TMhT~ι lies in Mult2τ+T2(ϊF)
for every τ-isomorphism T. The proof of these facts is straight-
forward.

This observation which will be of crucial importance later necessi-
tates the study of the Multβ(K),

3.4. PROPOSITION. Let ε > 0 and R e Mult ε(F).

(i) Fix p e {1,..., r} and k e Kp. With x~ as in §2 (cf. the dis-
cussion leading to Th. 2.5) we define R^: Xp —* Xp by x *-+ (lϊjc~)(fc).

Then Rk eM\ύte{Xp).
(ii) For feV with f(k) = 0we have \\(Rf){k)\\ < e\\f\\.

(iii) For every f and every k we have

\\Rkf{k)\\ - 2β||/| | < \\(Rf)(k)\\ < \\Rkf(k)\\ + 2ε||/| |.

Proof.

(i) ||ΘJC — JCOII < 1 (all | θ | = 1) yields \\θx~ - x£\\ < 1 and thus
\\Rx~ - XQ\\ < 1 + ε. Evaluating this at k gives \\Rkx - XQ\\ < 1 + ε.

(ii) Let x e Xp with \\x\\ = 1 be given. For p O w e choose an
h e C0K with support in KpΠ{||/|| < η} such that h(k) = ||Λ|| = 1 - η
(where feV, f(k) = 0, | |/ | | < 1). Define hx by

m _ ί h{k')x iίk'eKp,

I 0 otherwise.

Then | | θ / - hx\\ < 1 for every θ with | θ | = 1 so that \\Rf - hx\\ <
1 +e. The special choice x := (Rf)(k)/\\Rf(k)\\ gives, by considering

l-η + \\Rf(k)\\<l+e.

This proves that ||jR/(fc)|| < ε since η > 0 was arbitrary.
(iii) Let feV and k e K be given. f-f(k)~ vanishes at k so that

by(n)\\(Rf){k)-*kAk)\\<2*\\f\\-

Using this preparation we can prove that property of the R e
which will be very important in §4.
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3.5. COROLLARY. Let a, η, e > 0 be given and k e K. We assume
that

(i)i?£Multε(F),
( i i ) t h e r e is a g o e V s u c h t h a t \\go\\ = 1, \\Rgo{k)\\ >\-η,

(iii) Multβ(^) C (KIdjr,)α.
Then \\{Rf){k)\\ > \\f(k) || -(2a + 4ε + η) \\f\\ for every f e V (roughly:
with f also Rf is large at ky and this can be asserted at every k where
Rgo is large for at least one go).

Proof 3.4(iii), applied for g0, gives \\Rk\\ > 1 - η - 2e. Since
Rk G M u l t ^ ) c (KΙd^)α we find a λ e K with \\Rk - Ald^ || < a.
Here necessarily \λ\ > 1 — η — 2e — a. Now let / € V be given. Again
by 3.4(iii) we have

4. An estimate of the constant a(X\,..., Xr) and some important con-
sequences. The following theorem is doubtlessly the most important
one in this paper. Only by using this we are able to apply the results
of §2 (by having in mind, of course, our knowledge about the a\(X),

4.1. THEOREM. a(X\,...,Xr) < maxpmin{aι(Xp),2a2(Xp)}.

Proof For the sake of convenience we prove the theorem for a
family Y\,...fYs (which avoids the change of notation).

Let a > maxσ minlα^Γ^), 2a2(Yσ)} arbitrary. We assume that the
Yσ are given such that

a>a\(Yσ) for σ = 1,...,£, and

a > 2a2(Yσ) for σ — s + 1,..., s.

It has to be shown that there is a τ > 0 such that K A L when-
T

ever X\,...,Xr, K\,...,Kr, L\,...9LS are given and there exists a τ-
isomorphism T: V -> W (notation as in §2).

At first we choose any a', a" with a2{Yσ) < a' < a" < a/2 for
σ - s + 1,...,s and ot\(Yσ) < 2a" for σ = 1, . . . ,£ , and then an ε > 0
with

— lot + 4ε< 2α",
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— 1 - ε < ||jco|| < 1 + e. ||*o + θx\\ < 1 + ε for all |θ | = 1 implies
IMI < 2a"; all xo,x € Yσ, where σ = 1,..., s,

— MultβTO C ( K I d r > for σ = ί + 1,...,s.

Finally we suppose that τ > 0 is so small that

— (l + τ ) 2 < l+ε,
— l - 2 τ - τ 2 / ( l + τ ) > 1-ε,
— {2a' + 4e + ητ + τ)(l + τ) < 2α",

where ?/τ := (1 - 2τ - τ2j/(l + τ)2 - 1.
Now let Xχ,...,Xr, Kχ,...,Kr, L\,...,LS and a τ-isomorphism Γ:
F -• W be given. We claim that K -2*. L, i.e.

α λ := infsup{||(Γ/)(/)|| | / € lΓ/(fc) = 0, ||/|| < 1} < a

for every k e K. We will show that ί < ak implies t < 2a" so that
ah < 2a" < a. Let k and such a ί be given and fix any function
/o € V with H/oll = ||/o(*)|| = 1. The set Lτ := {/ | ||Γ/0(/)|| > τ}
is compact so that we find f\,...,fn e V with ||y;|| < 1, /,(fc) = 0,
max,-1|7>5(/)|| > / for every / € Lτ.

Since all these ft vanish at k$ it is possible to choose an A € C0K
with ||Λy; || < τ, \\h\\ = -h(k) = 1, Wθfi-hfoW < I + τ for i = \,...,n
and |θ | = 1.

We have ||/0 - hfo\\ = 2 so that there is an /0 e L with ||[Γ/0 -
7Wo)](4>)ll > 2/(1 + τ) which yields

\\[T(hfo)](lo)\\, \\(Tfo)(lo)\\ > (1 - 2τ - τ2)/(l + r)

(note that \\T(hfo)\\, \\Tfo\\ < 1 + τ). Therefore in particular /0 e Lτ,
and we find an iQ e {ί,...,n} with ||(Γ/Jo)(/o)|| > t. l0 lies in one of
the Lσ, and we consider two cases.

Case 1. σ e { I , . . . , § } .
We know that \\θfio - hfo\\ < 1 + τ for all |θ | = 1, i.e. with x0 :=

[T(hfo)](lo), x := (Tfh)(lo) we have

t<\\x\\
\\ex-xQ\\<(l+τ)2 (all |θ| = 1).

By the choice of τ this implies ||ΛΓ|| < 2or", and thus / < 2a" as claimed.

Case2. σe{s+l,...,s}.
The operator Mh: V -»• V, f \-+ hf, belongs to Multo(K) so that

R := TMhT-χ lies in Mult2τ+T2(JF) c
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With so := Tfo/\\Tfo\\ we have Rg0 = T{hfo)/\\Tfo\\ and conse-
quently \\(Rgo){lo)\\ > (1 - 2τ - τ 2)/(l + τ) 2 = 1 - ητ. On the other
hand we know that \\hfio\\ < τ so that ||Λ(Γ/ fc)|| = ||Γ(A/fc)|| < τ ( l + τ ) .

Now Corollary 3.5 comes into play. Since R e M\Λte(W) and
Multβ(yσ) c (Kldyjo/ it follows that

t < | |Γ/ f c(/0)|| < (2α' + 4ε + vτ)||Γ/ fc | | + ||Λ(Γ/fc)||

< (2a1 + 4δ + ητ + r)(l + τ) < 2α/;,

and this completes the proof.

We now turn to some interesting consequences which can be derived
very simply by combining Theorem 2.4 or Theorem 2.5 with Theorem
3.2, Theorem 3.3, the remarks following Definition 1.5 and, of course,
Theorem 4.1.

4.2. THEOREM. Suppose that min{αi(X),2α2(X)} < \ for X =
Xp{p=\,...,r)andX=Yσ{σ=\,...,s).

Then there is aτ > 0 such that the existence of a τ-isomorphism

T: Co(K\f ...,Kr',X\,...,Xr) —• Co(L\,...,LS; Y\,..., Ys)

implies that Kλύ 0Kr = L\ύ ϋLs.

4.3. THEOREM. Suppose that min{a{(X),2a2(X)} < \. Then there
is aδ> 0 such that

d(C0(K,X),C0(L,X))>l+δ

for arbitrary K, L with K^L.

4.4. THEOREM. Suppose that a\{X) = a2(X) = 0 for X = Xp(ρ =
1,..., r) and X = Yσ(σ = l,...,s). Suppose further that d(XRi Xp>),
d(Yσ, Ya>) > \ for p Φ p1 > o Φ σf. Then for every δ > 0 there exists a
τ > 0 such that the following holds: whenever

T: CQ(K\,...,Kr;X\,...,Xr) —• C Q ( L I , . . . , L 5 ; Y\,...9 YS)

is a τ-isomorphism, then r = s, and there is a bijection ω: { l , . . . , r } — •
{ 1 , . . . , s } with Kp = L ω ( P ) andd(Xp, Yω(p)) <l+δ for every p .

Note. In particular this can be applied to such situations where for
every τ > 0 τ-isomorphisms exist. Then d(Xp> Yω(P)) = 1 for all p.

5. Isomorphic Banach-Stone theorems. We now state our main re-
sults on isomorphic Banach-Stone theorems. They appear as special
cases of our more general approach.
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5.1. THEOREM. Each of the following conditions implies that X has
the isomorphic Banach-Stone property:

(ii) X is of the form Π ^ i ^ > where d(Xp,Xp>) > 1 + δ0 for a
suitable SQ > 0 and all p Φ p'. Further min np = 1 and

} < 1 - (1 +<*o)~1/2 « δo/2.

Proof One only has to note that CQ(K, Π Xpp) can be identified with
CQ(Π\ K,..., nrK\ X\,..., Xr)\ here nK stands for the disjoint union of
n copies of K.

5.2. THEOREM. Each of the following conditions implies that X has
the strong isomorphic Banach-Stone property:

(i) X is uniformly smooth,
(ii) X is uniformly convex,

(iii) X is finite-dimensional with Mult(JΓ) = KIdχ;

(v) a(X) = 0.

Proof In view of Theorem 3.3, the remark following Definition 1.5,
Theorem 3.2(ii), and Theorem 4.1 it suffices to prove (v). Let ε > 0
be given and a > 0 so small that (1 + α) 2 /(l - 2α(l + a)) < 1 + ε.
Choose τ > 0 for this a according to 2.3, where τ < a. Now let any τ-
isomorphism T: CQ(K,X) —• CQ(L, X) be given. With φ and
as in the discussion leading to Theorem 2.5 we define Tk :=

The Tk are isomorphisms, and

It remains to prove that \\Tf(φ(k)) - Tkf(k)\\ < ε for all k and /
with 11/11 < 1. Let such / and k be given. With φ(k) =: / we have
k A / and [/(*)- - f]{k) = 0. Thus

which completes the proof.

5.3. THEOREM. Let X be a Banach space which can be written as
X = Π r,=i tf', where d(Xp, Xp>) >\forpφpl and a{Xp) = Ofor p =
1,..., r. We emphasize that this is possible for every finite-dimensional
space {combine Theorem 3.2 (ii) with Proposition 5.1 in [6]) but also
surely for many other spaces.
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(i) X has the ίsomorphic Banach-Stone property iffminnp = 1.
(ii) X has the strong isomorphic Banach-Stone property iffr = n\ =

1.

Proof, (i) If min np = 1 then X has the Banach-Stone property by
Theorem 5.1. If m i n ^ > 1 then X does not even have the usual
Banach-Stone property since there are non-homeomorphic ΛΓ, L with
nK = nL for every n > 2 (so that for these K, L we have K ψ L but
C0(K,X) £ Co(L,X)); see [4], Corollary 11.15.

(ii) One implication is proved in Theorem 5.2.
Conversely, if r > 1 or r = 1 and n\ > 1 then X can be written as

/Θoo J1 for suitable nontrivial subspaces /, J1 (Θoo denotes the L°°-
direct sum). With K = L = {1,2} we identify C0(A; X) and C0(L, X)
with / θoo / ®oo JL θoo J1' An isometry Γ on this space is defined
by C/Ί, Λ* 'ϊ1, yf) HĤ  U\> h> J2> Jί)- l t i s P l a i n t h a t f o r n o choice of
φ: {1,2} —> {1,2} and isomorphism Γ^ can the map Γ be approxi-
mated such that Tf(φ(k)) - Tk{f{k)) is small for all A: e {1,2} and /
with 11/11 = 1 (since Tf(φ(k)) can be large with f(k) small). Therefore
X (and more generally every X with a nontrivial Λf-summand) fails
to have the strong isomorphic Banach-Stone property.

6. Isomorphisms which are close to isometries. Let X be a Banach
space with a{X) = 0 and K a compact space.

We choose an a > 0 and an admissible τ > 0 for this a (as in
2.3) and suppose that T: C(K, X) -+ C(Jζ X) is a τ-isomorphism. We
are going to investigate whether T is close to an isometry. Let φ be
defined as in Theorem 2.4, and for simplicity we will assume for the
moment that φ = Id#. Thus T is a τ-isomorphism with

/(A:) = 0 =• ||(7T)(A:)|| < «

We consider maps Tk\ X -+ X, x •-• (Γx)(fc), where x denotes the
constant function x (the 7^ are just the Sk of §2, where h = 1). Then,
as it is shown in §2, the Tk are isomorphisms on X with

Now consider the operator Π Tk.
Since k *-+ Tk is continuous with respect to the strong operator

topology (this can not be guaranteed in the general situation of §2)
this operator is well-defined on C(KfX).
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Suppose it would be possible to find isometries Ik on X with Tk « I k

and k \-+ Ik strongly continuous (so that Π h would be a well-defined
isometry on C{K,X)). Then T » Π τk and Π Tk « Π4> so that Γ
would be close to an isometry.

Thus the main difficulty in this approximation problem is to approx-
imate a continuous family of near-isometries continuously by isome-
tries.

To treat this more precisely it is useful to introduce the following

6.1. DEFINITION. Let X be a Banach space and η > 0. By Iso^(JΓ)
we mean the collection of all isomorphisms T: X —> X which are
^/-isomorphisms, i.e. (1/(1 + η))\\x\\ < \\Tx\\ < (1 + η)\\x\\.

We suppose that for every ε > 0 there is an η > 0 with

Iso^ΛΓ) C (Iso0(X))ε,

which is certainly true for finite-dimensional spaces (note that
f]η>0lsoη(X) = ISOQ(^) and apply a compactness argument).

Then returning to the preceding discussion, we could choose Ik e
ISOQ(X) for every k such that ||Γ^ - Ik\\ < ε (provided that τ was so
small that Tk e Iso^(X)). There seems, however, to be no general
strategy to guarantee that the choice of these Ik leads to a continuous
family k »-* Ik.

We restrict ourselves by giving a sufficient condition:

6.2. THEOREM. Let X be a Banach space with a(X) = 0. Further
suppose that for every έ > 0 there is an η> 0 such that

(i) Iso,(Z) c (IsooW)ί,
(ii) /Λere w α mapping μ: Iso^(X) -^ Isoo(X) wλ/cλ /.s continuous

with respect to the strong operator topology and for which \\μ(R)—R\\ <
2έ for every R.

Then C(K, X) has the AI-property for every compact space K.

Proof Let ε > 0 be given. We choose μ > 0 and η for έ := ε/3.
Now we select a > 0 with

l + a < l + η , Ί ^ t , Λ > τ j , 2 α < |
l-2α(l+α) l + η 3

and finally τ > 0 with τ < α for this a as in Definition 2.3. Let
Γo be a τ-isomorphism on C(lζΛf). We define T := Γo o Iφ, where
^ is the homeomorphism defined by To and Iφ denotes the isometry
/ »-> f o φ~ι on C(AΓ,X). Then Γ is a τ-isomorphism and we have
A: A ^ for every &.
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Consider the Tk as above. Then Tk e Iso^(X) by construction, and
k h+ Ik := μ(Tk) is a continuous family (continuous w.r.t. the strong
operator topology) of isometries such that || Π Tk - Π4II < §£• β ut
||Γ/(*) - Tk(f(k))\\ < 2a\\f\\ (since ( / - f(k))(k) = 0) so that ||Γ -
Π^l ! < 2a < ε/3. This proves that | |Γ-Π4II = 11*0-(ΠW 1 II ̂
ε, and (Π^fcX^)"1 ^s a n isometry on C(AΓ,X).

Therefore C{K, X) has the Al-property.

It seems to be difficult to find examples. We only mention the
following

6.3. THEOREM. Let X be a finite-dimensional Banach space such
that there are isometries I\,...,In with ISOQ(X) = U/{θ/| | | θ | = 1}.
(This is for example the case if the unit ball of X has only finitely
many extreme points.) Further assume that Mult(X) is trivial so that
a(X) = 0.

Then C(K, X) has the Al-property for every compact space K.

Proof We first note: For every / with ||/|| = 1 and η > 0 there is a
continuous map

with \\μi(R) - R\\ < 2η for every R (this is trivial if K = R and easy
ifK = C).

It is now immediate how Theorem 6.2 can be applied: choose a
minimal number of I\,...,In and consider only such έ where the
({Θ7; I |θ | = l})g are pairwise disjoint so that μ can be defined by
gluing together the μjr

As an important special case we mention the case X = K. Here,
however, it is easy to be more explicit, and one obtains

6.4. COROLLARY. For every τ-isomorphism T on a CK-space there
is an isometry I with \\T - 7|| < 3(τ + τ 2).

Finally it should be noted that there seems to be no possibility to
treat similarly the case of Q(AΓ, X) with locally compact K. The dif-
ficulties arise from the fact that in the definition of the Tk we have
to choose an element h of Q(AΓ) which is one at k and this is not
the same h for all k in the non-compact case. Of course something
can be said if one has partitions of unity, but nothing up to now for
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arbitrary K. It is even not obvious how to treat the case X = K in
general. If K = R one has an analogue of Corollary 6.4 for arbitrary
QA^-spaces; the case K = C however leads to the following prob-
lem: Let K be locally compact and T: CQK —• CQK a τ-isomorphism.
Suppose that for every compact D c K there is a continuous func-
tion hD: D - { θ I |θ | = 1} with \\Tf\D - hDf\D\\ < ε\\f\\ for every
/ . Is it possible to find a continuous h: K -> {θ | | θ | = 1} with
||Γ/-*/||<2β||/||foraU/?

Acknowledgments. I am grateful to the referee for drawing my at-
tention to Jarosz' paper [17]. Globevnik's paper [14] was made avail-
able to me by D. Werner. The results proved there—together with our
theorems—have the surprising consequence that all complex Lι-spaces
have the strong isomorphic Banach-Stone property.
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