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A BONNESEN-STYLE INRADIUS INEQUALITY
IN 3-SPACE

J. R. SANGWINE-YAGER

A Bonnesen-style inradius inequality for convex bodies in E3 is
obtained using the method of inner parallel bodies. The inequality
involves the volume, surface area and mean-width of the body.

I. Introduction. By a convex body we mean a compact convex set
with non-empty interior. Let K be a planar convex body with area
A, perimeter L, inradius r, and circumradius R. An inequality of
Bonnesen states:

L? —4n4 > n*(R —r)>.
This inequality follows from
(1) 0>A-xL+x*nr, r<x<R

Equality holds in (1), at x = r, for the “sausage” bodies, that is, those
bodies which are the Minkowski sum of a line segment and a ball
(with radius r). At x = R equality only holds for balls. For proofs of
these inequalities see Eggleston [S, pp. 108-110].

An extension of Bonnesen’s inradius inequality in the plane to high-
er dimensions began with the conjecture by Wills [11] that

02V —-rS+(n-1)r"w,.

In this paragraph, V' will represent the n-dimensional volume of
a convex body in E”, § its n-dimensional surface area, and w, the
volume of the unit n-ball. The conjecture was proved simultaneously
by Bokowski [1] and Diskant [4]. Equality holds only for the n-balls.
Osserman [8] showed that

(2) 0>V =18+ (n—1)r> "Vwu(S/n)"-2

where equality also holds only for the »n-balls. This inequality is the
sharper because a translate of 7B is contained in K.

The results of this paper will be limited to the case n = 3. The
volume and surface area of the convex body K will be represented
by V(K) and S(K). The unit 3-ball centered at the origin is denoted
B and V(B) = w. The functional M(K) will be proportional to the
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mean-width of K, where M (B) = 3w. Often we will let V' = V(K),
S =S(K)and M = M (K).

The following inequality for 3-dimensional bodies will be estab-
lished:

(3) 0>V —rS+%r’yM

where equality holds if and only if K is a cap body of a ball. A cap
body of a ball is the convex hull of the ball and countably many points
exterior to it such that the line segment joining any two of these points
intersects the ball. The cap bodies are also the extremal bodies for the
inequality of Minkowski, M2 > 3Sw. From this inequality it follows
that (3) is sharper than (2).

The inequality (3) is a consequence of a more general inequality
for inner parallel bodies to be proved below. In proving our result
we will actually establish a lower bound for the volume of the inner
parallel bodies of a given body. This bound will resolve a conjecture
of Matheron [7].

II. Main results. The inner parallel body of a convex body K at a
distance A > 0 is defined to be the intersection of the closed supporting
half-spaces of K moved in a distance A. The inradius r is the radius of
the largest ball contained in K. The inner parallel body at a distance
r —A, 0 < A < r, shall be denoted Kj; the inradius of K, is A. The
kernel, K, is the locus of centers of balls of radius r contained in K,
and K = K,.

The extremal bodies in the inequalities which follow are cap bodies.
For the definition of p-extreme directions, p = 0, 1 or 2, see Schneider
[9, p. 135]. A supporting hyperplane is p-extreme if its outer normal is
a p-extreme direction. A 0-extreme direction is simply called extreme
[5, p. 27]; the dual of the Krein-Milman Theorem states that every
convex body is the intersection of its extreme supporting half-spaces.
A convex body K is a (2— p)-tangential body of the body C if every p-
extreme supporting hyperplane of K also supports C. A 1-tangential
body is a cap body; an alternate definition of a cap body of a ball
is given above. A theorem of Favard [6, pp. 273-274] states that
K is a cap body of C if and only if the mixed volumes V(K K K),
V(K K, C) and V (K, C, C) are equal. The definition and properties of
mixed volumes in general may be found in [5, p. 84]. In particular,
V(K)=V(KKK), S(KK)=3V(K K B), M(K) = 3V(K B, B), and
the mixed volumes are linear in each argument.
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We shall now prove the following

THEOREM. Let K be a convex body in E> with non-empty interior
and inradius r. Forall 2, 0 <A<,
(4) V(K)) >V —(r—2A)S+(r—1)?%2M + M(K;)]/3
where equality holds for all A, 0 < A <r, if and only if K is a cap body
of Ky + rB.

Proof of the Theorem. Fix A,0 <A <r. Forallt,A<t<r,let
[ =V(K;) = V(K)+ (t — )S(Kp) = (t — D [2M (K;) + M (K;)]/3.

Bol [3] proved many results about functions of inner parallel bodies
and their right- and left-hand derivatives. For example, V' (K;) and
S(K;) are absolutely continuous. If F'(¢) denotes the left-hand deriva-
tive of any function F(¢) with respect to ¢, then

(3) V'(Ki) = S(Ky),

(6) S'(K:) > 2M(K,).

The function M (K;) is a concave function of ¢ which implies
(7) M(K;) - M(K;) > (¢ - )M (K)).

Using (5) we find
J'(@) = (=[S (Ke) -2 M (K ]+2[M (K;) - M (K;)— (¢ =) M (K1)]/3].

Therefore by (6) and (7) f'(¢t) > 0; f(4) = 0, implies f(r) > 0. This
establishes the inequality.

It remains to establish the equality condition. Favard’s Theorem
states that K is a cap body of K + rB if and only if

(8) V(K Ko+rB,K0+rB) = V(KKKO+I‘B)

If equality holds in (4) for all 4, 0 < A < r, then for 1 fixed, 0 <
A < r, f(¢t) must be identically zero. Therefore equality must hold in
(6) and (7) for all A and ¢, 0 < A < ¢ < r. It should be noted that the
conditions for equality in (6) remain unknown since they were first
investigated by Bol [3]. Equality in (7) implies that M (X;) is a linear
function of ¢. Since families of parallel bodies are concave, we have

t t
o e (1-1) ko=,

for all ¢, 0 < ¢ < r. The representation for K; in (9) may be used to
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expand and differentiate S(K;):

S(K,) = <;)2S(1<) + 6; (1 - ;) V(K Ko B) + (1 - ;)ZS(KO),

(10) ZS'(K,) = §S(K) +3 (1 - %) V (K, Ko, B) — (1 - ;) S(Ko).
Att=r,
%S'(K) = S(K) - 3V (K, Ko, B).
Substitution into (6), with equality, gives
S(K) - 3V (K, Ko, B) = rM(K)
or
(11) V(K K, B) = V(K Ky + B, B).

The expression in (11) implies that the supporting functions of K
and K; + rB are equal on the support of the mixed area measure
S(K, B;-). Results of Schneider [9, pp. 134-135] imply (8).

On the other hand, suppose K is a cap body of Ky + rB. Since
the inner parallel bodies of K are the intersection of the extreme sup-
porting half-spaces of K moved inward, the extreme directions of an
inner parallel body are extreme directions of K. Choose A and ¢,
O<Ai<t<r,letd =(—-A4)/(r—2),and let u be a unit vector. If
h(C, u) is the supporting function of a convex body C in the direction
u, then

(12) Kg+tBCOK+(1-0)K; CK, C {x: (x,u) <h(Ku)—(r—1t)}.

An extreme direction of 6K + (1 — 6)K; is either an extreme di-
rection of K, an extreme direction of K; (and hence K), or a 1-
extreme direction of both. If u is a 0- or 1-extreme direction of K,
then h(K, u) = h(Ky u) + r, and the supporting half-space in (12)
also supports K, + tB. Therefore equality holds throughout (12),
and the representation in (9) is valid. This implies equality in (7).
The result of Favard (8) has many implications. It implies both (11)
and V(K K Ky) = V(K Ky + rB, Kp). Furthermore, since the sup-
port of the mixed area measure S(B, K;;-) is the closure of the set
of extreme directions of K, V(K B, K;) = V(Ky + rB, B,K;). Hence
V (K, B,Ky) = V(Ko +rB, B, Kp). Substitution into the right-hand side
of (10) yields
%S’(K,) = 3(tV (K, B, B) + (r — )V (Ko, B, B)).

Equality holds in (6) also. This completes the proof of the theorem. O
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For A = 0, (4) becomes the following Bonnesen-style inequality
0>V —rS+r2M + M(Ky))/3

which implies (3). Equality holds if and only if K is a cap body of
K, + rB, and therefore in (3) if and only if X is a cap body of a ball.
The cap bodies appear in the equality condition for (3) because they
are precisely those bodies for which 3V =rS = r2M.

Matheron [7] showed that in the plane

AK) > A= (r—=AL+(r—A)*n

where equality holds for all 4, 0 < A < r, if and only if K is a sausage
body. Notice that at A = 0 this inequality is (1), for x = r, since the
area of the kernel is zero.

The right-hand side of Matheron’s inequality is similar to Steiner’s
formula for the outer parallel bodies of K, except that the signs al-
ternate. Matheron conjectured that similar lower bounds existed for
the volume of the inner parallel bodies in higher dimensional spaces.
Weil [10] has established necessary and sufficient conditions for one
body to be the summand of another. This result implies that if
K, + (r—A)B =K, for K in E3, then

VK) =V - =S+ (r—-2)*M-(r—2)3w]=0.

The conjectured inequality does not exist because the difference
above is positive, at A = r, for the cubes and negative for cap bodies.
Notice that the right-hand side of (4) is equal to

V—(r=AS+(r—A)>M—(r-2)>3w+(r—2)*MK,;+(r—1)B)—M]/3

which is smaller than the alternating sum proposed by Matheron be-
- cause K; + (r —A)BCK.

II1. Further remarks. Remarks will be made on two significant dif-
ferences between (3) and (1): inequality (3) does not strengthen the
isoperimetric inequality, and it is not valid if the inradius r is replaced
with the circumradius R.

For n > 2, sharpened versions of the isoperimetric inequality have
been established, and Osserman [8, pp. 24-25] shows that these in-
equalities imply (2). Inequality (3) does not yield either isoperimetric-
style inequality

S2>3VM or S3>27Vw.
For example, (3) implies
2
S?-3VM > (g) ~ §m+ f;‘-rZMz,
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but the right-hand side is negative for pencil-like bodies. This raises
the question of whether (3) is a strong inequality. It is if we view
(1), for x = r, and (3) in the following sense: They provide the best
possible lower bounds by weighted arithmetic means for rL and rS
respectively. In (3) S is bounded below by 63V + (1 — 6)r?M. This
bound is best when 6 is minimized (6 = 1 for the cube). The value
of 6 = 1/3 is approached in the limit for a family of cylinders which
converge to a disk in the plane.

Recently, Bonnesen-style circumradius inequalities involving
three quermassintegrals in n-dimensional space have been found by
Bokowski and Heil [2]. One inequality, for n = 3, is

0<V —4RS/3+R’M.

Equality holds if and only if K is homothetic to RB. Notice that the
direction of the inequality is reversed from (1) and (3). The inequality
is also a bound for RS by a weighted arithmetic mean, and it has been
shown to be best.
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