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HIGHER DIMENSIONAL LINK OPERATIONS
AND STABLE HOMOTOPY

ULRICH KOSCHORKE AND DALE ROLFSEN

The fundamental invariant, α, of link homotopy in higher dimen-
sions takes values in the stable homotopy ring Π*. Using the
Eckmann-Pontrjagin-Thom correspondence between Π* and Ωί r, the
framed bordism ring, we give new methods of calculating a and its
nonstable version, Ά, and an extended definition to link maps of ar-
bitrary dimensions. Also we show that the set of all links of two
components (arbitrary dimensions) has a natural ring-like structure,
compatible with homotopy. The geometric approach allows us to show
these operations are compatible, via A9 with the ring structure of the
homotopy groups of spheres and of Πf. Finally, this introduces a new
bifiltration Iίί'g of Πj, which is of independent interest.

0. Introduction. Since Milnor [M] introduced the notion of link ho-
motopy for classical links, there have been several papers ([S], [M-R],
[F-R], [Ki], [Ko]) dealing with the same equivalence for links in higher
dimensions. In particular, [M-R] discussed a link homotopy invariant
a for two-component links: a ^-sphere and ^-sphere disjointly embed-
ded in Rm, euclidean ra-space. For p and q < m - 2, a is defined and
takes values in the (stable) homotopy group πp+q(Sm~ι), a generalized
linking number.

In this paper we will be concerned primarily with links of two com-
ponents, that is, embeddings

L: Sp II Sg -+ R"V where II denotes disjoint union.

Occasionally, it is more convenient to consider links in Sm, and if
p and q are less than m - 1, the theories are equivalent. We will also
want to consider the more general situation of link maps and make no
restriction on dimensions unless necessary. A map

is a link map if f(Sp) and f(Sq) are disjoint (each component may
self-intersect). Two links, or link maps, are said to be link-homotopic
if they are homotopic through link maps.
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The α-invariant was defined as follows in [M-R]. Suppose L: Sp II
Sq -> Rm is a link map, and let φL: Sp x Sq -+ Sm~ι be the map

φL(x,y) = (L(x) - L{y))l\\L{x) - L{y)\\ e Sm~l.

LEMMA 0.1 (SEE [M-R]). Consider the map σ:SpxSq -+ Sp+q which
smashes the wedge Sp V Sq to a point, and is elsewhere one-to-one. If
P> Q < m - 2, this induces a bijection ofhomotopy sets

σ*: πp+q{Sm~ι) -> [Sp x Sq;Sm~1].

This permits the following definition, for the dimensions assumed
in the lemma:

a(L) = (σ*)~ι[φLl an element of πp+q(Sm'1).

It is clear that a(L) is invariant under link-homotopy of L, since link-
homotopy of L induces an ordinary homotopy of φL.

Consider the sets

^ = {link-homotopy classes of Euclidean links SpJISq -> Rm},

and

= {link-homotopy classes of link maps Sp II Sq -> Rm}.

Of course, E L ^ is a subset (and a subgroup when they are groups) of
ELM™r It is shown in [M-R] that E L ^ is a group under connected
sum, providedp, q < m-3, and then a is a homomorphism from E L ^
to πp+g(Sm~'1), and in many cases is an isomorphism (see Proposition
4.1). The additivity of a will be extended below to link maps and
arbitrary dimensions. (ELM^ is claimed to be a group by [S] when
p,q < m -3, but the argument for the existence of inverses seems to
be inconclusive.)

1. The Hopf construction and the extended o-invariant A(L). To fix
notation, we recall that the join of spaces X and Y is defined as the
quotient

with identifications {x,y,-1) ~ (x,y', — l) and (x,y, 1) ~ (x',y, 1).
Thus X and Y are naturally subsets of X * Γ, as the - 1 and +1 ends,
respectively. Using the coordinate notation of the above product, one
defines the join

f* f: X*Xf ->Y*Y'
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of two maps

f:X-+Y and f:X'-*Y'

by the formula

(f*f)(χ,y,t) = (Aχ),f(y),t) eY*r'.

The notation of join coordinates also gives a convenient description of
the Hopf construction. This associates to each map ψ: Sp xSq —• Sm~ι

a well-defined map Gψ: SpJrq+ι —• Sm (a thorough discussion in a
more general setting may be found in [W]).

The join of spheres is a sphere, and we choose fixed identifications

sp * sq = sp+q+ι.
Also Sm may be identified with the suspension Sm = ΣSm~ι which we
regard as Sm~{ x [—1,1], with the - 1 and +1 ends smashed to points.
Using coordinates of the join and suspension, define

Gψ:Sp*Sq -> ΣSm~ι by the equation

Gψ(x,y,t) = (ψ(x,y),t).

Clearly G is compatible with homotopy and induces a map of homo-
topy sets

G:[S'xS*;Sm-ι]-+πp+q+ι(Sm).

We can now describe the Shapiro-Kervaire [K] invariant of two-
component links (or link maps) of arbitrary dimensions. If L: Sp II
Sq -+ Rm is a link-map, let φL: Sp x Sq -+ 5 tm~1 be the map defined
in the previous section and define

A(L) = [GφL], an element of πp+q+x(Sm).

PROPOSITION 1.1. A(L) depends only on the link homotopy class
of L. In the dimensions for which the a-invariant is defined, namely
p,q < ra - 1, we have

where E: πp+q(Sm~{) -» πp+q+\(Sm) is theFreudenthalsuspension, an
isomorphism in these dimensions.

REMARK. We will shortly extend the definition of a. Then, in
general, A will be a desuspension, rather than suspension, of a.
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Proof. The first part is clear. Consider the diagram of homotopy
sets:

πp+q(Sm'1) ^ [SPχS*;Sm~ι]

E\ / G

This diagram is commutative, regardless of the dimensions. With
p,q < m - 1, the homotopy groups are stable, so the suspension map
E is an isomorphism, and as noted in Lemma 0.1, σ* is also an iso-
morphism. The result follows, with the sign ambiguity only because
of differences in the literature regarding orientation conventions of the
suspension and the Hopf construction.

2. Framed manifolds and the geometric α-invariants. We assume the
reader is familiar with the construction of Eckmann-Pontrjagin-Thom
([E], [P], [T])

This is a bijection relating the homotopy classes of maps of a compact
smooth manifold Mn into a sphere Sh with the framed bordism classes
of framed (n - &)-submanifolds of M. Thus if / : Mn —> Sh is a
map (which we assume smooth) and e e Sk is a regular value of
/, then f~ι(e) is an (n - k)-dimensional submanifold of Mn with
a framing (trivialization of its normal bundle) obtained by pulling
back a framing of e in Sk. The framed bordism class of this framed
submanifold is P ([/]).

Since we are concerned with [Sp x Sg, Sm~ι], consider the "natural"
inclusion j : Sp x Sg —• 5r/7+^r+1 as the middle section of the join, or
equivalently as the boundary of the tubular neighborhood N(SP) of an
unknotted^-sphere in SpJrqJr{, a framing in SpxSg becomes a framing
in Sp+q+ι by adjoining a vector normal to j(SpxSq) in 5r/7+^+1 pointing
outward from N(SP). As observed by Kervaire [K], this corresponds
to the Hopf construction.

PROPOSITION 2.1. The following diagram is commutative, up to sign
depending only on the dimensions:

V
πp+q+ι(Sm).
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Stabilization of the homotopy group corresponds to the inclusion

*p+q-m+\

into the bordism group of all stably-framed manifolds, modulo stably-
framed bordism.

We can now define the geometric a-invariant for a link map f:SpU
S* -> Rm, m > 2. It is

From the above discussion it is clear that a(f) corresponds to the
stable-suspension ofA(f), hence is (up to sign) a generalization of the
homotopy-theoretic a-invariant #/[M-R].

The situation is summarized in the following diagram, which com-
mutes up to sign (n = p + q - m+ 1).

ELM™,

a

PROPOSITION 2.2. / / / : ^ U 5 ^ Rm and φ: S*> x S* -+Rm - {0}

is the map φ(x,y) = f(x) - f(y), then A(f) corresponds to the framed
manifold φ~x{p), where p is the ray in Rm through e e Sm~ι, a regular
value ofφ.

Next we give a description of a(f) which is inspired by the old
idea of measuring linking phenomena by intersecting with "Seifert
surfaces". Note that we need to consider only smooth (or generic)
link maps since small approximations don't change the link homotopy
class.

PROPOSITION 2.3. Given a smooth link map f: Sp II Sg

f\Sp extend smoothly to a map f: Dp+X -• Rm such that

xS<*-+Rm, φ(x,y):=f(x)-f(y),

R m , let
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has 0 e Rm as a regular value. Then the framed bordism class ofφ~1 (0)
is a{f).

In particular, if f\Sq meets / ( D p + 1 ) only where f is an embedding,
and transversely so, then a(f) can be represented by the framed "inter-
section" manifold {f\Sq)-{{f(Dp+1)).

Proof. If e £ Sm~ι is a regular value of φ then φ is transverse to
the embedded ray [0, oo) e c Rw both in a neighbourhood of φ~ι(0)
and when restricted to the boundary Sp x Sq of its domain. After
a slight perturbation, φ is everywhere transverse to this ray, and its
inverse image gives the required framed bordism between φ~ι(e) =
(φ\Sp x Sq)~ι (ray) and φ~ι(0).

Finally, a more direct approach leads to an interpretation of a(f)
in terms of the "overcrossing locus". It has the advantage of taking
place in the lower dimensional euclidean space Rm~ι.

Fix e G Sm~ι and choose an isomorphism identifying R m - 1 with the
orthogonal complement of the line Re = R in Rm, so that Rm = Rm~ι x
R. Let / = (/, / ) : Sp USq —• Rm be the corresponding decomposition
for a link map / . After a small perturbation we may assume that / is
smooth, and that f\Sp and f\Sq intersect transversely in Rm~ι, i.e.

γ:SpxSq^Rm~\ γ(x,y) := f(x) - f(y)

has 0 e R m - 1 as a regular value. Then e and -e are regular values of
φ and a{f) can be represented by the "overcrossing locus"

N = {(x,y) eSpx Sq\γ(x,y) = 0, f(x) > f(y)}

together with the framing

(1) g: Γ7V + R m - l I d Θ - Ώ r l TN + v = T(SpxSq)\N.

Here Rm~* denotes the trivial Rm~1 bundle.

3. Link maps in R4. In this section we investigate how to compute
α(/) in the special case p = q — 2, m = 4, and apply this to the
example of [F-R]. This argument, by the first author of the present
paper is an alternative to [F-R], where different methods are used to
establish that a{f) φ 0 for the Fenn-Rolfsen map / : S2US2 ^ R4.
The reader may omit this section without loss of continuity.

Note that now a(f) lies in the group Ω{r = Z 2 where the nontrivial
element is represented by the invariantly framed (= nonstably paral-
lelized) circle.
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Given a link map

we may assume that the projected maps £\S^ and £\S^ intersect

transversely and only where they are both immersions (the singular

points being isolated generically). Then each component of the 1-

dimensional manifold N is an embedded circle C c Sλ, x S(

2

2) which

projects into the immersed circles pr, (C) c S^ under the obvious

projections pr,: S?^ x S?2, ~~* S L / = 1,2. This suggests a more

natural framing for

nsfa x Sf2))\C = pt}(TSfx))\C + pf2(TSf2))\c:

each summand splits into a tangential and a normal direction along
C. This framing differs from the one needed in formula (1) by d
rotations as we go around C, where d is the sum of the normal degrees
of the immersions pr,|: C —> S?^9 i — 1,2. By the Whitney-Graustein
theorem d has the same parity as the added number of (generic) self-
intersection points of these two immersions of C.

If we use the above "more natural" framing in (1), the direction of
TC in T(Sf{) x Sf2))\C = R4 remains constant, v = pr*(Γ5(

2

1})|C Θ R,
and g\C defines an element

which can be represented by the following loop of 2-frames in R3: the

immersion prj |: C —• S^ is accompanied by a 2-frame field tangential

to S^y given by the tangent vector along C and the normal vector;

apply the tangent map of / : S^ —• R3 to get the required map from

the circle C into the Stiefel manifold F3f2.
The correct framing (1) for C is the invariant one, and C contributes

+ 1 towards α(/), if and only if p(C) + d e Z2 is trivial. Thus we get

(2) a(f) = Σ ( 1 + P(Q + Σ # d o u b l e P° i n t s o f PΓ/(C))

where we sum over all circles in the overcrossing locus TV.
Now we apply our two computing methods to the Fenn-Rolfsen link

map / from S^ II S?2, into the (x, y, z, u>)-space R4. A slice-by-slice il-
lustration is given in Figure 3.1: starting from the classical Whitehead
link in the 3-space w = 0 we put two link homotopy trivialisations,
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W = 1 w = 1 W = 4

W = - 1 w = -

FIGURE 3.1

parametrized by the w-intervals [-1,0] and [0,1], together to obtain
/. Each f\S^9 ί = 1,2, has just one double point (at w = ± | ) .

To apply the intersection approach, let the circle describing f(S?^)
at every w-level, - 1 < w < 1, span a 2-disc as in Figure 3.1. This way
we obtain an extension / : D3 —> R4 of f\Sλy If we think of D3 as the

unit ball in (.*,}>, w)-space, then / is roughly the identity whenever
x > 2, while for negative x there is a full rotation around the x-axis
through {y, z)-space.

/ and f\Sp) intersect only where both maps are embeddings, along
one circle C in the (x,w)-plane. Its inverse image in D3 is a similar
circle, and in 5(

2

2) it is a great circle. Thus

C := ^ ( O ) = {(r,ί) e D3 x Sf2)\f(r) = f(s)}

is a circle in D3 x S?2\ projecting onto both these inverse image circles.
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In order to determine a(f) we need to study the framing

(3) >4 idΘTφ
TC®v =

Here we use some identification TC = R, so that if the resulting
homotopy class [/] e πi(SO(5)) = Z2 is trivial then α(/) = 1.

If the isomorphism k in (3) were given by the standard paralleliza-
tion of D3 and the tangent and normal vector field along (the projec-
tion of) C in *S?2), then after a homotopy TC would correspond to a
constant vector field on both sides in (3), and [/] would correspond to

[Tf] = [Tφ\ : TD3\C = R3 -> R4] e = Z2.

Now Tf\C gives the identity in the x- and u>-directions and, for x > 0,
in the y-direction; but for x < 0 there is a full twist of the unit vector
(0,1,0) through the (y, z)-plane. This is cancelled by the fact that we
have to pick another isomorphism k in (3), namely the one coming
from a framing of all of TS^ which differs from the one used above
by one rotation. Thus [/] = 0 and a(f) = 1.

Finally we apply the "overcrossing locus" method to the same ex-
ample. Actually it will help our intuition to deform f\S?2) & little for
\w\ close to 1 and to use the following picture for \w\ = | (see Figure
3.2). This link homotopy will not affect α(/).

FIGURE 3.2

Let e = (0,0,1,0) be the unit vector in the positive z-direction
(thought of as pointing towards the reader in Figures 3.1 and 3.2), and
let R3 denote the complementary (x,y, w)-space. For \w\ < | , each w-
slice contains two overcrossing points; so here the overcrossing locus
consists of two arcs A+ and A- parametrizable by w. The situation
for w < - | is illustrated in Figure 3.3 (for w > | , it is similar). Thus
clearly the overcrossing locus N (and its image under /) consists only
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of one circle without any self-intersections. By formula (2) a(f) = 1
as soon as we have checked that p(N) = 0.

So let us consider along f(N) a tangential vector field t and normal
vector field n tangential to £(SλX Over each arc A± t points in the
±w-direction; when w increases, n rotates by 180° in the counter-
clockwise sense in the (x,y)-plane (inspect Figures 3.1 and 3.2). This
contributes one full rotation towards p(N). One additional rotation
comes from the behaviour of t and n along the two semicircles \w\ > | .
These two rotations cancel and we have p(N) = 0 and a(f) = 1.

W A

_ ! mm

- 1 ••

X

FIGURE 3.3

4. Operations on links and link maps. Let EL denote the set of
link homotopy classes of links of 2-components in a euclidean space
(regardless of dimensions) and let ELM similarly denote the set of
link homotopy classes of 2-component link maps. As is well known,
the set Π* of all homotopy groups of spheres enjoys a number of
algebraic operations, and is a ring with the usual addition, with an
anticommutative multiplication induced by the join operation, as well
as suspension homomorphisms, etc.

In this section we will examine analogous operations in EL and
ELM: connected sum, suspensions, join of links, and precomposition.
We will establish certain compatibility relations of these operations
with their analogues in Π* via A. In particular, roughly speaking, A
would be a ring homomorphism if EL were a ring. The problem is
that we don't know if the links of codimension less than three form
a group under connected sum, and we know even less regarding link
maps.
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Here is a thumbnail description of the operations considered in
more detail below. Connected sum is well known. It is required that
the two links being added have the same number of components and
the same dimensions of the corresponding components. To suspend a
link in Sn, choose one component and suspend that into Sn+ι, the sus-
pension of Sn. To join two (ordered) links, in Sm and Sn

9 respectively,
take the join of each ith component of one with the /th component of
the other in the Sm+n+ι which is the join of the two ambient spheres.
Actually, to obtain formulas for A, we need links in euclidean space
and so our official definitions of suspension and join are the corre-
sponding constructions in Rm,R", etc. Finally, a composition link
map is obtained from a link map / : Sp II Sg -> Rm, and arbitrary
maps g: Sp> -> Sp and h: S*1 -> S*. The composite F: Sp'US«f -+ Rm

is just the link map F(x) = f(g(x)) if x e Sp\F(x) = f(h{x)) if
x E Sq'. (Analogous definitions could be made for links of more than
two components, of course.)

Connected sum. To form a connected sum L#L' of the two links
L, L!: SpUSq —• Rm, one takes representatives separated by an (m-1)-
dimensional hyperplane Rm~ι and connects L(SP) with L'{SP) and
L(Sq) with L'{Sq) by tubes, disjoint from the other components and
from each other. Up to homotopy, this is the same as requiring that
each component of L meet R m - 1 in a single point, and likewise L\
so they form a disjoint union of wedges. Then L#L\ as a map, has
domain Sp II Sq, and on each component factors through the stan-
dard "folding map" of homotopy theory, and sends the 'northern' and
'southern' hemispheres of each sphere, respectively, into the 'upper'
and 'lower' half-spaces of R", separated by R*"1. We do not know,
in general, whether this is independent of the choices, even up to link
homotopy, except in codimension > 3 (see below).

EXAMPLE 4.1. Classical links. For classical links Sι Π Sι —• R3

connected sum is not well-defined in the usual sense. For example,
if L is the Hopf link (two simply-linked circles, as in fibres of the
Hopf fibration of S3), one realization of L#L is the unlink, while
another (twisting the tube, or band) realization of the same sum is
the Whitehead link. Of course these two versions of L#L are link-
homotopic and it turns out that, modulo link homotopy, connected
sum is well-defined for classical two-component links. Since each link
map is homotopic with an embedding, EL3

 { — ELM3

 x and they form
groups under connected sum. In fact an elementary argument (or
see [M]) shows that classical 2-component links are classified, up to
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homotopy, by their linking number, and a is an isomorphism of this
group onto the infinite cyclic group Π^. On the other hand, connected
sum is not well-defined for the three-component classical case, even up
to homotopy. The following picture shows two 3-component links L
and L' and two realizations of L#V. One sum gives the unlink, while
the other yields the Borromean link, which (by [M]) is not homotopic
with the unlink.

FIGURE 4.1

We now review what is known for higher dimensions regarding con-
nected sum.

PROPOSITION 4.1 (P. Scott [S]). Connected sum is well-defined (up
to homotopy) for links (or link maps) of spheres in Rm of codimension
at least three. That is, ifL and L':SpiHSq -> Rm are links (link maps),
then all links (link maps) arising as L#L! are link-homotopic, provided
m-p>3 and m - q > 3. Moreover, ifL' is homotopic with L", then
L#Lf is homotopic with L#L".

The α-invariant was defined earlier, a: np+q\

PROPOSITION 4.2 (Massey and Rolfsen [M-R]). Suppose m - p > 3
and m — q > 3. Then a is a group homomorphism. Moreover, a is

(i) injective (i.e. a faithful invariant) iflp + 2q < 3m - 6;
(ii) an isomorphism ifp + 2q < 2m - 3 and 2p + q < 2m - 3.

COROLLARY. The same is true of A: ΈL™q -> πp+q+ι(Sm) and for

the geometric a-invariant with values in Ω.ζr

+q+ι_m.

For the codimension 2 case the following results hold (see [M-R]
for proofs).

PROPOSITION 4.3 (Due to J. Levine). If I <p<q = m-2 then
a(L) is zero for any link ofS? Π Sq in Rm.
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We note that this does not hold for link maps. §3 gives an example
of a link map of S2 IIS 2 in R4 with nonzero α-invariant.

PROPOSITION 4.4. a: EL™m_2 -> πm-\(Sm~x) = Z is an isomor-
phism (m > 2). Moreover, if\<p and 2p < q = m - 2 then every link
ofSp II Sq in Rm or Sm is homotopically trivial

Now we turn to new results and some questions.

Question 4.1. Is connected sum always well-defined in E L M ^ ? If
so, is it a group operation? In particular, do inverses exist?

Whether the sum is well-defined or not, we are able to show that A
is additive.

PROPOSITION 4.5. IfL = L'#L" is any connected sum of two-compo-
nent links SpUSq -> Rm,p > \,q > l,m > 1, we have A{L) =
A(Lf) + A(L"), in the appropriate homotopy group. Consequently also
a(L) = a(Lf)+a(L"). The same holds for connected sums of link maps.

Proof. Recall that A(L) corresponds, via the Pontrjagin map, to a
framed submanifold of Sp+q+ι. Likewise A(L') and A(L"). If one
chooses a direction e e Sm~ι which is parallel to the hyperplane sepa-
rating L1 and Z/', and which is a regular value for both maps, then A(L)
corresponds to the union of two framed submanifolds, corresponding
to L' and L", in different hemispheres of Sp+q+x. This "distant union"
corresponds to the usual sum in πp+q+\(Sm), proving the proposition.

Suspension of links. For a link (or link map) L there are two choices
of suspension operation. If the target of L is Sm, one simply suspends
the fth component into the suspension, S m + 1 , of Sm. For a link in
euclidean space,

L:SpUSq->Rm,

we define the suspensions

ΣιL:Sp+ιUSq ^

Σ2L:SpUSq+ι ->
in a topologically equivalent manner by regarding Rm as the hyper-

plane xm = 0 of i? m + 1 = {(JCo5...,*m)}. Take ΣxL\Sq equal to L.

Regard Sp+ι as the suspension S^+1 = ΣSP. Then on S^+1 we define

Σ{L: ΣSp ->RmxR = Rm+ι by

{x,t)->((l-\t\)L(x),t).
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Suspension is not a smooth operation, although it is OK in the PL
or topological category. Nevertheless, one could, by a trick, homo-
top a suspension of a smooth link to be a smooth link. Indeed the
two suspension points are the only nonsmooth points, and the local
knots measuring the singularities cancel each other in the sense of knot
cobordism. Thus the suspension can be altered, in a neighbourhood
of an arc joining the singularities, to be smooth, and this can clearly be
done by a homotopy. Alternatively, and this is the approach we will
use below, one can put a smooth structure on ΣSP and ε-approximate
Σ/L by a smooth link map, within its link homotopy class.

PROPOSITION 4.6. IfL is link-homotopic to L1, then Σ/L and Σ/L'
are also link-homotopic. Also, for any links LyL

! of the same dimen-
sions, Σi(L#Lf) w Σ/L#Σ/L' in the sense that for a given realization of
connected sum L#L', one can realize its suspension {up to link homo-
topy) as a connected sum as indicated. Finally, Σ20Σ1 = r o Σ i o Σ 2

where r is a reflection.

The proof is an easy geometric argument and will be left to the
reader.

Now consider a link or link map of two components, L: Sp II Sq ->
Rm. There are suspensions ΣXL: S?+ι Π 5 ^ R m + 1 and Σ 2 L: S? II
£*+! _+ R«+i. in both cases we have A(LtL) e πp+q+ι(Sm+ι), whereas
A(L) e πp+q(Sm). Also consider the Freudenthal suspension map

PROPOSITION 4.7. IfL is a link or link map, then

A(ΣtL) = ±EA(L) for / = 1,2.

Proof. By a homotopy, we can arrange the suspension to be orthog-
onal to Rm in R w + 1 . Approximate Σ/L by a smooth map whose image
does not intersect the hyperplane, except where the original L does.
Now choose e e Sm~ι, a, regular value for φL. Then e e Sm~ι c Sm

is also a regular value for 0(Σ/L), and yields in both cases exactly
the same framed manifold, except that the framing for the suspended
link map is obtained from that of the original link map by adding a
trivial 1-dimensional bundle. This corresponds to the suspension map
πp+q+\{Sm) —• 7^+0+2(*Sm+1) and the proposition is proved.

Join of links. This construction, like the suspension, is most natural
in the setting of links in Sm. As is well known, the join of spheres is
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a sphere:

sp*spt =
Making a canonical choice of such a homeomorphism, the join natu-
rally induces a multiplication

which satisfies:
a * (β * y) = (α * β) * y,

α * (£ ± £') = α * β ± a * £',

See [W] for details.

DEFINITION 4.1. Let L: Sp II S« -> Sm and V: Sp' II S«' -> Sm> be

link maps and denote L = L1UL2, LJ = L\HL'2. Define their join (as
links) to be

L®U = (LX*L\)U{L1*L1).

Thus L ® V is a link map S ^ ' + 1 Π S ^ ' + 1 -> ^^+^ ;+i. Notice that
L ® L1 is a link (that is, an embedding) iff both L and Z/ are links.
One could, of course, similarly define the join of links of arbitrarily
many components, so long as the two links have the same number of
components.

EXAMPLE 4.2. Let LQ: S° US° -• Sι be the nontrivial link. Then
LQ ® LQ is the Hopf link in S3 (that is, equivalent to perfect circles
with linking number 1).

In order to study the relation of join with the α-invariant, we need to
consider, however, links in euclidean space, rather than in a sphere.
Unfortunately, the join of two euclidean spaces need not even be a
manifold! However, if all of the maps avoid a "point at infinity" we see
that the above is homeomorphic to the following explicit construction.
Consider link maps

L:SpUS« -+Rm and L' ^ ' U ^ ' - ^ r ' .

Consider R^+^/+1 = r x r ' χ R = {(x,y,t)}. We can realize
the join of maps into Rm and into Rm' by considering Rm embedded
in Rm+m'+\ a s Rm χ |Q} X {-1} and Rm/ as {0} x Rm> x {+1}, and
then joining the maps via straight line segments. In other words, if
(jc,y, t)eS*>* Spt or S<* * S«\ then

(1) (L®L')(x,y9t)=
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PROPOSITION 4.8. The join ® respects homotopy of link maps. More-
over, L®L' is an embedding if and only if both L and U are embed-
dings. If L or L1 is link-homotopically trivial then so is L ® ZΛ We
also have the following formulas, where « means link-homotopic:

L®(Lf® L") « (L ® L1) ® L",

L ® (L'#L") π(L® U)#(L ® L").

EXAMPLE 4.3. If H: Sι II Sι -> R3 is the Hopf link, and L is any
link or link map, then H®L& Σ2Σ2Σ1Σ1L. This can be deduced from
Σ2Σ1L = L®LQ, where LQ is the link of Example 4.2.

One of our main results is the formula:

PROPOSITION 4.9. A(L ® LJ) = ±A(L) * A{L') for any 2-component
link maps L and U. The sign depends only upon dimensions and
orientation convention.

Proof. Using the notation established above, we recall that A(L) e
πp+q+\(Sm) corresponds to the framed manifold (φL)~ι(p) c Sp x
Sg, included naturally in Sp * Sq with an added trivial bundle. Here
φL: Sp x Sq -> Rm - 0 is the map (x,y) -• L(x) - L(y) and p is a
ray (spanned by vector υ e Sm~ι) transverse to φL. Similarly A(Lr)
corresponds to a pullback (φL')-χ(ρ'), in Sp> x Sql c Spl * Sq\ of a
ray p' = (0,oo) v'. It follows that A(L) * A(Lf) is represented by the
product submanifold

{ΦL)-\P) x (φL'rι(pf) c (sp x sη x os*' x s*')9

with the product framing, plus three trivial line bundles, when in-
cluded in (Sp * Sη * (Sp/ * S«') = SP+P'W+3.

Now consider A(L®L'). It is easy to check that the ray ~p spanned
by (υ, v', 0) in R m + m ' + 1 = Rm x Rm/ x R is transverse to the map

φ(L ® L'): (Sp * Sp>) x (S* * S«') -> R w + W ' + 1 - {0}.

Moreover, we see that {{x,xljx),{y,ylj1)) e [φ(L® L')]-ι(~p) if and
only if:

(*)tι=t2 = T(x9x'9y9y')9

(b)(x,y)e(φL)-ι(p),and

{c){x',y')
Here

T(r
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This means that the submanifold of (Sp*Sp')x (Sq*Sq/) corresponding
to A(L®Lr) is naturally diffeomorphic to the product of the manifolds
(φL)~ι(p) and (φLf)~ι(p). We leave the reader to check that the
framings correspond as well, up to orientation of the additional trivial
bundles, and we conclude A(L) * A(L') = ±A(L ® Lf).

Precomposition. We wish to relate the ^4-invariant of a link map
/ : ^ Π ^ -* Rm with that of a composite F: Sp' II Sq> -> Rm,
where F = f(gUh) is the composite of / with maps g: Sp' —• Sp

and h: Sq> -> Sq. Note that A(f) e πp+q+x(Sm), while A(F) e
np,+qi+x{Sm). Let [g * h] e πp,+q,+x{Sp+qJrX) denote the class of the
join of g and h.

PROPOSITION 4.10. A(F) = A(f) [g * h], where is the usual homo-
topy-theoretic composition operation.

Proof. This is a direct consequence of the definition of the A-
invariants and the commutativity of the following diagram:

Sp> x S*'

We conclude this section with some examples. We saw (§3) that
there is a link map / : S2 II S2 —> R4 which has A(f) equal to the
nonzero element, say //, of π5(S4) = Z/2Z. Let h: S3 -+ S2 be the
Hopf map (so that η is represented by the stable suspension of h).
Now precompose / by the map h on the first S2 and by the identity
on the second S2. This gives a link map F: S3US2 -> R4. We
compute A(F) e πβ(S4) = Z/2Z and using Proposition 4.10: A{F) =
^ ( / ) * [Λ * J] = τ/2 which is the generator of the stable 2-stem, and we
conclude the following.

EXAMPLE 4.4. There is a link map F: S3 I IS 2 —• R4 realizing the
nonzero element of nβ(S4) = Z/2Z.

Precomposing the same / by the Hopf map on both components
gives a link map S3 IIS 3 —> R4 whose ^4-invariant lies in the unstable
group πj(S4). However, if we stabilize, it goes to the element η3 in
the stable 3-stem, Z/24Z, and it is known to be nonzero there (see
[Toda], p. 190).
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EXAMPLE 4.5. There is a link map S3 IIS 3 —• R4 (described above)
whose ^-invariant is the element (0,6) in πj(S4) = Z © Z/12Z.

Question. Which other nonzero elements of π 7 (5 4 ) may be realized
as invariants of link maps of two 3-spheres in R4? The following
argument, pointed out by K. Lam, shows that the Z-component, which
is the Hopf invariant, of such an element must vanish. First, since one
of the components, say the first, of the image of a link map S^IIS 3 —•
R4 must be accessible from oo, a simple geometric argument shows
that the ^-construction gives a map S3 x S3 —• S3 whose restriction
* x S3 —• S3 has degree zero. It follows that the Hopf construction
gives a map SΊ —• S4 with Hopf invariant zero (see [St], p. 13).

We can also employ suspensions of these examples to create further
nontrivial link maps. For example, suspending the first component of
the link map / : S2US2 —• R4 with a(f) = η in the stable 1-stem gives
a link map Σxf: S3 IIS 2 -* R5 with a(Σ{f) = Ση = η in the 1-stem.
This can be repeated indefinitely, suspending either component.

EXAMPLE 4.6. Given any integers p > 1 and q > 1, there is a
nontrivial link map of Sp II Sq into R*+*.

EXAMPLE 4.7. If p > 1 and q > 2, there is a nontrivial link map of

EXAMPLE 4.8. If p > 2 and q > 2, there is a nontrivial link map of
IIS* into 2

If we try to go on to Rp+^~3, we are stuck, due to the vanishing of
the stable 4-stem.

Another way of constructing examples is through the join. Taking
again the nontrivial map / : S2 IIS 2 -* R4, we can join it with itself
to obtain the link map / ® / : S5 IIS 5 -> R9 with α ( / ® /) = η2 the
generator of the stable 2-stem. We ask: is this homotopic with the
link map of Example 4.7 with p = q = 5?

5. Filtration of homotopy groups. Consider the set of all elements of
πr{Sm) which are realized as the ^4-invariants of link maps Sp II Sq —•

A £ , = Λ ( E L M £ , ) c π r ( S m \ p + q + i = r .
These sets are well-behaved with respect to the operations +, - , *

(join), E (suspension) on homotopy groups of spheres.

PROPOSITION 5.1. Forp+q+l = r, the subsets A™q c πr(Sm) satisfy
the following:

(i) A ^ is nonempty iffp > 0, q > 0, and m > 1;
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(ii) If βeA™g, then-βeA%g;
(iii) A™g is a subgroup ofπr(Sm) ifp,q,m > 1;
(iv) Compatibility with suspension:

(v) Symmetry: A™q = A%p

(vi) Multiplicativity: (r' =pf + q' + 1)

m '

Proof, (i) is obvious and (ii) can be seen by reflecting Rm. Then
(iv) follows, since A™p = ± A ^ . The rest of the proposition follows
easily from the results of the previous section.

EXAMPLE 5.1. As a trivial example, A Q 0 is the subset {-1,0,1}

of the group π\(Sι) = Z, thus not a subgroup. On the other hand
A l,0 = A0,l = *2(S2) = Z .

Now let us pass to stable homotopy by applying stable suspension
E°°. In the stable H-stem

ns

n=E°°πm+n(Sm)

we define the subsets

From the relation E°°(A™q) = Πp

n>
q, n = p + q + 1 - m, we see that

these sets form a symmetric bifiltration of the stable homotopy ring
1 X * — Wn=0LLn-

PROPOSITION 5.2. The subsets Πp

n'
q ofΠ% satisfy:

(i) Π%q is nonempty iffp, q > 0 and p + q>n\
(ii) ifβ en™, then-β en™;

(iii) np

n'
q is a subgroup ofn%, at least ifp, q > 1 andp + q > n\

(iv) Double filtration property:

(v) Symmetry: n™ = nq/

Calculations and further properties of this bifiltration will appear
in [Ko2], where link maps into Sm are also studied. One can similarly
define a finer bifiltration using embedded links rather than link maps.
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