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SIMPLE PERIODIC MODULES
OF TWISTED CHEVALLEY GROUPS

PETER FLEISCHMANN AND JENS CARSTEN JANTZEN

Consider a finite twisted Chevalley group constructed over a field
of prime characteristic and its representations over an algebraically
closed field of the same characteristic. In this paper we classify all
those irreducible representations that are periodic, i.e., that have a
periodic projective resolution. There is always the Steinberg module
that is both simple and projective. We show that there are further
periodic simple modules only for groups of types 2Aι and 2Bι.

0. Introduction. Let K be an algebraically closed field of charac-
teristic p > 0 and Γ a finite group with p\ |Γ | . A finite dimensional
ΛX-module M is called periodic, if it has a periodic minimal projec-
tive resolution. Of course projective modules are also periodic, but
the non-projective ones are characterized by their complexity Cγ(M)
being one. Here we understand complexity in the sense of Alperin [1].

In this article we look at the case where Γ is an "almost simple"
twisted group of Lie type, defined over a finite field of the same charac-
teristic p . We will give a classification of all periodic simple modules
for these groups and the finite simple groups related to them.

It is a well-known fact that all finite groups of Lie type have a unique
simple projective module, the Steinberg module St. We will prove in
this paper that, if Γ is not of type 2A2 or 2B2 , then the only periodic
simple AT-module is St. With the classification for 2A2 in [6], [7],
and for 2B2 in part 3 of this paper, we will achieve a full classification
of simple periodic modules for twisted groups.

The corresponding classification for non-twisted Chevalley groups
was recently accomplished in [9], [10]. Together with the initial classi-
fication for the type A\ in [15], the final result is that for finite groups
of Lie type there are simple periodic modules, other than St, only for
groups of type A\, 2A2 and 2B2 .

To state our results more precisely, we have to introduce some no-
tations which we take over from [5]. For conceptual reasons we prefer
working with universal groups:

So let K be an algebraic closure of the prime field Έp, let G be
an almost simple, simply connected and connected affine algebraic
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group over K, defined and split over F^. Let F be a Frobenius
endomorphism of G, as in [5], T an .F-stable maximal torus of G
with character group X(T) and R c X(T) be the (indecomposable)
root system of G. We choose a basis Π = {a\, a2, . . . , α/} of i?
and assume i 7 to induce a non-trivial automorphism τ of the Dynkin
diagram of G. So either τ is of order 3 and R of type D4 or τ is
of order 2 and R of type ^/ (/ > 1), D{ (/ > 3), E6, or B2,G2, F4

(in which cases /? must be 2 , 3 , 2 respectively).
Attached to i 7 are natural numbers /, e € N such that F'(ί) = ίp'

for all t e T and the number q := pe/> is uniquely determined by
G and i 7 . The group GF of i7-fixed points is either a finite (uni-
versal) Steinberg group (usually denoted by 3D4(q3)s.c.,

 2^/(<72)s.c.,
2Dι(q2)s.c. or 2Eβ{q2)s.c.) or a Ree or Suzuki group (usually denoted
by 2B2(q2), 2F4(q2), 2G2(q2) where q2 = 2 2 w + 1 resp. q2 = 3 2 m + 1

for some m).
Excluding the cases (a) 2A2(4)SX., (b) 2J52(2)S.C., (c) 2G2(3)s.c. and

(d) 2/74(2)s.c., their quotient by the center is simple (see [19], Theorem
34, pg. 188) and is usually denoted by 3D4(q3), 2Aι(q2) etc. (or by
3D4(q),2 Aι(q), according to the taste of the author.)

The groups in (a) and (b) are solvable, whereas in (c) and (d) their
commutator subgroups have index 3 and 2 and are simple non-abelian
finite groups (= PS12(8) in (c), = Tits' simple group in (d)) ([19], pg.
188).

In this framework the main theorem of this article reads as follows:

0.1. THEOREM. Let Γ be GF, GF/Z(GF) or (GF)f, then all peri-
odic simple KY-modules are projective if and only if R is not of type
A2 or B2, in which case they are isomorphic to S\\GF or to a Clifford
component of it, if (GF)' < GF.

In § 1 we will reduce the problem for the Steinberg groups to the case
GF = 2A3(q2)sx. = SU4(<?2), which will be dealt with in §2. Factoring
out the center, which does not affect the Sylow-/?-structure, leads to
the result for the simple groups. Section 3 is devoted to the Ree and
Suzuki groups.

1. The reduction to SU4. In this section we exclude the cases
B2, G2 and F4 but keep the previous notations. So all roots in R
have the same length. We assume moreover T to be defined and split
over ¥p . So the usual Frobenius endomorphism x *-> xp on K gives
rise to an endomorphism FQ of G, acting on T via FQ(t) = tp for
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all t e T. There is an automorphism of G that has the same order
as τ, commutes with F, stabilizes Γ and induces on Π C I ( Γ ) the
same map as τ. If this automorphism is also denoted by τ, then we
can write F = τoF£=F£oτ for some integer n > 0 in this case
q = pn. We denote the fundamental dominant weights of R by λa

and set p := Σλa where the sum is over all simple roots. Let X(T)+
be the set of dominant weights and set for all n > 0:

(1.1) Xn(T) := [λ = J2 r«λ« € X(T)\0 <ra<pn for all a e π } .

For any A € X(Γ)+ let V(λ) be the Weyl module for G with high-
est weight λ and L(Λ) its unique simple quotient. One has
V((pn - \)p) = L((pn - \)ρ) for all n this module is often called the
n th Steinberg module and denoted by Stw .

For any G-module M and any r e N let M^ denote the G-module
got from M by twisting the G-action with Fζ. If μ = Σp'βi where
/ ranges from 0 to n - 1 and μ, eX\(T), then

(1.2) L(μ) = L(μ0) ® Z , ^ 1 ) ® ® L ^ . O ^ " 1 )

by Steinberg's tensor product theorem [18].
According to another theorem of Steinberg [18] the L(λ) with λ e

Xn{T) remain irreducible when regarded as a representation of GF ,
and each simple ^ΓG^-module is isomorphic to exactly one L(λ) with
λeXn(T).

The nth Steinberg module Stπ = L((pn - \)p) is known to be
projective as a ^GF-module. So in the case of the Steinberg groups
our main theorem amounts to:

(1.3) THEOREM. Suppose that G is a Steinberg group not of type
A2. Then L(λ) is not a periodic KGF-module for any λ e Xn{T), λ Φ
{Pn-\)P.

Using the corresponding results for non-twisted groups of type A\,
/ > 1 (proved in [9]) we reduce the proof of this theorem to the case
of 2A3 (i.e. to the groups SU4(#2)) that will be dealt with in §2.

(1.4) PROPOSITION. If Theorem 1.3 holds in the case 2A^f then it
holds in all cases.

Proof. Suppose that L(λ) is periodic. Then for any subgroup H of
GF any direct summand M of L(λ) as a ^Γίί-module is periodic. So
we prove the proposition by constructing in each case some H and
M such that M is not periodic for KH.
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Here and in the following we will abbreviate a weight λ =
by (ri, r2, . . . , η), where Π = {αi, . . . , 07} .

1. Type A\, / > 3. Here the Dynkin diagram is:

We consider G F = SU/+ 1(#2) with respect to the hermitian form
given by the unit matrix.

Then c\: g H-> (§ ^) and c 2 : £ •-> ( Q £) define two canonical em-
beddings of SU/(<?2) -> SU/+1(<?2). If Lj denotes the Levi subgroup
for / c Π in G, then the image Im c\ is contained in the derived
group -Σ<π\{α > : = ^1 a n c * I m ^2 Q ^π\{<* } : = ^2 hence we can apply
a theorem of Smith [17]:

If A = (rx, . . . , r7) G X«(Γ) then L(A)|Li = L(Λ/) Θ M/ where
L(A| ) is an irreducible module for Lz with highest weight λι and
Mi is some other Lf module. We get Ai = (π , Γ2, . . . , η_ι) and
^2 = (r2 ?

 r3 > 9

 rι) - See also [16] for a proof of these facts.
Furthermore L, is simply connected of type A\_χ. If A Φ

[pn -\)ρ, then we may assume without loss of generality that Ai 7̂
(pn - \){p - AQ/). Then L(Ai) is a simple periodic and non-projective
SU/(<?2) module in contradiction to the induction hypothesis.

Case 2. Type 2Dι(q2)sx.

o o o o o,
a, α, a,.

o a,

o a.

Let L| be the derived group of the Levi subgroup corresponding to
/,•, where // = {αz , α, +i} for i < 1-2 and //_2 = {α/_2, α/_i, 07} .
Each L/ is ^-stable and simply connected; one has Lf = A2(q)s.c.
for 1 < / - 2 and ( L / ^ = 2^ 3(ί 2)s.c.. If again A = (n , r 2, . . . , η) \
then by Smith's theorem L{X)\LF = L{λ{) Θ Aί/ as above with A, —
(r, , r, + 1 ) for 1 < / < / - 3, and A/_2 = (r/_2, r/_i, r/). Again, since
L(A) 7̂  Stπ, one of these L(A, ) 's must be non-projective and hence
non-periodic for Lf , by the corresponding result for Aι{q) in [9] and
the hypothesis.

Case 3. Type 2E6(q2)s.c.:

o o o3 o o

o
6
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The same kind of argument applies here with J\ = Π\{α6}, J2 =
{α3, a6} and {LJχ)

F = 2A5(q2), (LJ2)
F = A2(q), using Case 1 and

the result in [9].

Case 4. Type 3D4(q\c,:

O ex..

o o R = {±(δ| ± 8j) , / ̂  /}.
a.

The Weyl group W{G, T) acts on Z4 as permutations of the ±e/'s
with an even number of sign changes.

If a\ := ε\—ε2, &2 := £i — £3, a$ := £3 — ε4, a4 := £3+^4, then the
τ-fixedpoints c*2> o:i+α2 + α3+α4 = £i+£3 = : β , a
β\ + 62, form an ^(2-subsystem of i?. Moreover fΓ maps

, β) *-* {0L2, a\) under /I 2 3 4
1 - 3 - 2 4

, 0:2) »-)• («2 , 0̂ 3) under ^ 1 2 3 4
2 3 4 1

(a\, aι) ^ (#2 > ^4) under / 1 2 3 4
\2 3 - 4 - 1

If Ua denotes the root subgroup of G, then Ua2, ί/̂  are ^-stable
and C/ξ ,U{ = ¥+. Let 7/ be the subgroup (C/±α2, U±β) < G then
H is of type ^2 and i / F of type ^ ( ί ) F° Γ / = 1, 3 5 4 let /,• =
{αz , α 2 } ; hence Z/y =: Lz is of type A2 but not F-stable. Let now
L(λ) φ StΛ , with A = (n , r2, r3, r4).

Then L{X)\LI = L(λi) ® Λ/, , where λ, = (r 2, π) resp. (r\, ^2).

For each / there is some w, G PF such that Wj(H) = WfHw~l

is contained in L, . Since L(Λ) |^F is periodic, also the restrictions
L(λ)\w ( / / FJ must be periodic. This can be seen for instance looking at
the rank variety in the sense of [3], [4] and the fact that rank varieties
of conjugate groups are isomorphic. Since Wi{H) is contained in L/,
also L{λi)\w,HFj is periodic. But Wi(HF) = A2{q) and r/ < q, so

L{λi) is also irreducible for Wi(HF), which forces η and r2 to be
q - 1 by the result in [9]. This gives a contradiction. D

2. The Case SU4. Keep all assumptions and notations from §1. and
assume that R is of type A3.
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(2.1) LEMMA. Let μ = JJ-Jpιμ, e Xn(T) with all μι^Xx{T). If
L(μ) is a periodic KGF -module, then each μ/ has one of the following
forms:

(a) {p-\,p-\,p-\) = {p

(b) (p - 1, p - 1, 0 with 0<i<p-\,

(b') (i,p-l,p-l) with 0<i<p-l,

(c) (p-l,i,j) withO<i,j,i + j = p-2,

(c') (i,j,p-l) withO<i,j,i + j=p-2,

(d) {p-\,i,p-\) with 0><i<p-\,

(e) (i,p-\, j) with 0<i,j <p-l,

(f) {p-2-i,i,p-2-i) withO<i<p-\.

Proof. Suppose μ = (mi, mi, m$). The same argument as in the
proof of (1.4), Case 1 shows that L{{m\, m2)) and L((m2, m3)) are
periodic as KSU3(<72)-modules. The classification of these modules
in [7] yields now the claim. •

(2.2) LEMMA. Let λeXι(T) be of type (d), (e), (f) in Lemma (2.1).
Then dim L(λ) is not divisible by p3.

Proof. The formulae for the characters of the L(λ) in [12] §7 imply:

dimL(/7 - 1, i, p - 1) = dim V(p - 1, i, p - 1)

-dimV(p-(i + 2),i,p-(i + 2))

for 0 < i < p - 1

dimL(i, p - 1, j) = d i m V(i,p-l, j)

+ dim V(p - (i + 2), / + j + 1 -p, p - ( + 2))

f o r O < i , j <p- 1, i + j > p - 2 ;

d i m L ( / ; j p - 1,7) = d i m F ( / , ^ - 1,7) for 0 < 1, 7, i + 7 = p - 2 ;

dimL(/, p - 1 , 7 ) = dim V(i,p-l, j)

forO<i,j,i + j<

dim L(/7 — 2 — ί, i, p - 2 - i) = dim V(p — 2 — i, i, p - 2 — i)

f o r O < / <
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By WeyPs dimension formula

dim V(r,s, t) = (r+l)(s+l)(t+l)(r+s + 2)(s + t+2)(r+s + t + 3)/l2.

In each case one sees immediately that p3 does not divide dim V(μ)
for any μ. In the case λ = (p - 1, /, p - 1) one gets

0 (mod/?3) for/?>5,

0 (mod/?2) for/? = 3,

dimL(λ) = 14 φ 0 (mod8) for/? = 2.

The other cases are similar and are left to the reader. D

Recall the definition of the rank variety VEM of a KE-module
M for any elementary abelian p-group E as in [3] or [4]. So it is a
homogeneous subvariety of the vector space Km where m is the rank
of E. It is called linear, if it is a linear subspace of Km .

(2.3) LEMMA. Let E be an elementary abelian p-subgroup of GF =
SU4(#2) and let μ e X\{T) be of type (b) or (c) in Lemma (2.1).
Then

VEL(μ) = VEL((p - 1,0, p - 2 ) ) .

Proof Set C* = {(r{, r 2, r3) e X(Γ)| - 1 < rx, r 2 , r 3 , n + r2 + r3 <
/? - 3}. Then C* is a fundamental domain for the "dot" operation
(i.e., w - μ = w(μ + p) - p) of Wp on X, where Wp is the affine
Weyl group (as in [14], II, 6.1). So there is a unique μf eWp - μΓ\C*
and a unique λf e Wp λΓ\C* where λ = (/? - 1, 0, p - 2) in fact
^ = ( - 1 , - 1 , 0 ) .

We want to use the translation functors T$ and Tλ,, cf. [14],
A μ

II, 7.6. More precisely, we shall show that Tljί L(λ) = L(μ) and

Tλ',L(μ) = L(λ). As Γi'ί'Lf/l) is a direct summand of L(λ) ® M
// A

T,

for a suitable finite dimensional G-module M, and Tλ',L{μ) a direct
summand of L(μ) ® M*, elementary properties of the rank variety
(cf. [3]) yield VEL(λ) = VEL(μ).

If μ is of type (c) in Lemma (2.1), then λ and μ belong to the

same facet for Wp . In this case Tjf L(λ) = L(μ) and TΪL(μ) = L(λ)

are special cases of [14], II, 7.15.
Suppose now that μ is of type b) in Lemma (2.1), i.e. μ = (/? - 1,

/ ? - 1, i) for some i, 0 < / < / ? - 1. Then μ'= ( - 1 , i, p - (i + 2)).
One has K(A) = L(λ) and F(μ) = L(//) by [11], p. 120 or by [12].
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We can compute the formal characters of Tt L(λ) and Tλ,L(μ) using
[14], II, 7.8. Let S( = sa. be the reflection with respect to α, (for
/ = 1, 2, 3) and let s e Wp be the aίϊine reflection with s(r, s, t) =
(r + s + t-p, p-t, p — s) for all (r, s, t) eX(T). Then the stabilizer
of μ' (under the dot action) in Wp consists of {1, S\, s, S\S, ss\,
s\SS\), that of λr of {1, S\, S2, S1S2, ^2^1, ̂ i^2^i} The intersection
of these groups is {1, sγ}, a system of representatives modulo this
intersection is {1, Si, 1̂̂ 2} i n Stab (λr) and {1,5, S\s} in Stab (μf).

The element w eWp with w(r, 5, ί) = (p-r, r + .s' + ί ,^-^) has
the property that μ = w μ' and A = to A;. One has

μ' = ( p - ( i + 2 ) , p - l 9 - 1 ) ,

These weights are not dominant, but become dominant after adding
p = (1, 1, 1). Therefore they contribute 0 to the sum in [14], II, 7.12,

and we get TjfL(λ) = Tjfv(λ) = V(μ) = L{μ). Furthermore

ws-λ' = (2p-2,p- 1, -1),

λ' = {0,2p-2,-\).

The same argument as above implies

For a € R, let Ua = {xa(t)\t € # } be the root subgroup of G with
root homomorphism xa: K t-» G. We set:

H —TJnTJ aJJ aJJ , , ^ (K+λ^
Ai . — vjζχ \J \JQi -\-OL ^OL -\-ot ^a -\-(x -\-(x — v /

If {u\, U2, . . . , un}, {v\, v2, . . . , V2n} denote bases of F^ and Έqi
over F^ respectively, then let X\{ui) := xa (uι),

The group

E := HF = (xi(M; )x2(^)x3(w^)|l < 1, k < n; 1 < j < In)

is then an elementary abelian p-subgroup of rank An of GF =
SU4(<72).
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(2.4) LEMMA. Let λ e X\ (T) be one of the weights in Lemma (2.1).
Then

dim VEL(λ) >4n-2 for λφ{p- 1)/?,

dim VEL((p -l)p)>4n- 4.

Proof. Let d := dimVEL(λ); then by [3], Proposition 5.1, there
exists a "shifted subgroup" E~ < KE*, which is elementary abelian
of order p4n~d such that L(λ)\E* is free. In particular p4n~d divides
dimL(λ), which proves the claim for the weights of type (d), (e) and
(f) by (2.2).

By (2.3) we are left with the weights (p - 1, 0, p - 2) and (p-l)p
in both cases L(λ) = V(λ). Now let / := {a\, a2} C Π; then H
can also be described as the unipotent radical Uj of the standard
parabolic subgroup Pj = Uj x Lj < G. If λ = (r, s, t), then by
Smith's theorem L(X)\L = L{X)UJ ®X, where L{X)UJ is the space
of £//-fixed points, which is also an irreducible module for Lj =
A\(K)SC x A\(K)SC , with highest weight (r, t), hence has dimension

Since E c Uj and E* is generated by elements of the form

l + Σcii(Xi-l) with ateK, xt e E, it is clear that L(λ)17/ c L(A)£ ,
which has dimension dimL(λ)/p4n~d because L(λ) is £^-free. So
we get pAn~d < dimL(λ)/(r+ l)(ί + 1). Now we apply WeyΓs dimen-
sion formula and obtain p4n~d < p2(p +1)/6 for λ = (p - 1, 0, p - 2)
and /? 4 "- J < p 4 for A = (/? - \)p. D

(2.5) PROPOSITION. // M is a periodic simple ¥JSU^{q2)-module9

then

Proof. By [3] 5.6, VE(X ® Y) = F^(X) n K£(Γ) for i^£-modules
X and 7 . It is easy to see that dimVE(L(μ)W) = dim VE(L{μ)),
so if Λf (^ Strt) is written in the form of (1.2), then at least for
one βi we must have dim VE(L(μi)W) > An - 2 by (2.4). Since all
rank varieties VE are homogeneous affine subvarieties of K4n the
intersection formula for homogeneous varieties implies

n-\

dim VEM = dim f) VE(L(m)W)

> (n - l)(4n -4) + 4n-2-{n- \)4n > 2,

which contradicts periodicity by [3], 7.6 and 8.1. D
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REMARK. This proposition together with (1.4) implies Theorem
(1.3), and it is clear, since GF = (GF)' if type (a) of the exceptions is
excluded, how to get (0.1).

3. The Ree and Suzuki groups. In this section we deal with the cases,
where R is of type G2, F4 and B2, which were excluded earlier. Here
twisted groups of Lie type can exist only if the characteristic of K is
3, 2 and 2 respectively, and τ always has order 2, interchanging the
long and short roots.

PROPOSITION (3.1). Let R be G2 or F4, charK = 3 or 2 respec-
tively and Γ = GF, GF/Z(GF), or (GF)f then every periodic simple
KY-module is projective, and either isomorphic to StGF or to a Clifford
component of StGf | Γ ifΓ= (GF)' < GF and TφGF.

Proof. We first prove this for Γ = GF. By a result of Steinberg
[18], §12, an analogue of (1.2) applies here, with X\[T) replaced by
XX{T)' =: X[ = {μ = Σraλa e X\(T)\a e Π and ra = 0 if a is a
long root}.

Case 1. GF = 2G2(q2)s.c. with q2 = 3n , n = 2m + 1 and chari^ =
3, R = {±a, ±(2α + 3β), ±(a + 3β) (long roots), ±β, ±(α + β),
±(α + 2β) (short roots) } , and the Dynkin diagram is:

Here XX{T)' = {(0, 0), (0, 1), (0, 2)} and dimL(λ) = 1, 7, 27 for
λeXι(T)r respectively. See [18], §12.

Let E = {x(u, v)\u9 v G F3«} with

Then E is elementary abelian of rank 2n . With regard to the dimen-
sions it is enough to look at λ = (0, 2). Then L(λ) has the following
"monomial basis" with highest weight vector v£ :

where X-y are root vectors in Lie(G).
If γ is any positive root, xγ: K —• G the corresponding root ho-

momorphism and Vμ a weight subspace to the weight μ of some G
module V, then one knows:

l €N
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Since λ is the highest weight of L(λ) and E consists of unipotent
elements, E must fix the three basis vectors v£ , X-βVχ , Xlβvχ If
d := dim VE{L(0, 2)), then as in the proof of (2.4), a suitable shifted
elementary abelian E~ < (KE)* with \E* | = 32n~d acts freely on
L(0, 2) and we get dimL(0, 2)/\E~\ = 3 ί /~ 2 w + 3 > 3 and hence d >
2n -2. By elementary properties of rank varieties, VE(L(λ)) = K2n

for λ = (0, 0) or (0, 1). The analogue of (1.2) together with the
intersection theorem for affine varieties yields dim VE(M) > 2 for all
M φ StGF .

Case 2. GF = 2F4(q2),q2 = 2n, n = 2m + 1 and charK = 2.
Here XX(T)' = {(0, 0, 0, 0) , (0, 0, 0, 1), (0, 0 , 1 , 0 ) , (0, 0, 1, 1)}

with dimensions for L(λ): 1, 26, 246, 2 1 2 respectively (see [20]). Let

θ: K -^ K, x »-> x1™ we consider the following elements of

R+ (Π = {a{, 0:2,0:3, α 4 } ) :

γι := 01 + 2α2 + ?>a3 + 2o4 72 : = 2αi + 3θ2 + 4θ3 + 2o 4

δ\ := αj + 2θ2 + 3α3 + α 4 2̂ •= OL\ + 3«2 + 4o:3 + 2α4

εi := 01 + 2θ2 + 203 + o 4 62 := a\ + 2ct2 + 4θ3 + 2α4

ψ\ := 01 -h α 2 + 2o 3 + o 4 ψ2 := <*i 4- 2θ2 + 203 + 2o4

ψ\ := αi + 0:2 + 03 + o 4 ^2 •"= 0:1+0^2 + 203 + 2α4.

Notice that γ\,δ\, ... are short and 72 > <?2 > a r e

Let

x ? 2(wf) x2(u2) :=

X5(w5) : = x ^ ( w 5 ) o x ^ ( w f ) ; with M, EF2«.

Notice that these elements commute because of char^Γ = 2, and hence
the group E := (JC/(W/)|Z = 1, 2, 3, 4, 5; W, G F2«) is an elementary
abelian subgroup of GF of rank 5n .

For L(0, 0, 1, 1) there is a monomial basis, consisting of ele-
ments of the form: XΆ-ω o o XnJ^ υ^ with nz € {0, 1}, where
{ωi, (D2 , . . . , con} is the set of short positive roots.

The 7 short roots 03, 02 + 03, 01 + 02 + 03, o 4 , 03 + α 4 , 02 + 03 +
o 4 , 02 + 2θ3 + o 4 have not full support in Π. Since the generators of
E are products of xγ 's where γ is a positive root with full support, an
argument similar to that of Case 1 shows that basis vectors involving
only monomials in those 7 roots have to be fixed by E and hence by
any shifted subgroup E~ of KE*.
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Since there are 27 such monomials, dimL(0, 0, 1, 1)^ > 2 7 .
If d = dimVE(L(0, 0, 1, 1)) then again we can choose E~ to act
freely on 1,(0,0, 1, 1) and to be of order 25n~d. So we get
dimL(0, 0, 1, 1)/\E~\ = 2 1 2 " 5 + ί / > 27 hence d > 5n - 5. Since
all other VE(L(λ)) for λ e X\{T)' have dimension > 5n - 1 (4 does
not divide dimL(λ) for λ φ (0, 0, 1, 1)), the analogue of (1.2)
yields:

dim VE(M) > 4 for all M φ S\GF .

Proof for GF/Z(GF) and GF>. As Z(GF) is a //-subgroup of GF

the same results hold for Γ = GF/Z{GF). Now let GF> φ GF then
m = 0, n = 1 and # 2 = IG^/G^Ϊ = /7 = 3 in Case 1 and = 2 in
Case 2.

By Clifford's theorem St| F> is completely reducible. Let V be a
simple direct summand of St| F>, with inertia group / := IGF(V) =

{g e GF\V8 s V as G77' modules}. Then I = GF'. Otherwise
by [8] §9, (9.9), V = W\GF> for a simple G^ module FT, which is
isomorphic to St^F , since V is projective; but then W had to be a
direct summand of the induced module VG since W is projective,
which contradicts the indecomposability of VG given by Green's
theorem [8] §16. So St\GF = 0 EGF/GF' V% and we claim that each

periodic simple GF module is isomorphic to one of these Vg 's.
Let S be an irreducible periodic module for GF . If / = IGF (S) =

GF then again S = W F> for a simple GF module W. In Case

1, E c G^ and in Case 2 E Π GF has rank > 4 hence 3 or 23

divides dim W respectively which forces W to be = StGF, leading
to a contradiction. Hence / = GF which implies that SG is simple
periodic for GF. So SG = StGF and 5 = V^ for a ^ e GF by
Frobenius reciprocity. In particular S is projective. α

We conclude the treatment of twisted groups of Lie type, by com-
puting the rank varieties of simple modules for GF = 2B2(q2)s.c,
which includes a classification of periodic simple modules, i.e. those
whose variety has dimension 1.

Let q2 = 2n,n = 2m+ 1, char A' = 2 , 0 := (?) 2 ,Π = {a,β}.
The Dynkin diagram is o o. Let P := {x(t, u)\t,u G F22m+i} e
Syl2(GF), with x(t, ύ) = Xa(ήXβ(tθ)xa+2β(u)xa+β(tι+θ + uθ)\ then
|P | = 24m+2 a n ( j z(P) = {x(0, ύ)} is maximal elementary abelian;
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let D := Z(P). Notice that there is only one conjugacy class of
maximal elementary abelian 2-subgrouρs in GF. Here X\{Ty =
{(0, 0), (0, 1)} with dimensions 1 and 4 respectively.

(3.2) PROPOSITION. Let GF = 2B2(q2)s.c. and M be an irreducible
KGF-module then VE{M) is linear and dim VE{M) = n - s, where
s is the number of factors λt• = (0, 1) in the tensor product

n-\

ι=0

Proof. We need only to consider L(0, 1) which has a basis B =
{v+, X-βV+, X_(a+β)V+ , X_βX_(a+β)V+} . A straightforward com-
putation shows, that

x(0, u)X_{a+β)v
+ = uθυ+ + X { β )

x ( 0 , u)X-βX-{a+β)V+ = uv+ + uθX_βX-{

Hence x(0, u) is represented with respect to B by

" 1
0 1 0

uθ 0 1
u uθ 0 I

Let now {m} be an F2-basis of ¥2

n > then {x(0, u{) =: Xι) is a basis of
E. For a = (a{, α 2 , . . . , an) G Kn we define wa := 1 + Σai(Xi - 1).
Then we get, using Lemma 4.2 of [3]:

, 1)) = {a G *-Λ|rkwa - K ^4} - | a G ΛΓn| J^α/i/f - θ | .

The analogue of (1.2) now gives the result. α

REMARK. It may be interesting to notice that non-projective sim-
ple periodic modules only occur in finite groups of Lie type, if the
group has a split i?jV-pair of rank one. But 2G2 shows, they need not
necessarily occur in this case.
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